Tobis Programm forked to not destroy your golden files
Fork of Robocode by
source/Movement.cpp
- Committer:
- cittecla
- Date:
- 2017-05-10
- Revision:
- 117:66d64dbd1b36
- Parent:
- 116:e03a3692cdf0
- Child:
- 120:cdf7a6751f9e
File content as of revision 117:66d64dbd1b36:
/** * Movement function library * Handels Movement of the Robot **/ #include "Movement.h" #define OFFSET_GREIFER_TO_IRSENSOR 0.2 // Constant for distance between front IR Sensor and the postion where the Greifer is in grabbing Position #define OFFSET_WHEELS 0.09 // Offset of the wheels from the max pos bool is_moving = false; float wanted_dist = 0; bool is_turning = false; float wanted_deg = 0; bool direction = false; float restdegAfterstop = 0; // Variable for Rest degree we still have to cover after e.g. 1 brick found but its not really a brick so we turn further until e.g 60 degrees covered. float TOLERANCE_BRICK_OR_OBSTACLE = 0.08f; // Variable for Brick detection it sets how much upper sensor and lower can differ that its still detected as an obstacle and not a brick Timer t; Timer t8; // timer used for waiting enough distance measurements int search_state = 0; float left = 0; float right = 0; bool devider = true; int moving() { return 0; } /** * Stops current movement immediately **/ void stop_move() { set_speed(0,0); wanted_dist = 0; is_moving = false; } /** * Stops current turn immediately **/ void stop_turn() { set_speed(0,0); wanted_deg = 0; is_turning = false; } /** * move for wanted distance on circle with a given radius * needs to be called until return < 0 * if calling distance not 0: distance and radius initilisation. * by Claudio Citterio **/ float move_for_distance_with_radius(float distance, float r) { if(distance != 0) { is_moving = true; wanted_dist = fabsf(distance); float circumference = r*2*(float)M_PI; float circumference_inner = ((r-(float)OFFSET_WHEELS)*2*(float)M_PI); float circumference_outer = ((r+(float)OFFSET_WHEELS)*2*(float)M_PI); float max_speed = 50; float inner_speed = max_speed/circumference*circumference_inner; float outer_speed = max_speed/circumference*circumference_outer; //reduce outer speed to max speed float multiplier = 1.0f/inner_speed*max_speed; inner_speed *= multiplier; outer_speed *= multiplier; if(r < 0.21f) { outer_speed *= 0.8f; inner_speed *= 0.8f; } if(r != 0) { //move with turn if(distance > 0) { //move forward direction = 1; left = outer_speed; right = inner_speed; } else { //move backward direction = 0; left = -outer_speed; right = -inner_speed; } } else { //normal straight movement printf("move straight\r\n"); if(distance > 0) { //move forward direction = 1; left = max_speed; right = max_speed; } else { //move backward direction = 0; left = -max_speed; right = -max_speed; } } set_speed(left, right); devider = true; t.reset(); t.start(); } else { float speed_multiplier = 0.6f; if(wanted_dist < 0.10f && devider == true) { //printf("devided\r\n"); devider = false; left = left * speed_multiplier; right = right * speed_multiplier; //printf("left: %f || right: %f\r\n", left, right); set_speed(left, right); } float speed_left = get_speed_left(); float speed_right = get_speed_right(); wanted_dist -= (2*(float)wheel_r*(float)M_PI)/(2*M_PI) * t.read() * ((fabsf(speed_left)+fabsf(speed_right))/2) * 0.1f; t.reset(); if(wanted_dist <= 0) { //distance covered, Stop function set_speed(0,0); is_moving = false; t.stop(); } } printf("remaining distance to cover: %f\r\n", wanted_dist); return wanted_dist; } /** * move for wanted distance * needs to be called until return < 0 * if calling distance not 0: distance initilisation. * by Claudio Citterio **/ float move_for_distance(float distance) { printf("move for distance\r\n"); if(distance != 0) { is_moving = true; wanted_dist = fabsf(distance); if(distance > 0) { //move forward direction = 1; left = 50.0f; right = 50.0f; } else { //move backward direction = 0; left = -50.0f; right = -50.0f; } printf("set speed %f\r\n", left); set_speed(left, right); devider = true; t.reset(); t.start(); } else { float speed_multiplier = 0.6f; if(wanted_dist < 0.10f && devider == true) { //printf("devided\r\n"); devider = false; left = left * speed_multiplier; right = right * speed_multiplier; //printf("left: %f || right: %f\r\n", left, right); set_speed(left, right); } float speed_left = get_speed_left(); printf("speed left: %f\r\n", speed_left); wanted_dist -= (2*(float)wheel_r*(float)M_PI)/(2*M_PI) * t.read() * fabsf(speed_left)*0.1f; t.reset(); if(wanted_dist <= 0) { //distance covered, Stop function set_speed(0,0); is_moving = false; t.stop(); } } printf("remaining distance to cover: %f\r\n", wanted_dist); return wanted_dist; } /** * turn for wanted degree * needs to be called until return < 0 * if deg not 0: turn initilisation. * Claudio Citterio **/ float turn_for_deg(float deg, float multiplier) { if(deg != 0) { is_turning = true; wanted_deg = fabsf(deg); if(deg < 0) { // turn left direction = 1; left = -20.0f*multiplier; right = 20.0f*multiplier; } else { // turn right direction = 0; left = 20.0f*multiplier; right = -20.0f*multiplier; } set_speed(left, right); devider = true; t.reset(); t.start(); } else { float speed_multiplier = 0.6f; if(wanted_deg < 10.0f && devider == true) { devider = false; left = left * speed_multiplier; right = right * speed_multiplier; set_speed(left, right); } float speed_left = get_speed_left(); wanted_deg -= 360/(2*circle_r*M_PI) * ((2*(float)wheel_r*(float)M_PI)/(2*M_PI) * t.read() * fabsf(speed_left)*0.1f); t.reset(); if(wanted_deg <= 0) { set_speed(0,0); is_turning = false; t.stop(); } } printf("remaining deg %f\r\n", wanted_deg); return (wanted_deg); } /** has errors * moves to next coordinate from coordinate list * by Claudio Citterio **/ int move_to_next_coord() { float current_heading = get_current_heading(); position current_pos = get_current_pos(); position next_pos = get_next_pos(); float needed_heading = 0; float distance = 0; // nord(-y) = 0 grad if(current_pos.y > next_pos.y) { if(current_pos.x > next_pos.x) needed_heading = 315; distance = sqrt2; if(current_pos.x == next_pos.x) needed_heading = 0; distance = 1; if(current_pos.x < next_pos.x) needed_heading = 45; distance = sqrt2; } if(current_pos.y == next_pos.y) { if(current_pos.x > next_pos.x) needed_heading = 270; distance = 1; if(current_pos.x == next_pos.x) //error same position; if(current_pos.x < next_pos.x) needed_heading = 90; distance = 1; } if(current_pos.y < next_pos.y) { if(current_pos.x > next_pos.x) needed_heading = 225; distance = sqrt2; if(current_pos.x == next_pos.x) needed_heading = 180; distance = 1; if(current_pos.x < next_pos.x) needed_heading = 135; distance = sqrt2; } if(needed_heading != current_heading) { turn_for_deg(needed_heading-current_heading,1.0f); } else { move_for_distance(distance); } return 0; } /** * this function searchs a nearby brick, moves towards it and grabbs it * by Tobias Berger, state machine by Claudio Citterio **/ int move_in_search_for_brick() { float upper = getDistanceIR(2); // get distance from upper max Sensor float lower = getDistanceIR(3); // get distance from Lower max Sensor //printf("Current Search State: >%d<\r\n",search_state); switch (search_state) { case 0: //first cycle right turn_for_deg(60.0f,0.8f); // call function and start turning search_state = 1; break; case 1: // turn right and check for obstacles if((lower<0.45f)&&(lower>0.08f)) { // if something is in the range of 10 to 80cm at the lower Sensor if(fabsf((upper-lower))>TOLERANCE_BRICK_OR_OBSTACLE) { // and nothing is detected with the upper Sensor stop_turn(); t8.reset(); t8.start(); // start timer for enough measurements restdegAfterstop = turn_for_deg(0,1); // get restdegrees from turn function. if a brick is falsly detected we turn restdegAfterstop to finisch search turn search_state = 2; // brick found printf("Brick first detetection lower: %f upper:%f",lower,upper); } } else { search_state = 1; // go to same state if(turn_for_deg(0, 1) < 0) { // when first 60degree rotation finished stop_turn(); search_state = 4; // go to init turn other direction } } break; case 2: // Check if Sensor after waiting still the same value if(t8.read() > 0.1f) { if((lower<0.45f)&&(lower>0.08f)) { // if something is in the range of 10 to 80cm at the lower Sensor if(fabsf((upper-lower))>TOLERANCE_BRICK_OR_OBSTACLE) { // and nothing is detected with the upper Sensor search_state = 10; // When still the same go to move forward } else { search_state=3; // When afterwait not the same go to continue turning } } } break; case 3: // init continue turning for restdeg turn_for_deg(restdegAfterstop,0.8f); // call function and start turning for restdegrees after stop search_state = 1; // go back to turn and search break; case 4: // init turn left 120 deg turn_for_deg(-120.0f,0.8f); search_state = 5; break; case 5: // turn and search opposite direction if((lower<0.45f)&&(lower>0.05f)) { // if something is in the range of 10 to 80cm at the lower Sensor if(fabsf((upper-lower))>TOLERANCE_BRICK_OR_OBSTACLE) { // and nothing is detected with the upper Sensor stop_turn(); t8.reset(); t8.start(); // start timer for enough measurements restdegAfterstop = turn_for_deg(0,1); // get restdegrees from turn function. if a brick is falsly detected we turn restdegAfterstop to finisch search turn search_state = 6; // brick found printf("Brick first detetection lower: %f upper:%f",lower,upper); } } else { search_state = 5; // go to same state if(turn_for_deg(0, 1) < 0) { // when 60degree rotation finished stop_turn(); search_state = 20; // error go to default state, bc nothing found } } break; case 6: // Check if Sensor after waiting still detect brick if(t8.read() > 0.1f) { if((lower<0.45f)&&(lower>0.08f)) { // if something is in the range of 10 to 80cm at the lower Sensor if(fabsf((upper-lower))>TOLERANCE_BRICK_OR_OBSTACLE) { // and nothing is detected with the upper Sensor search_state = 10; // When still the same go to move forward } else { search_state=7; // When afterwait not the same go to continue turning } } } break; case 7:// init continue turning for restdeg turn_for_deg(restdegAfterstop,0.8f); // call function and start turning for restdegrees after stop search_state = 5; // go back to turn and search break; case 10: // first cycle move forward float distance_to_Brick = lower-(float)OFFSET_GREIFER_TO_IRSENSOR; // calculate move_for_distance(distance_to_Brick); search_state =11; break; case 11: // move forward if(move_for_distance(0) < 0) { //Safety Function: if (getDistanceIR(2)<0.08f) { stop_move(); //move_for_distance(-0.10f); search_state = 0; } stop_move(); search_state = 12; } break; case 12: // Grabbing return 50; //main state machine set as Grabbing default: printf("default State - move in search for brick\r\n"); // error break; } return 47; //called until function is done }