IMU for Zumy
Dependents: zumy_mbed zumy_mbed zumy_mbed mbed_zumy_rpc
Fork of MPU6050IMU by
Revision 3:359efdec694f, committed 2015-10-05
- Comitter:
- abuchan
- Date:
- Mon Oct 05 19:34:26 2015 +0000
- Parent:
- 2:e0381ca0edac
- Commit message:
- Reverting mbed-rpc library to version 1
Changed in this revision
diff -r e0381ca0edac -r 359efdec694f MPU6050.h --- a/MPU6050.h Sun Jun 29 21:53:23 2014 +0000 +++ b/MPU6050.h Mon Oct 05 19:34:26 2015 +0000 @@ -153,9 +153,11 @@ int Ascale = AFS_2G; //Set up I2C, (SDA,SCL) -I2C i2c(I2C_SDA, I2C_SCL); +#define MPU_SDA p9 +#define MPU_SCL p10 +I2C i2c(MPU_SDA, MPU_SCL); -DigitalOut myled(LED1); +//DigitalOut myled(LED1); float aRes, gRes; // scale resolutions per LSB for the sensors
diff -r e0381ca0edac -r 359efdec694f N5110.lib --- a/N5110.lib Sun Jun 29 21:53:23 2014 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,1 +0,0 @@ -http://mbed.org/users/onehorse/code/MPU60506-axisMotionSensor/#313c258ada8a
diff -r e0381ca0edac -r 359efdec694f main.cpp --- a/main.cpp Sun Jun 29 21:53:23 2014 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,224 +0,0 @@ - -/* MPU6050 Basic Example Code - by: Kris Winer - date: May 1, 2014 - license: Beerware - Use this code however you'd like. If you - find it useful you can buy me a beer some time. - - Demonstrate MPU-6050 basic functionality including initialization, accelerometer trimming, sleep mode functionality as well as - parameterizing the register addresses. Added display functions to allow display to on breadboard monitor. - No DMP use. We just want to get out the accelerations, temperature, and gyro readings. - - SDA and SCL should have external pull-up resistors (to 3.3V). - 10k resistors worked for me. They should be on the breakout - board. - - Hardware setup: - MPU6050 Breakout --------- Arduino - 3.3V --------------------- 3.3V - SDA ----------------------- A4 - SCL ----------------------- A5 - GND ---------------------- GND - - Note: The MPU6050 is an I2C sensor and uses the Arduino Wire library. - Because the sensor is not 5V tolerant, we are using a 3.3 V 8 MHz Pro Mini or a 3.3 V Teensy 3.1. - We have disabled the internal pull-ups used by the Wire library in the Wire.h/twi.c utility file. - We are also using the 400 kHz fast I2C mode by setting the TWI_FREQ to 400000L /twi.h utility file. - */ - -#include "mbed.h" -#include "MPU6050.h" -#include "N5110.h" - -// Using NOKIA 5110 monochrome 84 x 48 pixel display -// pin 9 - Serial clock out (SCLK) -// pin 8 - Serial data out (DIN) -// pin 7 - Data/Command select (D/C) -// pin 5 - LCD chip select (CS) -// pin 6 - LCD reset (RST) -//Adafruit_PCD8544 display = Adafruit_PCD8544(9, 8, 7, 5, 6); - -float sum = 0; -uint32_t sumCount = 0; - - MPU6050 mpu6050; - - Timer t; - - Serial pc(USBTX, USBRX); // tx, rx - - // VCC, SCE, RST, D/C, MOSI,S CLK, LED - N5110 lcd(PA_8, PB_10, PA_9, PA_6, PA_7, PA_5, PC_7); - -int main() -{ - pc.baud(9600); - - //Set up I2C - i2c.frequency(400000); // use fast (400 kHz) I2C - - t.start(); - - lcd.init(); - lcd.setBrightness(0.05); - - - // Read the WHO_AM_I register, this is a good test of communication - uint8_t whoami = mpu6050.readByte(MPU6050_ADDRESS, WHO_AM_I_MPU6050); // Read WHO_AM_I register for MPU-6050 - pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x68\n\r"); - - if (whoami == 0x68) // WHO_AM_I should always be 0x68 - { - pc.printf("MPU6050 is online..."); - wait(1); - lcd.clear(); - lcd.printString("MPU6050 OK", 0, 0); - - - mpu6050.MPU6050SelfTest(SelfTest); // Start by performing self test and reporting values - pc.printf("x-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[0]); pc.printf("% of factory value \n\r"); - pc.printf("y-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[1]); pc.printf("% of factory value \n\r"); - pc.printf("z-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[2]); pc.printf("% of factory value \n\r"); - pc.printf("x-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[3]); pc.printf("% of factory value \n\r"); - pc.printf("y-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[4]); pc.printf("% of factory value \n\r"); - pc.printf("z-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[5]); pc.printf("% of factory value \n\r"); - wait(1); - - if(SelfTest[0] < 1.0f && SelfTest[1] < 1.0f && SelfTest[2] < 1.0f && SelfTest[3] < 1.0f && SelfTest[4] < 1.0f && SelfTest[5] < 1.0f) - { - mpu6050.resetMPU6050(); // Reset registers to default in preparation for device calibration - mpu6050.calibrateMPU6050(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers - mpu6050.initMPU6050(); pc.printf("MPU6050 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature - - lcd.clear(); - lcd.printString("MPU6050", 0, 0); - lcd.printString("pass self test", 0, 1); - lcd.printString("initializing", 0, 2); - wait(2); - } - else - { - pc.printf("Device did not the pass self-test!\n\r"); - - lcd.clear(); - lcd.printString("MPU6050", 0, 0); - lcd.printString("no pass", 0, 1); - lcd.printString("self test", 0, 2); - } - } - else - { - pc.printf("Could not connect to MPU6050: \n\r"); - pc.printf("%#x \n", whoami); - - lcd.clear(); - lcd.printString("MPU6050", 0, 0); - lcd.printString("no connection", 0, 1); - lcd.printString("0x", 0, 2); lcd.setXYAddress(20, 2); lcd.printChar(whoami); - - while(1) ; // Loop forever if communication doesn't happen - } - - - - while(1) { - - // If data ready bit set, all data registers have new data - if(mpu6050.readByte(MPU6050_ADDRESS, INT_STATUS) & 0x01) { // check if data ready interrupt - mpu6050.readAccelData(accelCount); // Read the x/y/z adc values - mpu6050.getAres(); - - // Now we'll calculate the accleration value into actual g's - ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set - ay = (float)accelCount[1]*aRes - accelBias[1]; - az = (float)accelCount[2]*aRes - accelBias[2]; - - mpu6050.readGyroData(gyroCount); // Read the x/y/z adc values - mpu6050.getGres(); - - // Calculate the gyro value into actual degrees per second - gx = (float)gyroCount[0]*gRes; // - gyroBias[0]; // get actual gyro value, this depends on scale being set - gy = (float)gyroCount[1]*gRes; // - gyroBias[1]; - gz = (float)gyroCount[2]*gRes; // - gyroBias[2]; - - tempCount = mpu6050.readTempData(); // Read the x/y/z adc values - temperature = (tempCount) / 340. + 36.53; // Temperature in degrees Centigrade - } - - Now = t.read_us(); - deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update - lastUpdate = Now; - - sum += deltat; - sumCount++; - - if(lastUpdate - firstUpdate > 10000000.0f) { - beta = 0.04; // decrease filter gain after stabilized - zeta = 0.015; // increasey bias drift gain after stabilized - } - - // Pass gyro rate as rad/s - mpu6050.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f); - - // Serial print and/or display at 0.5 s rate independent of data rates - delt_t = t.read_ms() - count; - if (delt_t > 500) { // update LCD once per half-second independent of read rate - - pc.printf("ax = %f", 1000*ax); - pc.printf(" ay = %f", 1000*ay); - pc.printf(" az = %f mg\n\r", 1000*az); - - pc.printf("gx = %f", gx); - pc.printf(" gy = %f", gy); - pc.printf(" gz = %f deg/s\n\r", gz); - - pc.printf(" temperature = %f C\n\r", temperature); - - pc.printf("q0 = %f\n\r", q[0]); - pc.printf("q1 = %f\n\r", q[1]); - pc.printf("q2 = %f\n\r", q[2]); - pc.printf("q3 = %f\n\r", q[3]); - - lcd.clear(); - lcd.printString("MPU6050", 0, 0); - lcd.printString("x y z", 0, 1); - lcd.setXYAddress(0, 2); lcd.printChar((char)(1000*ax)); - lcd.setXYAddress(20, 2); lcd.printChar((char)(1000*ay)); - lcd.setXYAddress(40, 2); lcd.printChar((char)(1000*az)); lcd.printString("mg", 66, 2); - - - // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation. - // In this coordinate system, the positive z-axis is down toward Earth. - // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise. - // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative. - // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll. - // These arise from the definition of the homogeneous rotation matrix constructed from quaternions. - // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be - // applied in the correct order which for this configuration is yaw, pitch, and then roll. - // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links. - yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]); - pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2])); - roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]); - pitch *= 180.0f / PI; - yaw *= 180.0f / PI; - roll *= 180.0f / PI; - -// pc.printf("Yaw, Pitch, Roll: \n\r"); -// pc.printf("%f", yaw); -// pc.printf(", "); -// pc.printf("%f", pitch); -// pc.printf(", "); -// pc.printf("%f\n\r", roll); -// pc.printf("average rate = "); pc.printf("%f", (sumCount/sum)); pc.printf(" Hz\n\r"); - - pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll); - pc.printf("average rate = %f\n\r", (float) sumCount/sum); - - myled= !myled; - count = t.read_ms(); - sum = 0; - sumCount = 0; -} -} - - } \ No newline at end of file
diff -r e0381ca0edac -r 359efdec694f mbed.bld --- a/mbed.bld Sun Jun 29 21:53:23 2014 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,1 +0,0 @@ -http://mbed.org/users/mbed_official/code/mbed/builds/0b3ab51c8877 \ No newline at end of file