MP3 PLAYER

Dependencies:   DebouncedInterrupt SDFileSystem SPI_TFT_ILI9341 ST_401_84MHZ TFT_fonts VS1053 mbed

Fork of MP3333 by FRA221_B18

Revision:
3:c58fe0902900
Parent:
2:c4b198e96ded
--- a/main.cpp	Tue Dec 08 19:52:20 2015 +0000
+++ b/main.cpp	Wed Dec 09 08:34:40 2015 +0000
@@ -1,16 +1,7 @@
 #include "mbed.h"
 #include "player.h"
 #include "DebouncedInterrupt.h"
-//#include "MPU9250.h"
-#include "SPI_TFT_ILI9341.h"
-#include "stdio.h"
-#include "string"
-#include "Arial12x12.h"
-#include "Arial24x23.h"
-#include "Arial28x28.h"
-#include "font_big.h"
 
-DigitalIn Mode(A5);
 
 extern char list[20][50];            //song list
 extern unsigned char vlume;     //vlume
@@ -20,297 +11,42 @@
 extern playerStatetype  playerState;
 
 Serial pc(SERIAL_TX, SERIAL_RX);
+
 Player player;
 
 DebouncedInterrupt KEY_PS(D3);
 InterruptIn KEY_Next(D4);
-extern unsigned char p1[];
-extern unsigned char p2[];
-extern unsigned char p3[];
-int mark=10,list_nowplay=0;
-SPI_TFT_ILI9341 TFT(PA_7,PA_6,PA_5,PA_13,PA_14,PA_15,"TFT"); // mosi, miso, sclk, cs, reset, dc
 
-float sum = 0;
-uint32_t sumCount = 0;
-char buffer[14];
-uint8_t dato_leido[2];
-uint8_t whoami;
+
 void riseFlip()
 {
-    if(playerState == PS_PAUSE)playerState = PS_PLAY;
-    else playerState = PS_PAUSE;
-    //a=!a;
-}
-
-void letplay()
-{
-    TFT.cls();
-    TFT.foreground(White);
-    TFT.background(Black);
-    TFT.cls();
-    TFT.set_orientation(1);
-    TFT.Bitmap(60,1,200,173,p1);
-}
-
-void angry()
-{
-    TFT.cls();
-    TFT.foreground(White);
-    TFT.background(Black);
-    TFT.cls();
-    TFT.set_orientation(1);
-    TFT.Bitmap(60,1,200,173,p2);
-}
-
-void cry()
-{
-    TFT.cls();
-    TFT.foreground(White);
-    TFT.background(Black);
-    TFT.cls();
-    TFT.set_orientation(1);
-    TFT.Bitmap(60,1,200,173,p3);
-}
-
-void print_list()
-{
-    int i=0,j=0;
-    TFT.claim(stdout);
-    TFT.cls();
-    TFT.foreground(White);
-    TFT.background(Black);
-    TFT.cls();
-
-    TFT.set_orientation(3);
-    TFT.set_font((unsigned char*) Arial28x28);
-    TFT.locate(150,120);
-    TFT.printf("Manual Mode:");
-    TFT.cls();
-    TFT.set_orientation(3);
-    TFT.set_font((unsigned char*) Arial12x12);
-    //list[5]='\0';
-    do {
-        TFT.locate(5,j);
-        TFT.printf("%2d . %s\r\n", i,list[i]);
-        i++;
-        j=j+23;
-    } while(i<5);
-
+    if(player.mode()) {
+        if(playerState == PS_PAUSE) playerState = PS_PLAY;
+        else playerState = PS_PAUSE;
+    }
 }
 
 void Next()
 {
-    playerState = PS_STOP; 
+    if(player.mode())playerState = PS_STOP;
+    //player.select_list();
 }
 
+
 int main()
 {
 
+    player.setup();
     KEY_PS.attach(&riseFlip ,IRQ_RISE ,100);
     KEY_Next.fall(&Next);
-    if(Mode.read() == 0) {
-
-        player.begin();
-        print_list();
-        while(1) {
-           player.playFile(list[index]);
-        }
+    player.begin();
+    if(player.mode())player.print_list();
+    else player.letplay();
+    while(1) {
+        player.playFile(list[index]);
     }
+    //int i = player.getGX();
+    //printf("%d\n",i);
 }
 
-/*//___ Set up I2C: use fast (400 kHz) I2C ___
-i2c.frequency(400000);
 
-pc.printf("CPU SystemCoreClock is %d Hz\r\n", SystemCoreClock);
-
-t.start(); // Timer ON
-
-// Read the WHO_AM_I register, this is a good test of communication
-whoami = mpu9250.readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250);
-
-pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x71\n\r");
-if (I2Cstate != 0) // error on I2C
-  pc.printf("I2C failure while reading WHO_AM_I register");
-
-if (whoami == 0x71) // WHO_AM_I should always be 0x71
-{
-  pc.printf("MPU9250 WHO_AM_I is 0x%x\n\r", whoami);
-  pc.printf("MPU9250 is online...\n\r");
-  sprintf(buffer, "0x%x", whoami);
-  wait(1);
-
-  mpu9250.resetMPU9250(); // Reset registers to default in preparation for device calibration
-
-  mpu9250.MPU9250SelfTest(SelfTest); // Start by performing self test and reporting values (accelerometer and gyroscope self test)
-  pc.printf("x-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[0]);
-  pc.printf("y-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[1]);
-  pc.printf("z-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[2]);
-  pc.printf("x-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[3]);
-  pc.printf("y-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[4]);
-  pc.printf("z-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[5]);
-
-  mpu9250.calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometer, load biases in bias registers
-  pc.printf("x gyro bias = %f\n\r", gyroBias[0]);
-  pc.printf("y gyro bias = %f\n\r", gyroBias[1]);
-  pc.printf("z gyro bias = %f\n\r", gyroBias[2]);
-  pc.printf("x accel bias = %f\n\r", accelBias[0]);
-  pc.printf("y accel bias = %f\n\r", accelBias[1]);
-  pc.printf("z accel bias = %f\n\r", accelBias[2]);
-  wait(2);
-
-  // Initialize device for active mode read of acclerometer, gyroscope, and temperature
-  mpu9250.initMPU9250();
-  pc.printf("MPU9250 initialized for active data mode....\n\r");
-
-  // Initialize device for active mode read of magnetometer, 16 bit resolution, 100Hz.
-  mpu9250.initAK8963(magCalibration);
-  pc.printf("AK8963 initialized for active data mode....\n\r");
-  pc.printf("Accelerometer full-scale range = %f  g\n\r", 2.0f*(float)(1<<Ascale));
-  pc.printf("Gyroscope full-scale range = %f  deg/s\n\r", 250.0f*(float)(1<<Gscale));
-  if(Mscale == 0) pc.printf("Magnetometer resolution = 14  bits\n\r");
-  if(Mscale == 1) pc.printf("Magnetometer resolution = 16  bits\n\r");
-  if(Mmode == 2) pc.printf("Magnetometer ODR = 8 Hz\n\r");
-  if(Mmode == 6) pc.printf("Magnetometer ODR = 100 Hz\n\r");
-  wait(1);
- }
-
- else // Connection failure
- {
-  pc.printf("Could not connect to MPU9250: \n\r");
-  pc.printf("%#x \n",  whoami);
-  sprintf(buffer, "WHO_AM_I 0x%x", whoami);
-  while(1) ; // Loop forever if communication doesn't happen
-  }
-
-  mpu9250.getAres(); // Get accelerometer sensitivity
-  mpu9250.getGres(); // Get gyro sensitivity
-  mpu9250.getMres(); // Get magnetometer sensitivity
-  pc.printf("Accelerometer sensitivity is %f LSB/g \n\r", 1.0f/aRes);
-  pc.printf("Gyroscope sensitivity is %f LSB/deg/s \n\r", 1.0f/gRes);
-  pc.printf("Magnetometer sensitivity is %f LSB/G \n\r", 1.0f/mRes);
-  magbias[0] = +470.;  // User environmental x-axis correction in milliGauss, should be automatically calculated
-  magbias[1] = +120.;  // User environmental x-axis correction in milliGauss
-  magbias[2] = +125.;  // User environmental x-axis correction in milliGauss
-
-  while(1) {
-
-      // If intPin goes high, all data registers have new data
-      if(mpu9250.readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) {  // On interrupt, check if data ready interrupt
-
-          mpu9250.readAccelData(accelCount);  // Read the x/y/z adc values
-          // Now we'll calculate the accleration value into actual g's
-          if (I2Cstate != 0) //error on I2C
-              pc.printf("I2C error ocurred while reading accelerometer data. I2Cstate = %d \n\r", I2Cstate);
-          else{ // I2C read or write ok
-              I2Cstate = 1;
-              ax = (float)accelCount[0]*aRes - accelBias[0];  // get actual g value, this depends on scale being set
-              ay = (float)accelCount[1]*aRes - accelBias[1];
-              az = (float)accelCount[2]*aRes - accelBias[2];
-          }
-
-          mpu9250.readGyroData(gyroCount);  // Read the x/y/z adc values
-          // Calculate the gyro value into actual degrees per second
-          if (I2Cstate != 0) //error on I2C
-              pc.printf("I2C error ocurred while reading gyrometer data. I2Cstate = %d \n\r", I2Cstate);
-          else{ // I2C read or write ok
-              I2Cstate = 1;
-              gx = (float)gyroCount[0]*gRes - gyroBias[0];  // get actual gyro value, this depends on scale being set
-              gy = (float)gyroCount[1]*gRes - gyroBias[1];
-              gz = (float)gyroCount[2]*gRes - gyroBias[2];
-          }
-
-          mpu9250.readMagData(magCount);  // Read the x/y/z adc values
-          // Calculate the magnetometer values in milliGauss
-          // Include factory calibration per data sheet and user environmental corrections
-          if (I2Cstate != 0) //error on I2C
-              pc.printf("I2C error ocurred while reading magnetometer data. I2Cstate = %d \n\r", I2Cstate);
-          else{ // I2C read or write ok
-              I2Cstate = 1;
-              mx = (float)magCount[0]*mRes*magCalibration[0] - magbias[0];  // get actual magnetometer value, this depends on scale being set
-              my = (float)magCount[1]*mRes*magCalibration[1] - magbias[1];
-              mz = (float)magCount[2]*mRes*magCalibration[2] - magbias[2];
-          }
-
-          mpu9250.getCompassOrientation(orientation);
-      }
-
-      Now = t.read_us();
-      deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
-      lastUpdate = Now;
-      sum += deltat;
-      sumCount++;
-
-      // Pass gyro rate as rad/s
-      // mpu9250.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f,  my,  mx, mz);
-      mpu9250.MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz);
-
-
-      // Serial print and/or display at 1.5 s rate independent of data rates
-      delt_t = t.read_ms() - count;
-      if (delt_t > 1500) { // update LCD once per half-second independent of read rate
-          pc.printf("ax = %f", 1000*ax);
-          pc.printf(" ay = %f", 1000*ay);
-          pc.printf(" az = %f  mg\n\r", 1000*az);
-          pc.printf("gx = %f", gx);
-          pc.printf(" gy = %f", gy);
-          pc.printf(" gz = %f  deg/s\n\r", gz);
-          pc.printf("mx = %f", mx);
-          pc.printf(" my = %f", my);
-          pc.printf(" mz = %f  mG\n\r", mz);
-
-
-          tempCount = mpu9250.readTempData();  // Read the adc values
-          if (I2Cstate != 0) //error on I2C
-              pc.printf("I2C error ocurred while reading sensor temp. I2Cstate = %d \n\r", I2Cstate);
-          else{ // I2C read or write ok
-              I2Cstate = 1;
-              temperature = ((float) tempCount) / 333.87f + 21.0f; // Temperature in degrees Centigrade
-              pc.printf(" temperature = %f  C\n\r", temperature);
-          }
-          pc.printf("q0 = %f\n\r", q[0]);
-          pc.printf("q1 = %f\n\r", q[1]);
-          pc.printf("q2 = %f\n\r", q[2]);
-          pc.printf("q3 = %f\n\r", q[3]);
-
-          pc.printf("Compass orientation: %f\n", orientation[0]);
-
-
-
-
-          // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
-          // In this coordinate system, the positive z-axis is down toward Earth.
-          // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
-          // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
-          // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
-          // These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
-          // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
-          // applied in the correct order which for this configuration is yaw, pitch, and then roll.
-          // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
-
-          yaw   = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);
-          pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
-          roll  = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
-          pitch *= 180.0f / PI;
-          yaw   *= 180.0f / PI;
-          yaw   -= 13.8f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04
-          roll  *= 180.0f / PI;
-
-          /*
-          pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll);
-          pc.printf("average rate = %f\n\r", (float) sumCount/sum);
-          */
-
-
-/*myled= !myled;
-count = t.read_ms();
-
-if(count > 1<<21) {
-    t.start(); // start the timer over again if ~30 minutes has passed
-    count = 0;
-    deltat= 0;
-    lastUpdate = t.read_us();
-}
-sum = 0;
-sumCount = 0;
-}
-}*/