для управления турелью

Dependencies:   mbed

Revision:
3:e47c0c98f515
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/mpu6050.cpp	Thu Jan 19 05:22:19 2017 +0000
@@ -0,0 +1,243 @@
+#include "mpu6050.hpp"
+#include "mbed.h"
+//#include "rtos.h"
+#include "libMPU6050.hpp"
+#include "math.h"
+
+#define MPU6050_TIMER 1
+
+MPU6050 mpu6050; // даччик ускорения и гироскоп
+Ticker TimerInterrupt;
+Timer t; // таймер
+
+const double periodMPU6050 = 0.01;
+
+static char isMPU6050Error = 0;
+static float sum = 0;
+static uint32_t sumCount = 0;
+
+//void mpu6050TimerInterrupt(void);
+void I2C_ClockToggling(void);
+
+void initMPU6050(void) {
+    isMPU6050Error = 0;
+    //I2C_ClockToggling();
+    //Set up I2C
+    i2c.frequency(400000);  // use fast (400 kHz) I2C   
+    t.start();
+    // Read the WHO_AM_I register, this is a good test of communication
+    uint8_t whoami = mpu6050.readByte(MPU6050_ADDRESS, WHO_AM_I_MPU6050);  // Read WHO_AM_I register for MPU-6050
+    if (whoami == 0x68) {
+        // WHO_AM_I should always be 0x68
+        printf("MPU6050 is online...");
+        wait(1);
+        mpu6050.MPU6050SelfTest(SelfTest); // Start by performing self test and reporting values
+        //printf("x-axis self test: acceleration trim within : "); printf("%f", SelfTest[0]); printf("% of factory value \n\r");
+        //printf("y-axis self test: acceleration trim within : "); printf("%f", SelfTest[1]); printf("% of factory value \n\r");
+        //printf("z-axis self test: acceleration trim within : "); printf("%f", SelfTest[2]); printf("% of factory value \n\r");
+        //printf("x-axis self test: gyration trim within : "); printf("%f", SelfTest[3]); printf("% of factory value \n\r");
+        //printf("y-axis self test: gyration trim within : "); printf("%f", SelfTest[4]); printf("% of factory value \n\r");
+        //printf("z-axis self test: gyration trim within : "); printf("%f", SelfTest[5]); printf("% of factory value \n\r");
+        wait(1);
+    
+        if(SelfTest[0] < 1.0f && SelfTest[1] < 1.0f && SelfTest[2] < 1.0f && SelfTest[3] < 1.0f && SelfTest[4] < 1.0f && SelfTest[5] < 1.0f) {
+            mpu6050.resetMPU6050(); // Reset registers to default in preparation for device calibration
+            mpu6050.calibrateMPU6050(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers  
+            mpu6050.initMPU6050(); printf("MPU6050 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
+            wait(2);
+        } else {
+            printf("Device did not the pass self-test!\n\r"); 
+        }
+        #if MPU6050_TIMER == 1
+        //TimerInterrupt.attach(&mpu6050TimerInterrupt, 0.5);
+        #endif
+    } else {
+    printf("Could not connect to MPU6050: \n\r");
+    printf("%#x \n",  whoami);
+    isMPU6050Error = 1;
+  }
+}
+
+#if MPU6050_TIMER == 0
+
+void mpu6050Thread(void const *argument) {
+    //if (isMPU6050Error == 0)
+    while(true) {
+        // If data ready bit set, all data registers have new data
+        if(mpu6050.readByte(MPU6050_ADDRESS, INT_STATUS) & 0x01) {  // check if data ready interrupt
+            mpu6050.readAccelData(accelCount);  // Read the x/y/z adc values
+            mpu6050.getAres();
+            
+            // Now we'll calculate the accleration value into actual g's
+            ax = (float)accelCount[0]*aRes - accelBias[0];  // get actual g value, this depends on scale being set
+            ay = (float)accelCount[1]*aRes - accelBias[1];   
+            az = (float)accelCount[2]*aRes - accelBias[2];  
+           
+            mpu6050.readGyroData(gyroCount);  // Read the x/y/z adc values
+            mpu6050.getGres();
+         
+            // Calculate the gyro value into actual degrees per second
+            gx = (float)gyroCount[0]*gRes; // - gyroBias[0];  // get actual gyro value, this depends on scale being set
+            gy = (float)gyroCount[1]*gRes; // - gyroBias[1];  
+            gz = (float)gyroCount[2]*gRes; // - gyroBias[2];   
+        
+            tempCount = mpu6050.readTempData();  // Read the x/y/z adc values
+            temperature = (tempCount) / 340. + 36.53; // Temperature in degrees Centigrade
+        }  
+        Now = t.read_us();
+        deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
+        lastUpdate = Now;
+        
+        sum += deltat;
+        sumCount++;
+    
+        if(lastUpdate - firstUpdate > 10000000.0f) {
+            beta = 0.04;  // decrease filter gain after stabilized
+            zeta = 0.015; // increasey bias drift gain after stabilized
+        }
+    
+        // Pass gyro rate as rad/s
+        mpu6050.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f);
+
+        // Serial print and/or display at 0.5 s rate independent of data rates
+        delt_t = t.read_ms() - count;
+        if (delt_t > 500) { // update LCD once per half-second independent of read rate
+
+            printf(" ax = %f", 1000*ax); 
+            printf(" ay = %f", 1000*ay); 
+            printf(" az = %f  mg\n\r", 1000*az); 
+        
+            printf(" gx = %f", gx); 
+            printf(" gy = %f", gy); 
+            printf(" gz = %f  deg/s\n\r", gz); 
+            
+            printf(" temperature = %f  C\n\r", temperature); 
+            
+            printf("q0 = %f\n\r", q[0]);
+            printf("q1 = %f\n\r", q[1]);
+            printf("q2 = %f\n\r", q[2]);
+            printf("q3 = %f\n\r", q[3]);      
+    
+            // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
+            // In this coordinate system, the positive z-axis is down toward Earth. 
+            // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
+            // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
+            // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
+            // These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
+            // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
+            // applied in the correct order which for this configuration is yaw, pitch, and then roll.
+            // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
+            yaw   = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);   
+            pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
+            roll  = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
+            pitch *= 180.0f / PI;
+            yaw   *= 180.0f / PI; 
+            roll  *= 180.0f / PI;
+
+            //    pc.printf("Yaw, Pitch, Roll: \n\r");
+            //    pc.printf("%f", yaw);
+            //    pc.printf(", ");
+            //    pc.printf("%f", pitch);
+            //    pc.printf(", ");
+            //    pc.printf("%f\n\r", roll);
+            //    pc.printf("average rate = "); pc.printf("%f", (sumCount/sum)); pc.printf(" Hz\n\r");
+    
+            printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll);
+            printf("average rate = %f deltat = %f\n\r", (float) sumCount/sum, deltat);
+     
+            //myled= !myled;
+            count = t.read_ms(); 
+            sum = 0;
+            sumCount = 0; 
+        } // if
+        //Thread::wait(1);
+    } // while
+}
+
+#endif
+
+void mpu6050TimerInterrupt(void) {
+    if (isMPU6050Error == 0) {
+        // If data ready bit set, all data registers have new data
+        if(mpu6050.readByte(MPU6050_ADDRESS, INT_STATUS) & 0x01) {  // check if data ready interrupt
+            mpu6050.readAccelData(accelCount);  // Read the x/y/z adc values
+            mpu6050.getAres();
+            
+            // Now we'll calculate the accleration value into actual g's
+            ax = (float)accelCount[0]*aRes - accelBias[0];  // get actual g value, this depends on scale being set
+            ay = (float)accelCount[1]*aRes - accelBias[1];   
+            az = (float)accelCount[2]*aRes - accelBias[2];  
+           
+            mpu6050.readGyroData(gyroCount);  // Read the x/y/z adc values
+            mpu6050.getGres();
+         
+            // Calculate the gyro value into actual degrees per second
+            gx = (float)gyroCount[0]*gRes; // - gyroBias[0];  // get actual gyro value, this depends on scale being set
+            gy = (float)gyroCount[1]*gRes; // - gyroBias[1];  
+            gz = (float)gyroCount[2]*gRes; // - gyroBias[2];   
+        
+            tempCount = mpu6050.readTempData();  // Read the x/y/z adc values
+            temperature = (tempCount) / 340. + 36.53; // Temperature in degrees Centigrade
+        }  
+        Now = t.read_us();
+        deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
+        //deltat = periodMPU6050;
+        lastUpdate = Now;
+        
+        sum += deltat;
+        sumCount++;
+    
+        if(lastUpdate - firstUpdate > 10000000.0f) {
+            beta = 0.04;  // decrease filter gain after stabilized
+            zeta = 0.015; // increasey bias drift gain after stabilized
+        }
+    
+        // Pass gyro rate as rad/s
+        mpu6050.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f);
+        yaw   = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);   
+        pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
+        roll  = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
+        pitch *= 180.0f / PI;
+        yaw   *= 180.0f / PI; 
+        roll  *= 180.0f / PI;
+    } // while
+}
+
+void getMPU6050(void) {
+    //printf("ax = %f", 1000*ax); 
+    //printf(" ay = %f", 1000*ay); 
+    //printf(" az = %f  mg\n\r", 1000*az);     
+    //printf("gx = %f", gx); 
+    //printf(" gy = %f", gy); 
+    //printf(" gz = %f  deg/s\n\r", gz);        
+    printf(" temperature = %f  C\n\r", temperature);    
+    //printf("q0 = %f\n\r", q[0]);
+    //printf("q1 = %f\n\r", q[1]);
+    //printf("q2 = %f\n\r", q[2]);
+    //printf("q3 = %f\n\r", q[3]); 
+    printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll);
+    printf("average rate = %f sumCount = %d\n\r", (float) sumCount/sum, sumCount);
+    sum = 0;
+    sumCount = 0; 
+}
+
+void I2C_ClockToggling(void) {
+    const short delay = 10000;
+    unsigned char input_pin_state = 1;
+    DigitalOut i2cPinSCL(I2C_SCL,OpenDrain);
+    DigitalIn i2cPinSDA(I2C_SCL);
+    //i2cPinSCL.mode(OpenDrain);
+    
+    /* Configure SDA GPIO as input */
+    input_pin_state = i2cPinSDA;
+    while (input_pin_state == 0) {
+        input_pin_state = i2cPinSDA;
+        i2cPinSCL = 1;
+        for (short j = 0; j < delay; j++);
+        i2cPinSCL = 0;
+        for (short j = 0; j < delay; j++);
+    }
+    /* Configure SCL GPIO as input */
+    i2cPinSCL = 1;
+    for (int j = 0; j < delay; j++);
+}
\ No newline at end of file