For a school project

Dependencies:   mbed

Fork of MPU6050IMU by Kris Winer

main.cpp

Committer:
JohanBeverini
Date:
2018-03-15
Revision:
3:4c1180a712e3
Parent:
1:cea9d83b8636

File content as of revision 3:4c1180a712e3:

#include "mbed.h"
#include "MPU6050.h"
#include <math.h>


float sum = 0;
uint32_t sumCount = 0;

   MPU6050 mpu6050;
   
   AnalogOut ANA1(A3);
   //AnalogOut ANA2(PA_5);
   
   Ticker ms;
   
   Timer t;

   Serial pc(SERIAL_TX, SERIAL_RX); // tx, rx
   
   Serial BT(PA_9, PA_10); // tx, rx
   

   
    float alpha, betaa, gammaa;
    float axx, ayy, azz;
    float poid[3];
    float a, b, c, d, e, s;
    int i;
    float matrice[3][3], resultat[3];
    
    bool first = true;
    
    bool tick_mili;
    
    float x_x_filter[3]={0,0,0}, x_y_filter[3]={0,0,0};
    float y_x_filter[3]={0,0,0}, y_y_filter[3]={0,0,0};
    float z_x_filter[3]={0,0,0}, z_y_filter[3]={0,0,0};
    float a_coef[3]={1.0000,   -1.5610,    0.6414};
    float b_coef[3]={0.0201,    0.0402,    0.0201};
    float x_x_filter_ph[3]={0,0,0}, x_y_filter_ph[3]={0,0,0};
    float y_x_filter_ph[3]={0,0,0}, y_y_filter_ph[3]={0,0,0};
    float z_x_filter_ph[3]={0,0,0}, z_y_filter_ph[3]={0,0,0};
    float a_coef_ph[3]={1.0000,   -1.9956,    0.9956};
    float b_coef_ph[3]={0.9978,   -1.9956,    0.9978};
    float gx_filtre, gy_filtre, gz_filtre;
    float gx_filtre2=0.0f, gy_filtre2=0.0f, gz_filtre2=0.0f;
    float trapeze_x = 0.0f;
    float trapeze_y = 0.0f;
    float trapeze_z = 0.0f;
 
void mili(void){
    tick_mili=true;
}
 
 
        
int main()
{
  pc.baud(9600);  
  BT.baud(9600); 
  
  pc.printf("hello word\n");
  BT.printf("connection...\n");

  //Set up I2C
  i2c.frequency(400000);  // use fast (400 kHz) I2C   
  
    alpha=0;
    betaa=0;
    gammaa=0;  
  
  ms.attach(&mili, 0.001);
  t.start();        
  
  //lcd.init();
  //lcd.setBrightness(0.05);
  
    
  // Read the WHO_AM_I register, this is a good test of communication
  uint8_t whoami = mpu6050.readByte(MPU6050_ADDRESS, WHO_AM_I_MPU6050);  // Read WHO_AM_I register for MPU-6050
  pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x68\n\r");
  
  if (whoami == 0x68) // WHO_AM_I should always be 0x68
  {  
    pc.printf("MPU6050 is online...");
    wait(1);
    //lcd.clear();
    //lcd.printString("MPU6050 OK", 0, 0);

    
    mpu6050.MPU6050SelfTest(SelfTest); // Start by performing self test and reporting values
    pc.printf("x-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[0]); pc.printf("% of factory value \n\r");
    pc.printf("y-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[1]); pc.printf("% of factory value \n\r");
    pc.printf("z-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[2]); pc.printf("% of factory value \n\r");
    pc.printf("x-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[3]); pc.printf("% of factory value \n\r");
    pc.printf("y-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[4]); pc.printf("% of factory value \n\r");
    pc.printf("z-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[5]); pc.printf("% of factory value \n\r");
    wait(1);

    if(SelfTest[0] < 1.0f && SelfTest[1] < 1.0f && SelfTest[2] < 1.0f && SelfTest[3] < 1.0f && SelfTest[4] < 1.0f && SelfTest[5] < 1.0f) 
    {
    mpu6050.resetMPU6050(); // Reset registers to default in preparation for device calibration
    mpu6050.calibrateMPU6050(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers  
    mpu6050.initMPU6050(); pc.printf("MPU6050 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature

    //lcd.clear();
    //lcd.printString("MPU6050", 0, 0);
    //lcd.printString("pass self test", 0, 1);
    //lcd.printString("initializing", 0, 2);  
    wait(2);
       }
    else
    {
    pc.printf("Device did not the pass self-test!\n\r");
 
       //lcd.clear();
       //lcd.printString("MPU6050", 0, 0);
       //lcd.printString("no pass", 0, 1);
       //lcd.printString("self test", 0, 2);      
      }
    }
    else
    {
    pc.printf("Could not connect to MPU6050: \n\r");
    pc.printf("%#x \n",  whoami);
 
    //lcd.clear();
    //lcd.printString("MPU6050", 0, 0);
    //lcd.printString("no connection", 0, 1);
    //lcd.printString("0x", 0, 2);  lcd.setXYAddress(20, 2); lcd.printChar(whoami);
 
    while(1) ; // Loop forever if communication doesn't happen
  }



 while(1) {
  
  if (tick_mili==true){
      tick_mili=false;
  
  
  // If data ready bit set, all data registers have new data
  if(mpu6050.readByte(MPU6050_ADDRESS, INT_STATUS) & 0x01) {  // check if data ready interrupt
    mpu6050.readAccelData(accelCount);  // Read the x/y/z adc values
    mpu6050.getAres();
    
    // Now we'll calculate the accleration value into actual g's
    ax = (float)accelCount[0]*aRes - accelBias[0];  // get actual g value, this depends on scale being set
    ay = (float)accelCount[1]*aRes - accelBias[1];   
    az = (float)accelCount[2]*aRes - accelBias[2];  
   
    mpu6050.readGyroData(gyroCount);  // Read the x/y/z adc values
    mpu6050.getGres();
 
    // Calculate the gyro value into actual degrees per second
    gx = (float)gyroCount[0]*gRes; // - gyroBias[0];  // get actual gyro value, this depends on scale being set
    gy = (float)gyroCount[1]*gRes; // - gyroBias[1];  
    gz = (float)gyroCount[2]*gRes; // - gyroBias[2];
 

    tempCount = mpu6050.readTempData();  // Read the x/y/z adc values
    temperature = (tempCount) / 340. + 36.53; // Temperature in degrees Centigrade
   }  
   
    Now = t.read_us();
    deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
    lastUpdate = Now;
    
    sum += deltat;
    sumCount++;
    
    if(lastUpdate - firstUpdate > 10000000.0f) {
     beta = 0.04;  // decrease filter gain after stabilized
     zeta = 0.015; // increasey bias drift gain after stabilized
    }
    
   // Pass gyro rate as rad/s
    //mpu6050.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f);


    //gx*=PI/180.0f;
    //gy*=PI/180.0f;
    //gz*=PI/180.0f;
    //gx/=1000.0f;
    //gy/=1000.0f;
    //gz/=1000.0f;
    
    ////////filtre PB 100Hz / PH 1Hz
    //x_x_filter[6]=x_x_filter[5]; x_x_filter[5]=x_x_filter[4]; x_x_filter[4]=x_x_filter[3]; 
    //x_x_filter[3]=x_x_filter[2]; 
    x_x_filter[2]=x_x_filter[1]; x_x_filter[1]=x_x_filter[0];
    x_x_filter[0]=gx;
    //x_y_filter[6]=x_y_filter[5]; x_y_filter[5]=x_y_filter[4]; x_y_filter[4]=x_y_filter[3];
    //x_y_filter[3]=x_y_filter[2]; 
    x_y_filter[2]=x_y_filter[1]; x_y_filter[1]=x_y_filter[0];
    x_y_filter[0]=b_coef[0]*x_x_filter[0]+b_coef[1]*x_x_filter[1]+b_coef[2]*x_x_filter[2] //+b_coef[3]*x_x_filter[3] //+b_coef[4]*x_x_filter[4]+b_coef[5]*x_x_filter[5]+b_coef[6]*x_x_filter[6]
                    -(a_coef[1]*x_y_filter[1]+a_coef[2]*x_y_filter[2]); //+a_coef[3]*x_y_filter[3]); //+a_coef[4]*x_y_filter[4]+a_coef[5]*x_y_filter[5]+a_coef[6]*x_y_filter[6]);
    gx_filtre=x_y_filter[0];
    
    //y_x_filter[6]=y_x_filter[5]; y_x_filter[5]=y_x_filter[4]; y_x_filter[4]=y_x_filter[3];
    //y_x_filter[3]=y_x_filter[2]; 
    y_x_filter[2]=y_x_filter[1]; y_x_filter[1]=y_x_filter[0];
    y_x_filter[0]=gy;
    //y_y_filter[6]=y_y_filter[5]; y_y_filter[5]=y_y_filter[4]; y_y_filter[4]=y_y_filter[3];
    //y_y_filter[3]=y_y_filter[2]; 
    y_y_filter[2]=y_y_filter[1]; y_y_filter[1]=y_y_filter[0];
    y_y_filter[0]=b_coef[0]*y_x_filter[0]+b_coef[1]*y_x_filter[1]+b_coef[2]*y_x_filter[2] //+b_coef[3]*y_x_filter[3] //+b_coef[4]*y_x_filter[4]+b_coef[5]*y_x_filter[5]+b_coef[6]*y_x_filter[6]
                    -(a_coef[1]*y_y_filter[1]+a_coef[2]*y_y_filter[2]); //+a_coef[3]*y_y_filter[3]); //+a_coef[4]*y_y_filter[4]+a_coef[5]*y_y_filter[5]+a_coef[6]*y_y_filter[6]);
    gy_filtre=y_y_filter[0];
    
    //z_x_filter[6]=z_x_filter[5]; z_x_filter[5]=z_x_filter[4]; z_x_filter[4]=z_x_filter[3]; 
    //z_x_filter[3]=z_x_filter[2];
    z_x_filter[2]=z_x_filter[1]; z_x_filter[1]=z_x_filter[0];
    z_x_filter[0]=gz;
    //z_y_filter[6]=z_y_filter[5]; z_y_filter[5]=z_y_filter[4]; z_y_filter[4]=z_y_filter[3]; 
    //z_y_filter[3]=z_y_filter[2]; 
    z_y_filter[2]=z_y_filter[1]; z_y_filter[1]=z_y_filter[0];
    z_y_filter[0]=b_coef[0]*z_x_filter[0]+b_coef[1]*z_x_filter[1]+b_coef[2]*z_x_filter[2] //+b_coef[3]*z_x_filter[3] //+b_coef[4]*z_x_filter[4]+b_coef[5]*z_x_filter[5]+b_coef[6]*z_x_filter[6]
                    -(a_coef[1]*z_y_filter[1]+a_coef[2]*z_y_filter[2]); //+a_coef[3]*z_y_filter[3]); //+a_coef[4]*z_y_filter[4]+a_coef[5]*z_y_filter[5]+a_coef[6]*z_y_filter[6]);
    gz_filtre=z_y_filter[0];
    
     ////////filtre PB 100Hz / PH 1Hz
    //x_x_filter[6]=x_x_filter[5]; x_x_filter[5]=x_x_filter[4]; x_x_filter[4]=x_x_filter[3]; 
    //x_x_filter_ph[3]=x_x_filter_ph[2]; 
    x_x_filter_ph[2]=x_x_filter_ph[1]; x_x_filter_ph[1]=x_x_filter_ph[0];
   x_x_filter_ph[0]=gx_filtre;
    //x_y_filter[6]=x_y_filter[5]; x_y_filter[5]=x_y_filter[4]; x_y_filter[4]=x_y_filter[3];
    //x_y_filter_ph[3]=x_y_filter_ph[2]; 
    x_y_filter_ph[2]=x_y_filter_ph[1]; x_y_filter_ph[1]=x_y_filter_ph[0];
    x_y_filter_ph[0]=b_coef_ph[0]*x_x_filter_ph[0]+b_coef_ph[1]*x_x_filter_ph[1]+b_coef_ph[2]*x_x_filter_ph[2] //+b_coef_ph[3]*x_x_filter_ph[3] //+b_coef[4]*x_x_filter[4]+b_coef[5]*x_x_filter[5]+b_coef[6]*x_x_filter[6]
                    -(a_coef_ph[1]*x_y_filter_ph[1]+a_coef_ph[2]*x_y_filter_ph[2]); //+a_coef_ph[3]*x_y_filter_ph[3]); //+a_coef[4]*x_y_filter[4]+a_coef[5]*x_y_filter[5]+a_coef[6]*x_y_filter[6]);
    gx_filtre=x_y_filter_ph[0];
    
   //y_x_filter[6]=y_x_filter[5]; y_x_filter[5]=y_x_filter[4]; y_x_filter[4]=y_x_filter[3];
    //y_x_filter_ph[3]=y_x_filter_ph[2]; 
    y_x_filter_ph[2]=y_x_filter_ph[1]; y_x_filter_ph[1]=y_x_filter_ph[0];
    y_x_filter_ph[0]=gy_filtre;
    //y_y_filter[6]=y_y_filter[5]; y_y_filter[5]=y_y_filter[4]; y_y_filter[4]=y_y_filter[3];
    //y_y_filter_ph[3]=y_y_filter_ph[2]; 
    y_y_filter_ph[2]=y_y_filter_ph[1]; y_y_filter_ph[1]=y_y_filter_ph[0];
    y_y_filter_ph[0]=b_coef_ph[0]*y_x_filter_ph[0]+b_coef_ph[1]*y_x_filter_ph[1]+b_coef_ph[2]*y_x_filter_ph[2] //+b_coef_ph[3]*y_x_filter_ph[3] //+b_coef[4]*y_x_filter[4]+b_coef[5]*y_x_filter[5]+b_coef[6]*y_x_filter[6]
                    -(a_coef_ph[1]*y_y_filter_ph[1]+a_coef_ph[2]*y_y_filter_ph[2]); //+a_coef_ph[3]*y_y_filter_ph[3]); //+a_coef[4]*y_y_filter[4]+a_coef[5]*y_y_filter[5]+a_coef[6]*y_y_filter[6]);
    gy_filtre=y_y_filter_ph[0];
    
   //z_x_filter[6]=z_x_filter[5]; z_x_filter[5]=z_x_filter[4]; z_x_filter[4]=z_x_filter[3]; 
    //z_x_filter_ph[3]=z_x_filter_ph[2]; 
    z_x_filter_ph[2]=z_x_filter_ph[1]; z_x_filter_ph[1]=z_x_filter_ph[0];
    z_x_filter_ph[0]=gz_filtre;
    //z_y_filter[6]=z_y_filter[5]; z_y_filter[5]=z_y_filter[4]; z_y_filter[4]=z_y_filter[3]; 
    //z_y_filter_ph[3]=z_y_filter_ph[2]; 
    z_y_filter_ph[2]=z_y_filter_ph[1]; z_y_filter_ph[1]=z_y_filter_ph[0];
    z_y_filter_ph[0]=b_coef_ph[0]*z_x_filter_ph[0]+b_coef_ph[1]*z_x_filter_ph[1]+b_coef_ph[2]*z_x_filter_ph[2] //+b_coef_ph[3]*z_x_filter_ph[3] //+b_coef[4]*z_x_filter[4]+b_coef[5]*z_x_filter[5]+b_coef[6]*z_x_filter[6]
                    -(a_coef_ph[1]*z_y_filter_ph[1]+a_coef_ph[2]*z_y_filter_ph[2]); //+a_coef_ph[3]*z_y_filter_ph[3]); //+a_coef[4]*z_y_filter[4]+a_coef[5]*z_y_filter[5]+a_coef[6]*z_y_filter[6]);
    gz_filtre=z_y_filter_ph[0];


    trapeze_x=deltat*((gx_filtre+gx_filtre2)/2.0f);
    trapeze_y=deltat*((gy_filtre+gy_filtre2)/2.0f);
    trapeze_z=deltat*((gz_filtre+gz_filtre2)/2.0f);
    
    gx_filtre2=gx_filtre;
    gy_filtre2=gy_filtre;
    gz_filtre2=gz_filtre;

    //calcule angle
    alpha+=trapeze_x;
    betaa+=trapeze_y;
    gammaa+=trapeze_z;  

    if(alpha>=360.0f){alpha-=360.0f;}
    if(alpha<=-360.0f){alpha+=360.0f;}
    if(betaa>=360.0f){betaa-=360.0f;}
    if(betaa<=-360.0f){betaa+=360.0f;}
    if(gammaa>=360.0f){gammaa-=360.0f;}
    if(gammaa<=-360.0f){gammaa+=360.0f;}

    ANA1.write((alpha+500.0f)/1000.0f);
    //ANA2.write(alpha/360.0f);

    // Serial print and/or display at 0.5 s rate independent of data rates
    delt_t = t.read_ms() - count;
    if (delt_t > 100) { // update LCD once per half-second independent of read rate

    pc.printf("ax = %f", 1000*ax); 
    pc.printf(" ay = %f", 1000*ay); 
    pc.printf(" az = %f  mg\n\r", 1000*az); 

    pc.printf("gx = %f", gx); 
    pc.printf(" gy = %f", gy); 
    pc.printf(" gz = %f  deg/s\n\r", gz); 
    
//    pc.printf("post filtre : gx = %f", gx_filtre2); 
//    pc.printf(" gy = %f", gy_filtre2); 
//    pc.printf(" gz = %f  deg/s\n\r", gz_filtre2);
    
    pc.printf(" temperature = %f  C\n\r", temperature); 
    
//    pc.printf("q0 = %f\n\r", q[0]);
//    pc.printf("q1 = %f\n\r", q[1]);
//    pc.printf("q2 = %f\n\r", q[2]);
//    pc.printf("q3 = %f\n\r", q[3]);      
    
    //lcd.clear();
    //lcd.printString("MPU6050", 0, 0);
    //lcd.printString("x   y   z", 0, 1);
    //lcd.setXYAddress(0, 2); lcd.printChar((char)(1000*ax));
    //lcd.setXYAddress(20, 2); lcd.printChar((char)(1000*ay));
    //lcd.setXYAddress(40, 2); lcd.printChar((char)(1000*az)); lcd.printString("mg", 66, 2);
    
    
  // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
  // In this coordinate system, the positive z-axis is down toward Earth. 
  // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
  // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
  // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
  // These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
  // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
  // applied in the correct order which for this configuration is yaw, pitch, and then roll.
  // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
    //yaw   = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);   
    //pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
    //roll  = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
    //pitch *= 180.0f / PI;
    //yaw   *= 180.0f / PI; 
    //roll  *= 180.0f / PI;

//    pc.printf("Yaw, Pitch, Roll: \n\r");
//    pc.printf("%f", yaw);
//    pc.printf(", ");
//    pc.printf("%f", pitch);
//    pc.printf(", ");
//    pc.printf("%f\n\r", roll);
//    pc.printf("average rate = "); pc.printf("%f", (sumCount/sum)); pc.printf(" Hz\n\r");

     //pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll);
     //pc.printf("average rate = %f\n\r", (float) sumCount/sum);
     
     //BT.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll);
     //BT.printf("average rate = %f\n\r", (float) sumCount/sum); 
     
    //alpha=yaw;
    //betaa=pitch;
    //gammaa=roll;

    pc.printf("delta = %f\n\r", (float) deltat);
//    pc.printf("alpha, beta, gamma: %f %f %f\n\r", alpha, betaa, gammaa);
    
    axx=ax;
    ayy=ay;
    azz=az;
    
////////////////////////////////////////////////////////Matrice d'Euler();
    c = cos(alpha*PI/180.0f); s = sin(alpha*PI/180.0f);
    a = cos(betaa*PI/180.0f); b = sin(betaa*PI/180.0f);
    d = cos(gammaa*PI/180.0f); e = sin(gammaa*PI/180.0f);

    matrice[0][0] = e*a - e*c*b;
    matrice[0][1] = (-d)*b - e*c*a;
    matrice[0][2] = e*s;
    matrice[1][0] = e*a + d*c*b;
    matrice[1][1] = (-e)*b + d*c*a;
    matrice[1][2] = (-d)*s;
    matrice[2][0] = s*b;
    matrice[2][1] = s*a;
    matrice[2][2] = c;

   for(i=0; i<3; i++)
   {
        float temp = 0;
        temp = axx * matrice[i][0] + ayy * matrice[i][1] + azz * matrice[i][2];
        resultat[i] = temp;
   }
//////////////////////////////////////////////////////////
    
//    if (first==true){
//     poid[0]=resultat[0];
//     poid[1]=resultat[1];
//     poid[2]=resultat[2];
//     first=false;
//    } else {
//     resultat[0]-=poid[0];
//     resultat[1]-=poid[1];
//     resultat[2]-=poid[2];
//    }
    
//     pc.printf("acceleration sans Euler : %f ; %f ; %f\n\r", axx, ayy, azz);
//     pc.printf("acceleration avec Euler : %f ; %f ; %f\n\r", resultat[0], resultat[1], resultat[2]);
     BT.printf("acceleration sans Euler : %f ; %f ; %f\n\r", axx, ayy, azz);
     BT.printf("acceleration avec Euler : %f ; %f ; %f\n\r", resultat[0], resultat[1], resultat[2]);
     
 
    myled= !myled;
    count = t.read_ms(); 
    sum = 0;
    sumCount = 0; 
}
}
    if (BT.readable()) {
        char c = BT.getc();
        if(c == 'a') {
            BT.printf("\nOK\n");
        }
    }
}
 
 }