Dual CANbus monitor and instrumentation cluster supporting ILI9341 display controller

Dependencies:   SPI_TFTx2_ILI9341 TOUCH_TFTx2_ILI9341 TFT_fonts mbed

Fork of CANary by Tick Tock

utility.cpp

Committer:
TickTock
Date:
2013-04-16
Revision:
79:68f0dd8d1f19
Parent:
78:a383971fe02f
Child:
126:e0d039096891

File content as of revision 79:68f0dd8d1f19:

// utility.cpp
#include "utility.h"

void mbed_reset();

void RTC_IRQHandler() {
    timer.reset(); // zero ms at the-seconds-tic
    canIdle=(++secsNoMsg>canTimeout)?true:false;
    userIdle=(++secsNoTouch>userTimeout)?true:false;
    LPC_RTC->ILR |= (1<<0); // clear interrupt to prepare for next
    tick=true;
    // will use this to generate a logTP() just before the next Message received.
    if( (time(NULL) % 60) == 0) ZeroSecTick = true; // gg - at 0-second of each minute
}

void RTC_Init (void) {
    LPC_RTC->ILR=0x00; // set up the RTC interrupts
    LPC_RTC->CIIR=0x01; // interrupts each second
    LPC_RTC->CCR = 0x01;  // Clock enable
    //NVIC_SetPriority( RTC_IRQn, 10 );
    NVIC_EnableIRQ( RTC_IRQn );
}

void logMsg (char *msg) {
    strcpy(displayLog[displayLoc],msg);
    displayLoc=displayLoc>17?0:displayLoc+1;
}

void touch_ISR(){
    //LPC_GPIOINT->IO2IntClr = (LPC_GPIOINT->IO2IntStatR | LPC_GPIOINT->IO2IntStatF); // seems to work without so maybe not necessary (performed inInterruptIn handler?)
    touched=true; // just set flag - touch screen algorythm is long and we don't want to block other interrupts
}

unsigned short getTimeStamp() {
    unsigned short msec = timer.read_ms() ; // read ms from the timer
    unsigned long secs = time(NULL); // seconds past 12:00:00 AM 1 Jan 1900
    unsigned short isecs = secs%60 ; // modulo 60 for 0-59 seconds from RTC
    return ((isecs<<10)+msec) ; // return the two byte time stamp
}

void logCan (char mType, CANMessage canRXmsg) {
    char sTemp[40];    
    unsigned short ts = getTimeStamp();
    static unsigned char ii = 0, lasti = 0; // indexindex
    unsigned char changed,i;
    static unsigned char bdi=0;
    signed short packV;
    signed short packA;
    static signed short imotorRPM = 0;
    signed long imWs_x4;
    
    secsNoMsg=0; // reset deadman switch
    if(logOpen){
        if(canRXmsg.id>0) {
            writeBuffer[writePointer][0]=mType;
            writeBuffer[writePointer][1]=(ts&0xff00)>>8;
            writeBuffer[writePointer][2]=(ts&0x00ff);
            writeBuffer[writePointer][3]=canRXmsg.id&0xff;
            writeBuffer[writePointer][4]=(canRXmsg.id>>8)+(canRXmsg.len<<4);
            for(i=5;i<13;i++){ // Is there a better way to do this? (writeBuffer[writePointer][i]=canRXmsg.data?)
                writeBuffer[writePointer][i]=canRXmsg.data[i-5];
            }
            if (++writePointer >= maxBufLen) {
                writePointer = 0;
                led3 = !led3;
            }
            if (writePointer==readPointer) {
                // Just overwrote an entry that hasn't been sent to thumbdrive
                sprintf(sTemp,"Write buffer overrun.\n");
                logMsg(sTemp); // write buffer overrun
                spkr.beep(500,0.25);
            }
        }
    }

    if(indexLastMsg[canRXmsg.id]==0) { //Check if no entry
        ii=ii<99?ii+1:0;
        indexLastMsg[canRXmsg.id]=ii; //Create entry if first message
    }
    if(dMode[0]==changedScreen||dMode[1]==changedScreen){
        changed=msgChanged[indexLastMsg[canRXmsg.id]];
        for(i=0;i<8;i++){
            if(lastMsg[indexLastMsg[canRXmsg.id]].data[i]!=canRXmsg.data[i]){
                changed |= 1<<i;
            }
        }
        msgChanged[indexLastMsg[canRXmsg.id]]=changed;
    }

    lastMsg[indexLastMsg[canRXmsg.id]]=canRXmsg; //Store in table

    //Miscellaneous on-recieve operations below
    if((mType==2)&&(canRXmsg.id==0x358)){ // headlight/turn signal indicator
        headlights = (canRXmsg.data[1]&0x80)?true:false;
    }else if((mType==1)&&(canRXmsg.id==0x7bb)){ // is battery data?  Need to store all responses
        if(canRXmsg.data[0]<0x20){
            if(canRXmsg.data[3]==2){//cellpair data
                bdi=0;
                sprintf(sTemp,"Getting cell pair data\n");
                logMsg(sTemp);
            }else if(canRXmsg.data[3]==4){//temperature data
                bdi=0x20;
                sprintf(sTemp,"Getting temperature data\n");
                logMsg(sTemp);
            }else bdi=0xff; // ignore other messages (for now)
            lasti=0;
        }
        if(bdi<0xff){
            i=canRXmsg.data[0]&0x0f; //lower nibble of D0 is index
            if(lasti>i){ //detect rollover and offset index appropriately
                bdi=0x10;
            }
            lasti=i; //remember the msb to detect rollover next time around
            i+=bdi;
            //if(i==22) logCP=true; //Turbo3
            //if( (i==22) && (yesBattLog) ) logCP=true; // only if enabled gg - Batt Log 
            if(i==22){
                logCP=yesBattLog; // Only log if logging enabled
                showCP=true; // Always show
            }
            i*=7;
            if(i<0xfa){ // Is there a better way to do this?
                battData[i+0]=canRXmsg.data[1];
                battData[i+1]=canRXmsg.data[2];
                battData[i+2]=canRXmsg.data[3];
                battData[i+3]=canRXmsg.data[4];
                battData[i+4]=canRXmsg.data[5];
                battData[i+5]=canRXmsg.data[6];
                battData[i+6]=canRXmsg.data[7];
            }
        }
    }else if((mType==1)&&(canRXmsg.id==0x1db)){ //Battery Volts and Amps
        packV=((canRXmsg.data[2]<<2)|(canRXmsg.data[3]>>6)); // 1 LSB = 0.5V
        packA=((canRXmsg.data[0]<<3)|(canRXmsg.data[1]>>5)); // 1 LSB = 0.5A
        if(packA>0x03ff){
            packA|=0xf800;//extend sign;
        }
        packA -= 1; //Slight correction to value required (unique to my Leaf?)
        imWs_x4 = packV; // Volts*milliSeconds*2
        imWs_x4 *= -packA; // milliWattseconds*4
        if (!((imotorRPM<2)&&(imWs_x4<0))){ //Ignore if charging from wall
            mWs_x4 += imWs_x4; // total mWs_x4
            numWsamples++;
        }
    }else if((mType==1)&&(canRXmsg.id==0x1da)){ //Motor Speed
        imotorRPM=((canRXmsg.data[4]<<8)|(canRXmsg.data[5]));
        if(imotorRPM<0){ // take absolute value
            imotorRPM=-imotorRPM;
        }
        motorRPM+=imotorRPM;
        numSsamples++;
    }
}

void logTS () {
    CANMessage tsMsg;
    unsigned long secs = time(NULL); // seconds past 12:00:00 AM 1 Jan 1900
    // NOTE: In Mbed, I believe that this is seconds past start of 1970, not 1900
    //   but this is good, since seconds past 1970 is what CAN-Do expects. GG - Date Time
    tsMsg.id=0xfff;
    tsMsg.len=0xf;
    tsMsg.data[0]=secs&0xff; 
    tsMsg.data[1]=(secs>>8)&0xff;
    tsMsg.data[2]=(secs>>16)&0xff;
    tsMsg.data[3]=(secs>>24)&0xff;
    tsMsg.data[4]=0; // 0xff; gg - Date Time
    tsMsg.data[5]=0; // 0xff; for CAN-Do
    tsMsg.data[6]=0; // 0xff;
    tsMsg.data[7]=0xff;
    logCan(0,tsMsg); // Date-Time
}

void logErrMsg (char * errMsg) {
    // log CAN-Do 8-character Pseudo Message
    CANMessage tsMsg;
    tsMsg.id=0xffe; // pseudo Message to CAN-Do log
    tsMsg.len=0xf;
    int iMsgLen = strlen(errMsg);
    // 8 character message compatible with CAN-Do
    for(int i=0; i<8; i++){
      tsMsg.data[i]=' '; 
      if( i < iMsgLen ) tsMsg.data[i]=errMsg[i];
    }
    logCan(0,tsMsg); // FFE Comment Message
}

void sendReq() {
    static char data[8] = {0x02, 0x21, 0x01, 0xff, 0xff, 0xff, 0xff, 0xff};
    if(reqMsgCnt<99){
        switch (reqMsgCnt){
            case 0:
                can1.monitor(false); // set to active mode
                can1SleepMode = 0; // enable TX
                data[0]=0x02; //change to request group 1
                data[1]=0x21;
                data[2]=0x01;
                break;
            case 6: // group 1 has 6 frames
                can1.monitor(false); // set to active mode
                can1SleepMode = 0; // enable TX
                data[0]=0x02; //change to request group 2 (cp data)
                data[1]=0x21;
                data[2]=0x02;
                break;
            case 35: // group 2 has 29 frames
                data[0]=0x02; //change to request group 3
                data[1]=0x21;
                data[2]=0x03;
                break;
            case 40: // group 3 has 5 frames
                data[0]=0x02; //change to request group 4 (temperature)
                data[1]=0x21;
                data[2]=0x04;
                break;
            case 43: // group 4 has 3 frames
                data[0]=0x02; //change to request group 5
                data[1]=0x21;
                data[2]=0x05;
                break;
            case 54: // group 5 has 11 frames
                reqMsgCnt = 99;
                can1SleepMode = 1; // disable TX
                can1.monitor(true); // set to snoop mode
                msgReq.detach(); // stop ticker
            default:
                data[0]=0x30; //change to request next line message
                data[1]=0x01;
                data[2]=0x00;
        }
        can1.write(CANMessage(0x79b, data, 8));
        reqMsgCnt++;
    }
}

/*void sendCPreq() {
    char i;
    char data[8] = {0x02, 0x21, 0x02, 0xff, 0xff, 0xff, 0xff, 0xff};
    can1.monitor(false); // set to active mode
    can1SleepMode = 0; // enable TX
    can1.write(CANMessage(0x79b, data, 8));
    
    if( ZeroSecTick ) { ZeroSecTick = false; logTS(); } // gg - 0-second EV bus
    
    logCan(1,CANMessage(0x79b, data, 8)); // Group 2 Request on EV
    data[0]=0x30; //change to request next line message
    data[1]=0x01;
    data[2]=0x00;
    for(i=0;i<29;i++){
        wait_ms(16); //wait 16ms
        can1.write(CANMessage(0x79b, data, 8));
    }
    can1SleepMode = 1; // disable TX
    can1.monitor(true); // set to snoop mode
}

void sendTreq() {
    char i;
    char data[8] = {0x02, 0x21, 0x04, 0xff, 0xff, 0xff, 0xff, 0xff};
    can1.monitor(false); // set to active mode
    can1SleepMode = 0; // enable TX
    can1.write(CANMessage(0x79b, data, 8));
    
    if( ZeroSecTick ) { ZeroSecTick = false; logTS(); } // gg - 0-second EV bus
    
    logCan(1,CANMessage(0x79b, data, 8)); // Group 4 request on EV
    data[0]=0x30; //change to request next line message
    data[1]=0x01;
    data[2]=0x00;
    for(i=0;i<3;i++){
        wait_ms(16); //wait 16ms
        can1.write(CANMessage(0x79b, data, 8));
    }
    can1SleepMode = 1; // disable TX
    can1.monitor(true); // set to snoop mode
}

void autoPollISR() {  //This is the ticker ISR for auto-polling
    pollCP=true;    //Set a flag to do in main loop instead of here
}                   //since ticker blocks other interrupts*/

void autoPollISR(){
    reqMsgCnt = 0; //reset message counter
    msgReq.attach(&sendReq,0.015);
}
void playbackISR() { //Used for autoplayback
    step=true;
}

void doNothing(){ //CAN deattach work-around
}

void recieve1() {
    CANMessage msg1;
    can1.read(msg1);
    
    if( ZeroSecTick ) { ZeroSecTick = false; logTS(); } // gg - 0-second EV bus
    
    logCan(1, msg1); // EVcan Message Received
    led1 = !led1;
}

void recieve2() {
    CANMessage msg2;
    can2.read(msg2);
    
    if( ZeroSecTick ) { ZeroSecTick = false; logTS(); } // gg - 0-second EV bus
    
    logCan(2, msg2); // CARcan Message Received
    led2 = !led2;
}

unsigned char buttonX(unsigned short X, unsigned char columns) {
    unsigned char val = X*columns/320;
    return val;
}

unsigned char buttonY(unsigned short Y, unsigned char rows) {
    unsigned short val = Y*rows/240;
    return val;
}

void saveConfig(){
    FILE *cfile;
    cfile = fopen("/local/config.txt", "w");
    fprintf(cfile,"format 3\r\n");
    fprintf(cfile,"x0_off %d\r\n",tt.x0_off);
    fprintf(cfile,"y0_off %d\r\n",tt.y0_off);
    fprintf(cfile,"x0_pp %d\r\n",tt.x0_pp);
    fprintf(cfile,"y0_pp %d\r\n",tt.y0_pp);
    fprintf(cfile,"x1_off %d\r\n",tt.x1_off);
    fprintf(cfile,"y1_off %d\r\n",tt.y1_off);
    fprintf(cfile,"x1_pp %d\r\n",tt.x1_pp);
    fprintf(cfile,"y1_pp %d\r\n",tt.y1_pp);
    fprintf(cfile,"x_mid %d\r\n",tt.x_mid);
    if (dMode[0]==config1Screen)
        fprintf(cfile,"dMode0 %d\r\n",mainScreen);
    else
        fprintf(cfile,"dMode0 %d\r\n",dMode[0]);
    if (dMode[1]==config1Screen)
        fprintf(cfile,"dMode1 %d\r\n",mainScreen);
    else
        fprintf(cfile,"dMode1 %d\r\n",dMode[1]);
    fprintf(cfile,"ledHi %4.3f\r\n",ledHi);
    fprintf(cfile,"ledLo %4.3f\r\n",ledLo);
    fprintf(cfile,"pollInt %d\r\n",pollInt);
    fprintf(cfile,"scale12V %4.2f\r\n",scale12V);
    fprintf(cfile,"skin %d\r\n",skin);
    fprintf(cfile,"dtePeriod %d\r\n",dtePeriod);
    fclose(cfile);
}

 void readConfig(){
    FILE *cfile;
    int ff;
    char sTemp[40];
    cfile = fopen("/local/config.txt", "r");
    if (cfile==NULL){ // if doesn't exist --> create
        sprintf(sTemp,"No config file found.\n");
        logMsg(sTemp); // no config file
        sprintf(sTemp,"Calibrating touch screen.\n");
        logMsg(sTemp); // calibrating
        //tt.setcal(5570, 34030, 80, 108, 33700, 5780, 82, 108, 32500);// bypass calibration using my values
        tt.calibrate();   // run touchscreen calibration routine
        // NOTE: calibrates screen 1 first, then screen 0.
        saveConfig();
    } else {
        ledHi = 0.823;
        ledLo = 0.1;
        pollInt = 300;
        scale12V = 16.2;
        skin = ttSkin;
        fscanf(cfile, "format %d\r\n", &ff ) ;
        fscanf(cfile, "x0_off %d\r\n", &tt.x0_off ) ;
        fscanf(cfile, "y0_off %d\r\n", &tt.y0_off ) ;
        fscanf(cfile, "x0_pp %d\r\n", &tt.x0_pp ) ;
        fscanf(cfile, "y0_pp %d\r\n", &tt.y0_pp ) ;
        fscanf(cfile, "x1_off %d\r\n", &tt.x1_off ) ;
        fscanf(cfile, "y1_off %d\r\n", &tt.y1_off ) ;
        fscanf(cfile, "x1_pp %d\r\n", &tt.x1_pp ) ;
        fscanf(cfile, "y1_pp %d\r\n", &tt.y1_pp ) ;
        fscanf(cfile, "x_mid %d\r\n", &tt.x_mid ) ;
        fscanf(cfile, "dMode0 %d\r\n", &dMode[0] ) ;
        fscanf(cfile, "dMode1 %d\r\n", &dMode[1] ) ;
        if(ff>1){
            fscanf(cfile, "ledHi %f\r\n", &ledHi ) ;
            fscanf(cfile, "ledLo %f\r\n", &ledLo ) ;
            fscanf(cfile, "pollInt %d\r\n", &pollInt ) ;
            fscanf(cfile, "scale12V %f\r\n", &scale12V ) ;
        }
        if(ff>2){
            fscanf(cfile, "skin %d\r\n", &skin ) ;
            fscanf(cfile, "dtePeriod %d\r\n", &dtePeriod ) ;
        }
        fclose(cfile);
        if(ff<3){//If not latest format, save as latest format
            saveConfig();
            sprintf(sTemp,"Config file format updated.\n");
            logMsg(sTemp); // config forat updates
        }
        sprintf(sTemp,"Config file loaded.\n");
        logMsg(sTemp); // config file loaded
    }
}

void upDate(unsigned char field, bool upDownBar){
    struct tm t; // pointer to a static tm structure
    time_t seconds ;
    seconds = time(NULL);
    t = *localtime(&seconds) ;
    switch(field){
        case 0: // year
            if (upDownBar) {
                t.tm_year = t.tm_year+1;
            } else {
                t.tm_year = t.tm_year-1;
            }
            break;
        case 1: // month
            if (upDownBar) {
                t.tm_mon = (t.tm_mon<12)?t.tm_mon+1:1;
            } else {
                t.tm_mon = (t.tm_mon>2)?t.tm_mon-1:12;
            }
            break;
        case 2: // day
            if (upDownBar) {
                t.tm_mday = (t.tm_mday<31)?t.tm_mday+1:1;
            } else {
                t.tm_mday = (t.tm_mday>2)?t.tm_mday-1:31;
            }
            break;
        case 3: // hour
            if (upDownBar) {
                t.tm_hour = (t.tm_hour<23)?t.tm_hour+1:0;
            } else {
                t.tm_hour = (t.tm_hour>1)?t.tm_hour-1:23;
            }
            break;
        case 4: // minute
            if (upDownBar) {
                t.tm_min = (t.tm_min<59)?t.tm_min+1:0;
            } else {
                t.tm_min = (t.tm_min>1)?t.tm_min-1:59;
            }
            break;
        case 5: // second
            if (upDownBar) {
                t.tm_sec = (t.tm_sec<59)?t.tm_sec+1:0;
            } else {
                t.tm_sec = (t.tm_sec>1)?t.tm_sec-1:59;
            }
            break;
        default:
            break;
    }
    set_time(mktime(&t));
}

void logPackVoltages() { // Turbo3 - routine to dump CP values to text file
    char sTemp[40];
    struct tm t; // pointer to a static tm structure
    short unsigned max, min, jv, i, bd;
    unsigned avg;
    unsigned short gids, SOC, packV;
    signed short packA;
    time_t seconds ;
    
    CANMessage msg;
    
    seconds = time(NULL); // Turbo3
    t = *localtime(&seconds) ; // Turbo3 
    
    msg = lastMsg[indexLastMsg[0x5bc]]; //Get gids
    gids = (msg.data[0]<<2)+(msg.data[1]>>6);
    msg = lastMsg[indexLastMsg[0x55b]]; //Get SOC
    SOC = (msg.data[0]<<2)+(msg.data[1]>>6);
    msg = lastMsg[indexLastMsg[0x1db]]; //Get pack volts
    packV = (msg.data[2]<<2)+(msg.data[3]>>6);
    packA = (msg.data[0]<<3)+(msg.data[1]>>5);
    if (packA & 0x400) packA |= 0xf800;
    
    max=0;
    min=9999;
    avg=0;
    for(i=0; i<96; i++) {
        bd=(battData[i*2+3]<<8)+battData[i*2+4];
        avg+=bd;
        if(bd>max) max=bd;
        if(bd<min) min=bd;
    }
    avg /= 96;
    if(min<3713) {
        jv=avg-(max-avg)*1.5;
    } else { // Only compute judgement value if min cellpair meets <= 3712mV requirement
        jv=0;
    }
    
    FILE *bfile;
    //bfile = fopen("/local/batvolt.txt", "a");
    bfile = fopen("/usb/batvolt.txt", "a");
    if(bfile!=NULL) {
        strftime(sTemp, 40, "%a %m/%d/%Y %X", &t);
        fprintf(bfile,"%s,%d,%5.1f%%,%5.1f,%5.1f,%d,%d,%d,%d,%d",sTemp,gids,(float)SOC/10,(float)packV/2,(float)packA/2,max,min,avg,max-min,jv);
        fprintf(bfile,"%d,%d,%d,%d,",(battData[224+ 3]<<8)+battData[224+ 4],battData[224+ 5],(battData[224+ 6]<<8)+battData[224+ 7],battData[224+ 8]);
        fprintf(bfile,"%d,%d,%d,%d", (battData[224+ 9]<<8)+battData[224+10],battData[224+11],(battData[224+12]<<8)+battData[224+13],battData[224+14]);
        for(i=0; i<96; i++) {
            bd=(battData[i*2+3]<<8)+battData[i*2+4];
            fprintf(bfile,",%d",bd);
        }
        fprintf(bfile,"\r\n");
        fclose(bfile);
    }
    logCP=false;
    showCP=true;
}