для управления турелью

Dependencies:   mbed

mpu6050.cpp

Committer:
Yar
Date:
2017-01-19
Revision:
3:e47c0c98f515

File content as of revision 3:e47c0c98f515:

#include "mpu6050.hpp"
#include "mbed.h"
//#include "rtos.h"
#include "libMPU6050.hpp"
#include "math.h"

#define MPU6050_TIMER 1

MPU6050 mpu6050; // даччик ускорения и гироскоп
Ticker TimerInterrupt;
Timer t; // таймер

const double periodMPU6050 = 0.01;

static char isMPU6050Error = 0;
static float sum = 0;
static uint32_t sumCount = 0;

//void mpu6050TimerInterrupt(void);
void I2C_ClockToggling(void);

void initMPU6050(void) {
    isMPU6050Error = 0;
    //I2C_ClockToggling();
    //Set up I2C
    i2c.frequency(400000);  // use fast (400 kHz) I2C   
    t.start();
    // Read the WHO_AM_I register, this is a good test of communication
    uint8_t whoami = mpu6050.readByte(MPU6050_ADDRESS, WHO_AM_I_MPU6050);  // Read WHO_AM_I register for MPU-6050
    if (whoami == 0x68) {
        // WHO_AM_I should always be 0x68
        printf("MPU6050 is online...");
        wait(1);
        mpu6050.MPU6050SelfTest(SelfTest); // Start by performing self test and reporting values
        //printf("x-axis self test: acceleration trim within : "); printf("%f", SelfTest[0]); printf("% of factory value \n\r");
        //printf("y-axis self test: acceleration trim within : "); printf("%f", SelfTest[1]); printf("% of factory value \n\r");
        //printf("z-axis self test: acceleration trim within : "); printf("%f", SelfTest[2]); printf("% of factory value \n\r");
        //printf("x-axis self test: gyration trim within : "); printf("%f", SelfTest[3]); printf("% of factory value \n\r");
        //printf("y-axis self test: gyration trim within : "); printf("%f", SelfTest[4]); printf("% of factory value \n\r");
        //printf("z-axis self test: gyration trim within : "); printf("%f", SelfTest[5]); printf("% of factory value \n\r");
        wait(1);
    
        if(SelfTest[0] < 1.0f && SelfTest[1] < 1.0f && SelfTest[2] < 1.0f && SelfTest[3] < 1.0f && SelfTest[4] < 1.0f && SelfTest[5] < 1.0f) {
            mpu6050.resetMPU6050(); // Reset registers to default in preparation for device calibration
            mpu6050.calibrateMPU6050(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers  
            mpu6050.initMPU6050(); printf("MPU6050 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
            wait(2);
        } else {
            printf("Device did not the pass self-test!\n\r"); 
        }
        #if MPU6050_TIMER == 1
        //TimerInterrupt.attach(&mpu6050TimerInterrupt, 0.5);
        #endif
    } else {
    printf("Could not connect to MPU6050: \n\r");
    printf("%#x \n",  whoami);
    isMPU6050Error = 1;
  }
}

#if MPU6050_TIMER == 0

void mpu6050Thread(void const *argument) {
    //if (isMPU6050Error == 0)
    while(true) {
        // If data ready bit set, all data registers have new data
        if(mpu6050.readByte(MPU6050_ADDRESS, INT_STATUS) & 0x01) {  // check if data ready interrupt
            mpu6050.readAccelData(accelCount);  // Read the x/y/z adc values
            mpu6050.getAres();
            
            // Now we'll calculate the accleration value into actual g's
            ax = (float)accelCount[0]*aRes - accelBias[0];  // get actual g value, this depends on scale being set
            ay = (float)accelCount[1]*aRes - accelBias[1];   
            az = (float)accelCount[2]*aRes - accelBias[2];  
           
            mpu6050.readGyroData(gyroCount);  // Read the x/y/z adc values
            mpu6050.getGres();
         
            // Calculate the gyro value into actual degrees per second
            gx = (float)gyroCount[0]*gRes; // - gyroBias[0];  // get actual gyro value, this depends on scale being set
            gy = (float)gyroCount[1]*gRes; // - gyroBias[1];  
            gz = (float)gyroCount[2]*gRes; // - gyroBias[2];   
        
            tempCount = mpu6050.readTempData();  // Read the x/y/z adc values
            temperature = (tempCount) / 340. + 36.53; // Temperature in degrees Centigrade
        }  
        Now = t.read_us();
        deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
        lastUpdate = Now;
        
        sum += deltat;
        sumCount++;
    
        if(lastUpdate - firstUpdate > 10000000.0f) {
            beta = 0.04;  // decrease filter gain after stabilized
            zeta = 0.015; // increasey bias drift gain after stabilized
        }
    
        // Pass gyro rate as rad/s
        mpu6050.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f);

        // Serial print and/or display at 0.5 s rate independent of data rates
        delt_t = t.read_ms() - count;
        if (delt_t > 500) { // update LCD once per half-second independent of read rate

            printf(" ax = %f", 1000*ax); 
            printf(" ay = %f", 1000*ay); 
            printf(" az = %f  mg\n\r", 1000*az); 
        
            printf(" gx = %f", gx); 
            printf(" gy = %f", gy); 
            printf(" gz = %f  deg/s\n\r", gz); 
            
            printf(" temperature = %f  C\n\r", temperature); 
            
            printf("q0 = %f\n\r", q[0]);
            printf("q1 = %f\n\r", q[1]);
            printf("q2 = %f\n\r", q[2]);
            printf("q3 = %f\n\r", q[3]);      
    
            // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
            // In this coordinate system, the positive z-axis is down toward Earth. 
            // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
            // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
            // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
            // These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
            // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
            // applied in the correct order which for this configuration is yaw, pitch, and then roll.
            // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
            yaw   = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);   
            pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
            roll  = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
            pitch *= 180.0f / PI;
            yaw   *= 180.0f / PI; 
            roll  *= 180.0f / PI;

            //    pc.printf("Yaw, Pitch, Roll: \n\r");
            //    pc.printf("%f", yaw);
            //    pc.printf(", ");
            //    pc.printf("%f", pitch);
            //    pc.printf(", ");
            //    pc.printf("%f\n\r", roll);
            //    pc.printf("average rate = "); pc.printf("%f", (sumCount/sum)); pc.printf(" Hz\n\r");
    
            printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll);
            printf("average rate = %f deltat = %f\n\r", (float) sumCount/sum, deltat);
     
            //myled= !myled;
            count = t.read_ms(); 
            sum = 0;
            sumCount = 0; 
        } // if
        //Thread::wait(1);
    } // while
}

#endif

void mpu6050TimerInterrupt(void) {
    if (isMPU6050Error == 0) {
        // If data ready bit set, all data registers have new data
        if(mpu6050.readByte(MPU6050_ADDRESS, INT_STATUS) & 0x01) {  // check if data ready interrupt
            mpu6050.readAccelData(accelCount);  // Read the x/y/z adc values
            mpu6050.getAres();
            
            // Now we'll calculate the accleration value into actual g's
            ax = (float)accelCount[0]*aRes - accelBias[0];  // get actual g value, this depends on scale being set
            ay = (float)accelCount[1]*aRes - accelBias[1];   
            az = (float)accelCount[2]*aRes - accelBias[2];  
           
            mpu6050.readGyroData(gyroCount);  // Read the x/y/z adc values
            mpu6050.getGres();
         
            // Calculate the gyro value into actual degrees per second
            gx = (float)gyroCount[0]*gRes; // - gyroBias[0];  // get actual gyro value, this depends on scale being set
            gy = (float)gyroCount[1]*gRes; // - gyroBias[1];  
            gz = (float)gyroCount[2]*gRes; // - gyroBias[2];   
        
            tempCount = mpu6050.readTempData();  // Read the x/y/z adc values
            temperature = (tempCount) / 340. + 36.53; // Temperature in degrees Centigrade
        }  
        Now = t.read_us();
        deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
        //deltat = periodMPU6050;
        lastUpdate = Now;
        
        sum += deltat;
        sumCount++;
    
        if(lastUpdate - firstUpdate > 10000000.0f) {
            beta = 0.04;  // decrease filter gain after stabilized
            zeta = 0.015; // increasey bias drift gain after stabilized
        }
    
        // Pass gyro rate as rad/s
        mpu6050.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f);
        yaw   = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);   
        pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
        roll  = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
        pitch *= 180.0f / PI;
        yaw   *= 180.0f / PI; 
        roll  *= 180.0f / PI;
    } // while
}

void getMPU6050(void) {
    //printf("ax = %f", 1000*ax); 
    //printf(" ay = %f", 1000*ay); 
    //printf(" az = %f  mg\n\r", 1000*az);     
    //printf("gx = %f", gx); 
    //printf(" gy = %f", gy); 
    //printf(" gz = %f  deg/s\n\r", gz);        
    printf(" temperature = %f  C\n\r", temperature);    
    //printf("q0 = %f\n\r", q[0]);
    //printf("q1 = %f\n\r", q[1]);
    //printf("q2 = %f\n\r", q[2]);
    //printf("q3 = %f\n\r", q[3]); 
    printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll);
    printf("average rate = %f sumCount = %d\n\r", (float) sumCount/sum, sumCount);
    sum = 0;
    sumCount = 0; 
}

void I2C_ClockToggling(void) {
    const short delay = 10000;
    unsigned char input_pin_state = 1;
    DigitalOut i2cPinSCL(I2C_SCL,OpenDrain);
    DigitalIn i2cPinSDA(I2C_SCL);
    //i2cPinSCL.mode(OpenDrain);
    
    /* Configure SDA GPIO as input */
    input_pin_state = i2cPinSDA;
    while (input_pin_state == 0) {
        input_pin_state = i2cPinSDA;
        i2cPinSCL = 1;
        for (short j = 0; j < delay; j++);
        i2cPinSCL = 0;
        for (short j = 0; j < delay; j++);
    }
    /* Configure SCL GPIO as input */
    i2cPinSCL = 1;
    for (int j = 0; j < delay; j++);
}