Crude navigation
Dependencies: GPS L3GD20 LSM303DLHC mbed PID
modSensData.h
- Committer:
- Spilly
- Date:
- 2015-02-21
- Revision:
- 0:e79311aae7ed
- Child:
- 2:503a5ac6c3b6
File content as of revision 0:e79311aae7ed:
#include "mbed.h" #include "math.h" #include "L3GD20.h" #include "LSM303DLHC.h" L3GD20 gyro(PTE25, PTE24); LSM303DLHC compass(PTE25, PTE24); #define XBIAS 0 #define YBIAS 0 #define ZBIAS 0 #define M_PI 3.1415926535897932384626433832795f #define TWO_PI 6.283185307179586476925286766559f #define RADTODEGREE 57.295779513082320876798154814105f #define GRAVITY 1.0f Timer t1; float vC[3], cC[3], magnetom[3], inertialAccel[3]; float aP[3], vP[3], cP[3], deltaT, timeStamp, degGyro[3], angPos[3], prevAngPos[3]; double roll = 0, pitch = 0, yaw = 0; float magCheck; float accel[3], bias[3], magnDiff; int printStamp = 0, stopStamp = 0, dangerAhead = 0, howLong = 0, count[3], pos[5][3]= { {0,0,0}, {0,0,0}, {0,0,0}, {0,0,0}, {0,0,0} }; int flag = 0, signBit = 0; /********************************************************************************************************************************/ // Get Accelerometer and Magnetometer Data /********************************************************************************************************************************/ void readIMU() { compass.read(&accel[0], &accel[1], &accel[2], &magnetom[0], &magnetom[1], &magnetom[2]); gyro.read(°Gyro[0], °Gyro[1], °Gyro[2]); } /********************************************************************************************************************************/ // Compass Heading /********************************************************************************************************************************/ void Compass_Heading() { float mag_x; float mag_y; float cos_roll; float sin_roll; float cos_pitch; float sin_pitch; //saves a few processor cycles by calculating and storing values cos_roll = cos(roll); sin_roll = sin(roll); cos_pitch = cos(pitch); sin_pitch = sin(pitch); // Tilt compensated magnetic field X mag_x = magnetom[0] * cos_pitch + magnetom[1] * sin_roll * sin_pitch + magnetom[2] * cos_roll * sin_pitch; // Tilt compensated magnetic field Y mag_y = magnetom[1] * cos_roll - magnetom[2] * sin_roll; // Magnetic Heading yaw = atan2(-mag_x, mag_y); //make negative angles positive if(yaw < 0) yaw = yaw + TWO_PI; yaw = yaw * RADTODEGREE; } /********************************************************************************************************************************/ // getAttitude /********************************************************************************************************************************/ void getAttitude() { float temp1[3]; float temp2[3]; float xAxis[3] = {1.0f, 0.0f, 0.0f}; // GET PITCH // Using y-z-plane-component/x-component of gravity vector pitch = -atan2(accel[0], sqrt((accel[1] * accel[1]) + (accel[2] * accel[2]))); //printf("P = %f", pitch); // GET ROLL // Compensate pitch of gravity vector temp1[0] = (accel[1] * xAxis[2]) - (accel[2] * xAxis[1]); temp1[1] = (accel[2] * xAxis[0]) - (accel[0] * xAxis[2]); temp1[2] = (accel[0] * xAxis[1]) - (accel[1] * xAxis[0]); temp2[0] = (xAxis[1] * temp1[2]) - (xAxis[2] * temp1[1]); temp2[1] = (xAxis[2] * temp1[0]) - (xAxis[0] * temp1[2]); temp2[2] = (xAxis[0] * temp1[1]) - (xAxis[1] * temp1[0]); // Since we compensated for pitch, x-z-plane-component equals z-component: roll = atan2(temp2[1], temp2[2]); } /********************************************************************************************************************************/ // compensateAcc /********************************************************************************************************************************/ /* void compensateAcc() { // Compensate accelerometer error accel[0] = (accel[0] - ACCEL_X_OFFSET) * ACCEL_X_SCALE; accel[1] = (accel[1] - ACCEL_Y_OFFSET) * ACCEL_Y_SCALE; accel[2] = (accel[2] - ACCEL_Z_OFFSET) * ACCEL_Z_SCALE; } */ /********************************************************************************************************************************/ // rotateBTI /********************************************************************************************************************************/ //rotation from the body frame to the inertial frame void rotateBTI() { float cos_roll, sin_roll, cos_pitch, sin_pitch, cos_yaw, sin_yaw; float gravity[3] = {0, 0, -GRAVITY}; float rIB[3][3]; //saves a few processor cycles by calculating and storing values //Serial.print("Roll"); cos_roll = cos(roll); //Serial.print(cos_roll, 4); //Serial.print(" "); sin_roll = sin(roll); //Serial.print(sin_roll, 4); //Serial.print(" "); //Serial.print("Pitch"); cos_pitch = cos(pitch); //Serial.print(cos_pitch, 4); //Serial.print(" "); sin_pitch = sin(pitch); //Serial.print(sin_pitch, 4); //Serial.print(" "); //Serial.print("YAW"); cos_yaw = cos(yaw); //Serial.print(cos_yaw, 4); //Serial.print(" "); sin_yaw = sin(yaw); //Serial.print(sin_yaw, 4); //Serial.print(" "); rIB[0][0] = cos_yaw * cos_pitch; rIB[0][1] = (cos_yaw * sin_roll * sin_pitch) - (cos_roll * sin_yaw); rIB[0][2] = (sin_roll * sin_yaw) + (cos_roll * cos_yaw * sin_pitch); rIB[1][0] = cos_pitch * sin_yaw; rIB[1][1] = (cos_roll * cos_yaw) + (sin_roll * sin_yaw * sin_pitch); rIB[1][2] = (cos_roll * sin_yaw * sin_pitch) - (cos_yaw * sin_roll); rIB[2][0] = -1 * sin_pitch; rIB[2][1] = cos_pitch * sin_roll; rIB[2][2] = cos_roll * cos_pitch; for(int i = 0; i < 3; i++) { aP[i] = inertialAccel[i]; inertialAccel[i] = rIB[i][0] * accel[0] + rIB[i][1] * accel[1] + rIB[i][2] * accel[2]; inertialAccel[i] = inertialAccel[i] + gravity[i]; } } void updateAngles() { readIMU(); getAttitude(); Compass_Heading(); //rotateBTI(); }