MP3 PLAYER

Dependencies:   DebouncedInterrupt SDFileSystem SPI_TFT_ILI9341 ST_401_84MHZ TFT_fonts VS1053 mbed

Fork of MP3333 by FRA221_B18

Revision:
3:c58fe0902900
Parent:
2:c4b198e96ded
diff -r c4b198e96ded -r c58fe0902900 main11.h
--- a/main11.h	Tue Dec 08 19:52:20 2015 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,229 +0,0 @@
-/*****
-        Algorithm based on MPU-9250_Snowda program. It has been modified by Josué Olmeda Castelló for imasD Tecnología.
-                
-        This algorithm calibrates and reads data from accelerometer, gyroscope, magnetometer and the
-        internal temperature sensor. The lecture is made each time has a new mesured value (both gyro and accel data). 
-        A comunication with a computer is made using serial interface. The user can see the data measured with 1 second update rate.
-
-        This algorithm uses the STM32L152 development board and the MPU-9250 9-axis InvenSense movement sensor. The communication
-        between both devices is made through I2C serial interface.
-        
-        AD0 should be connected to GND.
-        
-                                                                04/05/2015
-*****/
-
-#include "mbed.h"
-#include "MPU9250.h"
-
-
-Serial pc(SERIAL_TX, SERIAL_RX); // Huyperterminal default config: 9600 bauds, 8-bit data, 1 stop bit, no parity
-MPU9250 mpu9250;
-Timer t;
-//DigitalOut myled(LED1);
-
-float sum = 0;
-uint32_t sumCount = 0;
-char buffer[14];
-uint8_t dato_leido[2];
-uint8_t whoami;
-
-int main() {
-    
-  //___ Set up I2C: use fast (400 kHz) I2C ___
-  i2c.frequency(400000);  
-  
-  pc.printf("CPU SystemCoreClock is %d Hz\r\n", SystemCoreClock);
-  
-  t.start(); // Timer ON
-  
-  // Read the WHO_AM_I register, this is a good test of communication
-  whoami = mpu9250.readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250);
-  
-  pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x71\n\r");
-  if (I2Cstate != 0) // error on I2C
-    pc.printf("I2C failure while reading WHO_AM_I register");
-  
-  if (whoami == 0x71) // WHO_AM_I should always be 0x71
-  {  
-    pc.printf("MPU9250 WHO_AM_I is 0x%x\n\r", whoami);
-    pc.printf("MPU9250 is online...\n\r");
-    sprintf(buffer, "0x%x", whoami);
-    wait(1);
-    
-    mpu9250.resetMPU9250(); // Reset registers to default in preparation for device calibration
-    
-    mpu9250.MPU9250SelfTest(SelfTest); // Start by performing self test and reporting values (accelerometer and gyroscope self test)
-    pc.printf("x-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[0]);
-    pc.printf("y-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[1]);
-    pc.printf("z-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[2]);
-    pc.printf("x-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[3]);
-    pc.printf("y-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[4]);
-    pc.printf("z-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[5]);
-    
-    mpu9250.calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometer, load biases in bias registers  
-    pc.printf("x gyro bias = %f\n\r", gyroBias[0]);
-    pc.printf("y gyro bias = %f\n\r", gyroBias[1]);
-    pc.printf("z gyro bias = %f\n\r", gyroBias[2]);
-    pc.printf("x accel bias = %f\n\r", accelBias[0]);
-    pc.printf("y accel bias = %f\n\r", accelBias[1]);
-    pc.printf("z accel bias = %f\n\r", accelBias[2]);
-    wait(2);
-    
-    // Initialize device for active mode read of acclerometer, gyroscope, and temperature
-    mpu9250.initMPU9250();
-    pc.printf("MPU9250 initialized for active data mode....\n\r");
-    
-    // Initialize device for active mode read of magnetometer, 16 bit resolution, 100Hz.
-    mpu9250.initAK8963(magCalibration);
-    pc.printf("AK8963 initialized for active data mode....\n\r");
-    pc.printf("Accelerometer full-scale range = %f  g\n\r", 2.0f*(float)(1<<Ascale));
-    pc.printf("Gyroscope full-scale range = %f  deg/s\n\r", 250.0f*(float)(1<<Gscale));
-    if(Mscale == 0) pc.printf("Magnetometer resolution = 14  bits\n\r");
-    if(Mscale == 1) pc.printf("Magnetometer resolution = 16  bits\n\r");
-    if(Mmode == 2) pc.printf("Magnetometer ODR = 8 Hz\n\r");
-    if(Mmode == 6) pc.printf("Magnetometer ODR = 100 Hz\n\r");
-    wait(1);
-   }
-   
-   else // Connection failure
-   {
-    pc.printf("Could not connect to MPU9250: \n\r");
-    pc.printf("%#x \n",  whoami);    
-    sprintf(buffer, "WHO_AM_I 0x%x", whoami);
-    while(1) ; // Loop forever if communication doesn't happen
-    }
-  
-    mpu9250.getAres(); // Get accelerometer sensitivity
-    mpu9250.getGres(); // Get gyro sensitivity
-    mpu9250.getMres(); // Get magnetometer sensitivity
-    pc.printf("Accelerometer sensitivity is %f LSB/g \n\r", 1.0f/aRes);
-    pc.printf("Gyroscope sensitivity is %f LSB/deg/s \n\r", 1.0f/gRes);
-    pc.printf("Magnetometer sensitivity is %f LSB/G \n\r", 1.0f/mRes);
-    magbias[0] = +470.;  // User environmental x-axis correction in milliGauss, should be automatically calculated
-    magbias[1] = +120.;  // User environmental x-axis correction in milliGauss
-    magbias[2] = +125.;  // User environmental x-axis correction in milliGauss
-    
-    while(1) {
-      
-        // If intPin goes high, all data registers have new data
-        if(mpu9250.readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) {  // On interrupt, check if data ready interrupt
-              
-            mpu9250.readAccelData(accelCount);  // Read the x/y/z adc values   
-            // Now we'll calculate the accleration value into actual g's
-            if (I2Cstate != 0) //error on I2C
-                pc.printf("I2C error ocurred while reading accelerometer data. I2Cstate = %d \n\r", I2Cstate);
-            else{ // I2C read or write ok
-                I2Cstate = 1;
-                ax = (float)accelCount[0]*aRes - accelBias[0];  // get actual g value, this depends on scale being set
-                ay = (float)accelCount[1]*aRes - accelBias[1];
-                az = (float)accelCount[2]*aRes - accelBias[2];
-            }   
-            
-            mpu9250.readGyroData(gyroCount);  // Read the x/y/z adc values
-            // Calculate the gyro value into actual degrees per second
-            if (I2Cstate != 0) //error on I2C
-                pc.printf("I2C error ocurred while reading gyrometer data. I2Cstate = %d \n\r", I2Cstate);
-            else{ // I2C read or write ok
-                I2Cstate = 1;
-                gx = (float)gyroCount[0]*gRes - gyroBias[0];  // get actual gyro value, this depends on scale being set
-                gy = (float)gyroCount[1]*gRes - gyroBias[1]; 
-                gz = (float)gyroCount[2]*gRes - gyroBias[2];
-            }
-            
-            mpu9250.readMagData(magCount);  // Read the x/y/z adc values   
-            // Calculate the magnetometer values in milliGauss
-            // Include factory calibration per data sheet and user environmental corrections
-            if (I2Cstate != 0) //error on I2C
-                pc.printf("I2C error ocurred while reading magnetometer data. I2Cstate = %d \n\r", I2Cstate);
-            else{ // I2C read or write ok
-                I2Cstate = 1;
-                mx = (float)magCount[0]*mRes*magCalibration[0] - magbias[0];  // get actual magnetometer value, this depends on scale being set
-                my = (float)magCount[1]*mRes*magCalibration[1] - magbias[1];  
-                mz = (float)magCount[2]*mRes*magCalibration[2] - magbias[2];
-            }
-                       
-            mpu9250.getCompassOrientation(orientation);
-        }
-   
-        Now = t.read_us();
-        deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
-        lastUpdate = Now;    
-        sum += deltat;
-        sumCount++;
-    
-        // Pass gyro rate as rad/s
-        // mpu9250.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f,  my,  mx, mz);
-        mpu9250.MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz);
-
-
-        // Serial print and/or display at 1.5 s rate independent of data rates
-        delt_t = t.read_ms() - count;
-        if (delt_t > 1500) { // update LCD once per half-second independent of read rate
-            pc.printf("ax = %f", 1000*ax);
-            pc.printf(" ay = %f", 1000*ay);
-            pc.printf(" az = %f  mg\n\r", 1000*az);
-            pc.printf("gx = %f", gx);
-            pc.printf(" gy = %f", gy);
-            pc.printf(" gz = %f  deg/s\n\r", gz);
-            pc.printf("mx = %f", mx); 
-            pc.printf(" my = %f", my); 
-            pc.printf(" mz = %f  mG\n\r", mz);
-            
-
-            tempCount = mpu9250.readTempData();  // Read the adc values
-            if (I2Cstate != 0) //error on I2C
-                pc.printf("I2C error ocurred while reading sensor temp. I2Cstate = %d \n\r", I2Cstate);
-            else{ // I2C read or write ok                
-                I2Cstate = 1;
-                temperature = ((float) tempCount) / 333.87f + 21.0f; // Temperature in degrees Centigrade
-                pc.printf(" temperature = %f  C\n\r", temperature);
-            }
-            pc.printf("q0 = %f\n\r", q[0]);
-            pc.printf("q1 = %f\n\r", q[1]);
-            pc.printf("q2 = %f\n\r", q[2]);
-            pc.printf("q3 = %f\n\r", q[3]);
-            
-            pc.printf("Compass orientation: %f\n", orientation[0]);
-    
-            
-            
-            
-            // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
-            // In this coordinate system, the positive z-axis is down toward Earth. 
-            // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
-            // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
-            // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
-            // These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
-            // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
-            // applied in the correct order which for this configuration is yaw, pitch, and then roll.
-            // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
-    
-            yaw   = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);   
-            pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
-            roll  = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
-            pitch *= 180.0f / PI;
-            yaw   *= 180.0f / PI; 
-            yaw   -= 13.8f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04
-            roll  *= 180.0f / PI;
-
-            /*
-            pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll);
-            pc.printf("average rate = %f\n\r", (float) sumCount/sum);
-            */
-            
-    
-            myled= !myled;
-            count = t.read_ms(); 
-
-            if(count > 1<<21) {
-                t.start(); // start the timer over again if ~30 minutes has passed
-                count = 0;
-                deltat= 0;
-                lastUpdate = t.read_us();
-            }
-        sum = 0;
-        sumCount = 0; 
-        }
-    }
-}
\ No newline at end of file