For a school project

Dependencies:   mbed

Fork of MPU6050IMU by Kris Winer

Committer:
JohanBeverini
Date:
Thu Mar 15 15:02:02 2018 +0000
Revision:
3:4c1180a712e3
Parent:
1:cea9d83b8636
+ filtre + matrice euler

Who changed what in which revision?

UserRevisionLine numberNew contents of line
onehorse 1:cea9d83b8636 1 #include "mbed.h"
onehorse 1:cea9d83b8636 2 #include "MPU6050.h"
JohanBeverini 3:4c1180a712e3 3 #include <math.h>
onehorse 0:65aa78c10981 4
onehorse 0:65aa78c10981 5
onehorse 1:cea9d83b8636 6 float sum = 0;
onehorse 1:cea9d83b8636 7 uint32_t sumCount = 0;
onehorse 1:cea9d83b8636 8
onehorse 1:cea9d83b8636 9 MPU6050 mpu6050;
onehorse 1:cea9d83b8636 10
JohanBeverini 3:4c1180a712e3 11 AnalogOut ANA1(A3);
JohanBeverini 3:4c1180a712e3 12 //AnalogOut ANA2(PA_5);
JohanBeverini 3:4c1180a712e3 13
JohanBeverini 3:4c1180a712e3 14 Ticker ms;
JohanBeverini 3:4c1180a712e3 15
onehorse 1:cea9d83b8636 16 Timer t;
onehorse 1:cea9d83b8636 17
JohanBeverini 3:4c1180a712e3 18 Serial pc(SERIAL_TX, SERIAL_RX); // tx, rx
JohanBeverini 3:4c1180a712e3 19
JohanBeverini 3:4c1180a712e3 20 Serial BT(PA_9, PA_10); // tx, rx
JohanBeverini 3:4c1180a712e3 21
onehorse 1:cea9d83b8636 22
JohanBeverini 3:4c1180a712e3 23
JohanBeverini 3:4c1180a712e3 24 float alpha, betaa, gammaa;
JohanBeverini 3:4c1180a712e3 25 float axx, ayy, azz;
JohanBeverini 3:4c1180a712e3 26 float poid[3];
JohanBeverini 3:4c1180a712e3 27 float a, b, c, d, e, s;
JohanBeverini 3:4c1180a712e3 28 int i;
JohanBeverini 3:4c1180a712e3 29 float matrice[3][3], resultat[3];
JohanBeverini 3:4c1180a712e3 30
JohanBeverini 3:4c1180a712e3 31 bool first = true;
JohanBeverini 3:4c1180a712e3 32
JohanBeverini 3:4c1180a712e3 33 bool tick_mili;
JohanBeverini 3:4c1180a712e3 34
JohanBeverini 3:4c1180a712e3 35 float x_x_filter[3]={0,0,0}, x_y_filter[3]={0,0,0};
JohanBeverini 3:4c1180a712e3 36 float y_x_filter[3]={0,0,0}, y_y_filter[3]={0,0,0};
JohanBeverini 3:4c1180a712e3 37 float z_x_filter[3]={0,0,0}, z_y_filter[3]={0,0,0};
JohanBeverini 3:4c1180a712e3 38 float a_coef[3]={1.0000, -1.5610, 0.6414};
JohanBeverini 3:4c1180a712e3 39 float b_coef[3]={0.0201, 0.0402, 0.0201};
JohanBeverini 3:4c1180a712e3 40 float x_x_filter_ph[3]={0,0,0}, x_y_filter_ph[3]={0,0,0};
JohanBeverini 3:4c1180a712e3 41 float y_x_filter_ph[3]={0,0,0}, y_y_filter_ph[3]={0,0,0};
JohanBeverini 3:4c1180a712e3 42 float z_x_filter_ph[3]={0,0,0}, z_y_filter_ph[3]={0,0,0};
JohanBeverini 3:4c1180a712e3 43 float a_coef_ph[3]={1.0000, -1.9956, 0.9956};
JohanBeverini 3:4c1180a712e3 44 float b_coef_ph[3]={0.9978, -1.9956, 0.9978};
JohanBeverini 3:4c1180a712e3 45 float gx_filtre, gy_filtre, gz_filtre;
JohanBeverini 3:4c1180a712e3 46 float gx_filtre2=0.0f, gy_filtre2=0.0f, gz_filtre2=0.0f;
JohanBeverini 3:4c1180a712e3 47 float trapeze_x = 0.0f;
JohanBeverini 3:4c1180a712e3 48 float trapeze_y = 0.0f;
JohanBeverini 3:4c1180a712e3 49 float trapeze_z = 0.0f;
JohanBeverini 3:4c1180a712e3 50
JohanBeverini 3:4c1180a712e3 51 void mili(void){
JohanBeverini 3:4c1180a712e3 52 tick_mili=true;
JohanBeverini 3:4c1180a712e3 53 }
JohanBeverini 3:4c1180a712e3 54
JohanBeverini 3:4c1180a712e3 55
onehorse 1:cea9d83b8636 56
onehorse 1:cea9d83b8636 57 int main()
onehorse 1:cea9d83b8636 58 {
onehorse 1:cea9d83b8636 59 pc.baud(9600);
JohanBeverini 3:4c1180a712e3 60 BT.baud(9600);
JohanBeverini 3:4c1180a712e3 61
JohanBeverini 3:4c1180a712e3 62 pc.printf("hello word\n");
JohanBeverini 3:4c1180a712e3 63 BT.printf("connection...\n");
onehorse 0:65aa78c10981 64
onehorse 1:cea9d83b8636 65 //Set up I2C
onehorse 1:cea9d83b8636 66 i2c.frequency(400000); // use fast (400 kHz) I2C
onehorse 1:cea9d83b8636 67
JohanBeverini 3:4c1180a712e3 68 alpha=0;
JohanBeverini 3:4c1180a712e3 69 betaa=0;
JohanBeverini 3:4c1180a712e3 70 gammaa=0;
JohanBeverini 3:4c1180a712e3 71
JohanBeverini 3:4c1180a712e3 72 ms.attach(&mili, 0.001);
onehorse 1:cea9d83b8636 73 t.start();
onehorse 1:cea9d83b8636 74
JohanBeverini 3:4c1180a712e3 75 //lcd.init();
JohanBeverini 3:4c1180a712e3 76 //lcd.setBrightness(0.05);
onehorse 1:cea9d83b8636 77
onehorse 1:cea9d83b8636 78
onehorse 1:cea9d83b8636 79 // Read the WHO_AM_I register, this is a good test of communication
onehorse 1:cea9d83b8636 80 uint8_t whoami = mpu6050.readByte(MPU6050_ADDRESS, WHO_AM_I_MPU6050); // Read WHO_AM_I register for MPU-6050
onehorse 1:cea9d83b8636 81 pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x68\n\r");
onehorse 1:cea9d83b8636 82
onehorse 1:cea9d83b8636 83 if (whoami == 0x68) // WHO_AM_I should always be 0x68
onehorse 1:cea9d83b8636 84 {
onehorse 1:cea9d83b8636 85 pc.printf("MPU6050 is online...");
onehorse 1:cea9d83b8636 86 wait(1);
JohanBeverini 3:4c1180a712e3 87 //lcd.clear();
JohanBeverini 3:4c1180a712e3 88 //lcd.printString("MPU6050 OK", 0, 0);
onehorse 0:65aa78c10981 89
onehorse 1:cea9d83b8636 90
onehorse 1:cea9d83b8636 91 mpu6050.MPU6050SelfTest(SelfTest); // Start by performing self test and reporting values
onehorse 1:cea9d83b8636 92 pc.printf("x-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[0]); pc.printf("% of factory value \n\r");
onehorse 1:cea9d83b8636 93 pc.printf("y-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[1]); pc.printf("% of factory value \n\r");
onehorse 1:cea9d83b8636 94 pc.printf("z-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[2]); pc.printf("% of factory value \n\r");
onehorse 1:cea9d83b8636 95 pc.printf("x-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[3]); pc.printf("% of factory value \n\r");
onehorse 1:cea9d83b8636 96 pc.printf("y-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[4]); pc.printf("% of factory value \n\r");
onehorse 1:cea9d83b8636 97 pc.printf("z-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[5]); pc.printf("% of factory value \n\r");
onehorse 1:cea9d83b8636 98 wait(1);
onehorse 0:65aa78c10981 99
onehorse 1:cea9d83b8636 100 if(SelfTest[0] < 1.0f && SelfTest[1] < 1.0f && SelfTest[2] < 1.0f && SelfTest[3] < 1.0f && SelfTest[4] < 1.0f && SelfTest[5] < 1.0f)
onehorse 1:cea9d83b8636 101 {
onehorse 1:cea9d83b8636 102 mpu6050.resetMPU6050(); // Reset registers to default in preparation for device calibration
onehorse 1:cea9d83b8636 103 mpu6050.calibrateMPU6050(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers
onehorse 1:cea9d83b8636 104 mpu6050.initMPU6050(); pc.printf("MPU6050 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
onehorse 0:65aa78c10981 105
JohanBeverini 3:4c1180a712e3 106 //lcd.clear();
JohanBeverini 3:4c1180a712e3 107 //lcd.printString("MPU6050", 0, 0);
JohanBeverini 3:4c1180a712e3 108 //lcd.printString("pass self test", 0, 1);
JohanBeverini 3:4c1180a712e3 109 //lcd.printString("initializing", 0, 2);
onehorse 1:cea9d83b8636 110 wait(2);
onehorse 1:cea9d83b8636 111 }
onehorse 1:cea9d83b8636 112 else
onehorse 1:cea9d83b8636 113 {
onehorse 1:cea9d83b8636 114 pc.printf("Device did not the pass self-test!\n\r");
onehorse 0:65aa78c10981 115
JohanBeverini 3:4c1180a712e3 116 //lcd.clear();
JohanBeverini 3:4c1180a712e3 117 //lcd.printString("MPU6050", 0, 0);
JohanBeverini 3:4c1180a712e3 118 //lcd.printString("no pass", 0, 1);
JohanBeverini 3:4c1180a712e3 119 //lcd.printString("self test", 0, 2);
onehorse 1:cea9d83b8636 120 }
onehorse 1:cea9d83b8636 121 }
onehorse 1:cea9d83b8636 122 else
onehorse 1:cea9d83b8636 123 {
onehorse 1:cea9d83b8636 124 pc.printf("Could not connect to MPU6050: \n\r");
onehorse 1:cea9d83b8636 125 pc.printf("%#x \n", whoami);
onehorse 1:cea9d83b8636 126
JohanBeverini 3:4c1180a712e3 127 //lcd.clear();
JohanBeverini 3:4c1180a712e3 128 //lcd.printString("MPU6050", 0, 0);
JohanBeverini 3:4c1180a712e3 129 //lcd.printString("no connection", 0, 1);
JohanBeverini 3:4c1180a712e3 130 //lcd.printString("0x", 0, 2); lcd.setXYAddress(20, 2); lcd.printChar(whoami);
onehorse 1:cea9d83b8636 131
onehorse 1:cea9d83b8636 132 while(1) ; // Loop forever if communication doesn't happen
onehorse 0:65aa78c10981 133 }
onehorse 0:65aa78c10981 134
onehorse 0:65aa78c10981 135
onehorse 0:65aa78c10981 136
onehorse 1:cea9d83b8636 137 while(1) {
onehorse 0:65aa78c10981 138
JohanBeverini 3:4c1180a712e3 139 if (tick_mili==true){
JohanBeverini 3:4c1180a712e3 140 tick_mili=false;
JohanBeverini 3:4c1180a712e3 141
JohanBeverini 3:4c1180a712e3 142
onehorse 1:cea9d83b8636 143 // If data ready bit set, all data registers have new data
onehorse 1:cea9d83b8636 144 if(mpu6050.readByte(MPU6050_ADDRESS, INT_STATUS) & 0x01) { // check if data ready interrupt
onehorse 1:cea9d83b8636 145 mpu6050.readAccelData(accelCount); // Read the x/y/z adc values
onehorse 1:cea9d83b8636 146 mpu6050.getAres();
onehorse 0:65aa78c10981 147
onehorse 0:65aa78c10981 148 // Now we'll calculate the accleration value into actual g's
onehorse 0:65aa78c10981 149 ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set
onehorse 0:65aa78c10981 150 ay = (float)accelCount[1]*aRes - accelBias[1];
onehorse 0:65aa78c10981 151 az = (float)accelCount[2]*aRes - accelBias[2];
onehorse 0:65aa78c10981 152
onehorse 1:cea9d83b8636 153 mpu6050.readGyroData(gyroCount); // Read the x/y/z adc values
onehorse 1:cea9d83b8636 154 mpu6050.getGres();
onehorse 0:65aa78c10981 155
onehorse 0:65aa78c10981 156 // Calculate the gyro value into actual degrees per second
onehorse 1:cea9d83b8636 157 gx = (float)gyroCount[0]*gRes; // - gyroBias[0]; // get actual gyro value, this depends on scale being set
onehorse 1:cea9d83b8636 158 gy = (float)gyroCount[1]*gRes; // - gyroBias[1];
JohanBeverini 3:4c1180a712e3 159 gz = (float)gyroCount[2]*gRes; // - gyroBias[2];
JohanBeverini 3:4c1180a712e3 160
onehorse 0:65aa78c10981 161
onehorse 1:cea9d83b8636 162 tempCount = mpu6050.readTempData(); // Read the x/y/z adc values
onehorse 0:65aa78c10981 163 temperature = (tempCount) / 340. + 36.53; // Temperature in degrees Centigrade
onehorse 0:65aa78c10981 164 }
onehorse 0:65aa78c10981 165
onehorse 0:65aa78c10981 166 Now = t.read_us();
onehorse 1:cea9d83b8636 167 deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
onehorse 0:65aa78c10981 168 lastUpdate = Now;
onehorse 1:cea9d83b8636 169
onehorse 1:cea9d83b8636 170 sum += deltat;
onehorse 1:cea9d83b8636 171 sumCount++;
onehorse 1:cea9d83b8636 172
onehorse 0:65aa78c10981 173 if(lastUpdate - firstUpdate > 10000000.0f) {
onehorse 1:cea9d83b8636 174 beta = 0.04; // decrease filter gain after stabilized
onehorse 1:cea9d83b8636 175 zeta = 0.015; // increasey bias drift gain after stabilized
onehorse 0:65aa78c10981 176 }
onehorse 1:cea9d83b8636 177
onehorse 0:65aa78c10981 178 // Pass gyro rate as rad/s
JohanBeverini 3:4c1180a712e3 179 //mpu6050.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f);
JohanBeverini 3:4c1180a712e3 180
JohanBeverini 3:4c1180a712e3 181
JohanBeverini 3:4c1180a712e3 182 //gx*=PI/180.0f;
JohanBeverini 3:4c1180a712e3 183 //gy*=PI/180.0f;
JohanBeverini 3:4c1180a712e3 184 //gz*=PI/180.0f;
JohanBeverini 3:4c1180a712e3 185 //gx/=1000.0f;
JohanBeverini 3:4c1180a712e3 186 //gy/=1000.0f;
JohanBeverini 3:4c1180a712e3 187 //gz/=1000.0f;
JohanBeverini 3:4c1180a712e3 188
JohanBeverini 3:4c1180a712e3 189 ////////filtre PB 100Hz / PH 1Hz
JohanBeverini 3:4c1180a712e3 190 //x_x_filter[6]=x_x_filter[5]; x_x_filter[5]=x_x_filter[4]; x_x_filter[4]=x_x_filter[3];
JohanBeverini 3:4c1180a712e3 191 //x_x_filter[3]=x_x_filter[2];
JohanBeverini 3:4c1180a712e3 192 x_x_filter[2]=x_x_filter[1]; x_x_filter[1]=x_x_filter[0];
JohanBeverini 3:4c1180a712e3 193 x_x_filter[0]=gx;
JohanBeverini 3:4c1180a712e3 194 //x_y_filter[6]=x_y_filter[5]; x_y_filter[5]=x_y_filter[4]; x_y_filter[4]=x_y_filter[3];
JohanBeverini 3:4c1180a712e3 195 //x_y_filter[3]=x_y_filter[2];
JohanBeverini 3:4c1180a712e3 196 x_y_filter[2]=x_y_filter[1]; x_y_filter[1]=x_y_filter[0];
JohanBeverini 3:4c1180a712e3 197 x_y_filter[0]=b_coef[0]*x_x_filter[0]+b_coef[1]*x_x_filter[1]+b_coef[2]*x_x_filter[2] //+b_coef[3]*x_x_filter[3] //+b_coef[4]*x_x_filter[4]+b_coef[5]*x_x_filter[5]+b_coef[6]*x_x_filter[6]
JohanBeverini 3:4c1180a712e3 198 -(a_coef[1]*x_y_filter[1]+a_coef[2]*x_y_filter[2]); //+a_coef[3]*x_y_filter[3]); //+a_coef[4]*x_y_filter[4]+a_coef[5]*x_y_filter[5]+a_coef[6]*x_y_filter[6]);
JohanBeverini 3:4c1180a712e3 199 gx_filtre=x_y_filter[0];
JohanBeverini 3:4c1180a712e3 200
JohanBeverini 3:4c1180a712e3 201 //y_x_filter[6]=y_x_filter[5]; y_x_filter[5]=y_x_filter[4]; y_x_filter[4]=y_x_filter[3];
JohanBeverini 3:4c1180a712e3 202 //y_x_filter[3]=y_x_filter[2];
JohanBeverini 3:4c1180a712e3 203 y_x_filter[2]=y_x_filter[1]; y_x_filter[1]=y_x_filter[0];
JohanBeverini 3:4c1180a712e3 204 y_x_filter[0]=gy;
JohanBeverini 3:4c1180a712e3 205 //y_y_filter[6]=y_y_filter[5]; y_y_filter[5]=y_y_filter[4]; y_y_filter[4]=y_y_filter[3];
JohanBeverini 3:4c1180a712e3 206 //y_y_filter[3]=y_y_filter[2];
JohanBeverini 3:4c1180a712e3 207 y_y_filter[2]=y_y_filter[1]; y_y_filter[1]=y_y_filter[0];
JohanBeverini 3:4c1180a712e3 208 y_y_filter[0]=b_coef[0]*y_x_filter[0]+b_coef[1]*y_x_filter[1]+b_coef[2]*y_x_filter[2] //+b_coef[3]*y_x_filter[3] //+b_coef[4]*y_x_filter[4]+b_coef[5]*y_x_filter[5]+b_coef[6]*y_x_filter[6]
JohanBeverini 3:4c1180a712e3 209 -(a_coef[1]*y_y_filter[1]+a_coef[2]*y_y_filter[2]); //+a_coef[3]*y_y_filter[3]); //+a_coef[4]*y_y_filter[4]+a_coef[5]*y_y_filter[5]+a_coef[6]*y_y_filter[6]);
JohanBeverini 3:4c1180a712e3 210 gy_filtre=y_y_filter[0];
JohanBeverini 3:4c1180a712e3 211
JohanBeverini 3:4c1180a712e3 212 //z_x_filter[6]=z_x_filter[5]; z_x_filter[5]=z_x_filter[4]; z_x_filter[4]=z_x_filter[3];
JohanBeverini 3:4c1180a712e3 213 //z_x_filter[3]=z_x_filter[2];
JohanBeverini 3:4c1180a712e3 214 z_x_filter[2]=z_x_filter[1]; z_x_filter[1]=z_x_filter[0];
JohanBeverini 3:4c1180a712e3 215 z_x_filter[0]=gz;
JohanBeverini 3:4c1180a712e3 216 //z_y_filter[6]=z_y_filter[5]; z_y_filter[5]=z_y_filter[4]; z_y_filter[4]=z_y_filter[3];
JohanBeverini 3:4c1180a712e3 217 //z_y_filter[3]=z_y_filter[2];
JohanBeverini 3:4c1180a712e3 218 z_y_filter[2]=z_y_filter[1]; z_y_filter[1]=z_y_filter[0];
JohanBeverini 3:4c1180a712e3 219 z_y_filter[0]=b_coef[0]*z_x_filter[0]+b_coef[1]*z_x_filter[1]+b_coef[2]*z_x_filter[2] //+b_coef[3]*z_x_filter[3] //+b_coef[4]*z_x_filter[4]+b_coef[5]*z_x_filter[5]+b_coef[6]*z_x_filter[6]
JohanBeverini 3:4c1180a712e3 220 -(a_coef[1]*z_y_filter[1]+a_coef[2]*z_y_filter[2]); //+a_coef[3]*z_y_filter[3]); //+a_coef[4]*z_y_filter[4]+a_coef[5]*z_y_filter[5]+a_coef[6]*z_y_filter[6]);
JohanBeverini 3:4c1180a712e3 221 gz_filtre=z_y_filter[0];
JohanBeverini 3:4c1180a712e3 222
JohanBeverini 3:4c1180a712e3 223 ////////filtre PB 100Hz / PH 1Hz
JohanBeverini 3:4c1180a712e3 224 //x_x_filter[6]=x_x_filter[5]; x_x_filter[5]=x_x_filter[4]; x_x_filter[4]=x_x_filter[3];
JohanBeverini 3:4c1180a712e3 225 //x_x_filter_ph[3]=x_x_filter_ph[2];
JohanBeverini 3:4c1180a712e3 226 x_x_filter_ph[2]=x_x_filter_ph[1]; x_x_filter_ph[1]=x_x_filter_ph[0];
JohanBeverini 3:4c1180a712e3 227 x_x_filter_ph[0]=gx_filtre;
JohanBeverini 3:4c1180a712e3 228 //x_y_filter[6]=x_y_filter[5]; x_y_filter[5]=x_y_filter[4]; x_y_filter[4]=x_y_filter[3];
JohanBeverini 3:4c1180a712e3 229 //x_y_filter_ph[3]=x_y_filter_ph[2];
JohanBeverini 3:4c1180a712e3 230 x_y_filter_ph[2]=x_y_filter_ph[1]; x_y_filter_ph[1]=x_y_filter_ph[0];
JohanBeverini 3:4c1180a712e3 231 x_y_filter_ph[0]=b_coef_ph[0]*x_x_filter_ph[0]+b_coef_ph[1]*x_x_filter_ph[1]+b_coef_ph[2]*x_x_filter_ph[2] //+b_coef_ph[3]*x_x_filter_ph[3] //+b_coef[4]*x_x_filter[4]+b_coef[5]*x_x_filter[5]+b_coef[6]*x_x_filter[6]
JohanBeverini 3:4c1180a712e3 232 -(a_coef_ph[1]*x_y_filter_ph[1]+a_coef_ph[2]*x_y_filter_ph[2]); //+a_coef_ph[3]*x_y_filter_ph[3]); //+a_coef[4]*x_y_filter[4]+a_coef[5]*x_y_filter[5]+a_coef[6]*x_y_filter[6]);
JohanBeverini 3:4c1180a712e3 233 gx_filtre=x_y_filter_ph[0];
JohanBeverini 3:4c1180a712e3 234
JohanBeverini 3:4c1180a712e3 235 //y_x_filter[6]=y_x_filter[5]; y_x_filter[5]=y_x_filter[4]; y_x_filter[4]=y_x_filter[3];
JohanBeverini 3:4c1180a712e3 236 //y_x_filter_ph[3]=y_x_filter_ph[2];
JohanBeverini 3:4c1180a712e3 237 y_x_filter_ph[2]=y_x_filter_ph[1]; y_x_filter_ph[1]=y_x_filter_ph[0];
JohanBeverini 3:4c1180a712e3 238 y_x_filter_ph[0]=gy_filtre;
JohanBeverini 3:4c1180a712e3 239 //y_y_filter[6]=y_y_filter[5]; y_y_filter[5]=y_y_filter[4]; y_y_filter[4]=y_y_filter[3];
JohanBeverini 3:4c1180a712e3 240 //y_y_filter_ph[3]=y_y_filter_ph[2];
JohanBeverini 3:4c1180a712e3 241 y_y_filter_ph[2]=y_y_filter_ph[1]; y_y_filter_ph[1]=y_y_filter_ph[0];
JohanBeverini 3:4c1180a712e3 242 y_y_filter_ph[0]=b_coef_ph[0]*y_x_filter_ph[0]+b_coef_ph[1]*y_x_filter_ph[1]+b_coef_ph[2]*y_x_filter_ph[2] //+b_coef_ph[3]*y_x_filter_ph[3] //+b_coef[4]*y_x_filter[4]+b_coef[5]*y_x_filter[5]+b_coef[6]*y_x_filter[6]
JohanBeverini 3:4c1180a712e3 243 -(a_coef_ph[1]*y_y_filter_ph[1]+a_coef_ph[2]*y_y_filter_ph[2]); //+a_coef_ph[3]*y_y_filter_ph[3]); //+a_coef[4]*y_y_filter[4]+a_coef[5]*y_y_filter[5]+a_coef[6]*y_y_filter[6]);
JohanBeverini 3:4c1180a712e3 244 gy_filtre=y_y_filter_ph[0];
JohanBeverini 3:4c1180a712e3 245
JohanBeverini 3:4c1180a712e3 246 //z_x_filter[6]=z_x_filter[5]; z_x_filter[5]=z_x_filter[4]; z_x_filter[4]=z_x_filter[3];
JohanBeverini 3:4c1180a712e3 247 //z_x_filter_ph[3]=z_x_filter_ph[2];
JohanBeverini 3:4c1180a712e3 248 z_x_filter_ph[2]=z_x_filter_ph[1]; z_x_filter_ph[1]=z_x_filter_ph[0];
JohanBeverini 3:4c1180a712e3 249 z_x_filter_ph[0]=gz_filtre;
JohanBeverini 3:4c1180a712e3 250 //z_y_filter[6]=z_y_filter[5]; z_y_filter[5]=z_y_filter[4]; z_y_filter[4]=z_y_filter[3];
JohanBeverini 3:4c1180a712e3 251 //z_y_filter_ph[3]=z_y_filter_ph[2];
JohanBeverini 3:4c1180a712e3 252 z_y_filter_ph[2]=z_y_filter_ph[1]; z_y_filter_ph[1]=z_y_filter_ph[0];
JohanBeverini 3:4c1180a712e3 253 z_y_filter_ph[0]=b_coef_ph[0]*z_x_filter_ph[0]+b_coef_ph[1]*z_x_filter_ph[1]+b_coef_ph[2]*z_x_filter_ph[2] //+b_coef_ph[3]*z_x_filter_ph[3] //+b_coef[4]*z_x_filter[4]+b_coef[5]*z_x_filter[5]+b_coef[6]*z_x_filter[6]
JohanBeverini 3:4c1180a712e3 254 -(a_coef_ph[1]*z_y_filter_ph[1]+a_coef_ph[2]*z_y_filter_ph[2]); //+a_coef_ph[3]*z_y_filter_ph[3]); //+a_coef[4]*z_y_filter[4]+a_coef[5]*z_y_filter[5]+a_coef[6]*z_y_filter[6]);
JohanBeverini 3:4c1180a712e3 255 gz_filtre=z_y_filter_ph[0];
JohanBeverini 3:4c1180a712e3 256
JohanBeverini 3:4c1180a712e3 257
JohanBeverini 3:4c1180a712e3 258 trapeze_x=deltat*((gx_filtre+gx_filtre2)/2.0f);
JohanBeverini 3:4c1180a712e3 259 trapeze_y=deltat*((gy_filtre+gy_filtre2)/2.0f);
JohanBeverini 3:4c1180a712e3 260 trapeze_z=deltat*((gz_filtre+gz_filtre2)/2.0f);
JohanBeverini 3:4c1180a712e3 261
JohanBeverini 3:4c1180a712e3 262 gx_filtre2=gx_filtre;
JohanBeverini 3:4c1180a712e3 263 gy_filtre2=gy_filtre;
JohanBeverini 3:4c1180a712e3 264 gz_filtre2=gz_filtre;
JohanBeverini 3:4c1180a712e3 265
JohanBeverini 3:4c1180a712e3 266 //calcule angle
JohanBeverini 3:4c1180a712e3 267 alpha+=trapeze_x;
JohanBeverini 3:4c1180a712e3 268 betaa+=trapeze_y;
JohanBeverini 3:4c1180a712e3 269 gammaa+=trapeze_z;
JohanBeverini 3:4c1180a712e3 270
JohanBeverini 3:4c1180a712e3 271 if(alpha>=360.0f){alpha-=360.0f;}
JohanBeverini 3:4c1180a712e3 272 if(alpha<=-360.0f){alpha+=360.0f;}
JohanBeverini 3:4c1180a712e3 273 if(betaa>=360.0f){betaa-=360.0f;}
JohanBeverini 3:4c1180a712e3 274 if(betaa<=-360.0f){betaa+=360.0f;}
JohanBeverini 3:4c1180a712e3 275 if(gammaa>=360.0f){gammaa-=360.0f;}
JohanBeverini 3:4c1180a712e3 276 if(gammaa<=-360.0f){gammaa+=360.0f;}
JohanBeverini 3:4c1180a712e3 277
JohanBeverini 3:4c1180a712e3 278 ANA1.write((alpha+500.0f)/1000.0f);
JohanBeverini 3:4c1180a712e3 279 //ANA2.write(alpha/360.0f);
onehorse 0:65aa78c10981 280
onehorse 0:65aa78c10981 281 // Serial print and/or display at 0.5 s rate independent of data rates
onehorse 0:65aa78c10981 282 delt_t = t.read_ms() - count;
JohanBeverini 3:4c1180a712e3 283 if (delt_t > 100) { // update LCD once per half-second independent of read rate
onehorse 1:cea9d83b8636 284
onehorse 1:cea9d83b8636 285 pc.printf("ax = %f", 1000*ax);
onehorse 1:cea9d83b8636 286 pc.printf(" ay = %f", 1000*ay);
onehorse 1:cea9d83b8636 287 pc.printf(" az = %f mg\n\r", 1000*az);
onehorse 0:65aa78c10981 288
onehorse 1:cea9d83b8636 289 pc.printf("gx = %f", gx);
onehorse 1:cea9d83b8636 290 pc.printf(" gy = %f", gy);
onehorse 1:cea9d83b8636 291 pc.printf(" gz = %f deg/s\n\r", gz);
onehorse 1:cea9d83b8636 292
JohanBeverini 3:4c1180a712e3 293 // pc.printf("post filtre : gx = %f", gx_filtre2);
JohanBeverini 3:4c1180a712e3 294 // pc.printf(" gy = %f", gy_filtre2);
JohanBeverini 3:4c1180a712e3 295 // pc.printf(" gz = %f deg/s\n\r", gz_filtre2);
JohanBeverini 3:4c1180a712e3 296
onehorse 1:cea9d83b8636 297 pc.printf(" temperature = %f C\n\r", temperature);
onehorse 0:65aa78c10981 298
JohanBeverini 3:4c1180a712e3 299 // pc.printf("q0 = %f\n\r", q[0]);
JohanBeverini 3:4c1180a712e3 300 // pc.printf("q1 = %f\n\r", q[1]);
JohanBeverini 3:4c1180a712e3 301 // pc.printf("q2 = %f\n\r", q[2]);
JohanBeverini 3:4c1180a712e3 302 // pc.printf("q3 = %f\n\r", q[3]);
onehorse 1:cea9d83b8636 303
JohanBeverini 3:4c1180a712e3 304 //lcd.clear();
JohanBeverini 3:4c1180a712e3 305 //lcd.printString("MPU6050", 0, 0);
JohanBeverini 3:4c1180a712e3 306 //lcd.printString("x y z", 0, 1);
JohanBeverini 3:4c1180a712e3 307 //lcd.setXYAddress(0, 2); lcd.printChar((char)(1000*ax));
JohanBeverini 3:4c1180a712e3 308 //lcd.setXYAddress(20, 2); lcd.printChar((char)(1000*ay));
JohanBeverini 3:4c1180a712e3 309 //lcd.setXYAddress(40, 2); lcd.printChar((char)(1000*az)); lcd.printString("mg", 66, 2);
onehorse 1:cea9d83b8636 310
onehorse 0:65aa78c10981 311
onehorse 0:65aa78c10981 312 // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
onehorse 0:65aa78c10981 313 // In this coordinate system, the positive z-axis is down toward Earth.
onehorse 0:65aa78c10981 314 // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
onehorse 0:65aa78c10981 315 // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
onehorse 0:65aa78c10981 316 // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
onehorse 0:65aa78c10981 317 // These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
onehorse 0:65aa78c10981 318 // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
onehorse 0:65aa78c10981 319 // applied in the correct order which for this configuration is yaw, pitch, and then roll.
onehorse 0:65aa78c10981 320 // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
JohanBeverini 3:4c1180a712e3 321 //yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);
JohanBeverini 3:4c1180a712e3 322 //pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
JohanBeverini 3:4c1180a712e3 323 //roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
JohanBeverini 3:4c1180a712e3 324 //pitch *= 180.0f / PI;
JohanBeverini 3:4c1180a712e3 325 //yaw *= 180.0f / PI;
JohanBeverini 3:4c1180a712e3 326 //roll *= 180.0f / PI;
onehorse 0:65aa78c10981 327
onehorse 1:cea9d83b8636 328 // pc.printf("Yaw, Pitch, Roll: \n\r");
onehorse 1:cea9d83b8636 329 // pc.printf("%f", yaw);
onehorse 1:cea9d83b8636 330 // pc.printf(", ");
onehorse 1:cea9d83b8636 331 // pc.printf("%f", pitch);
onehorse 1:cea9d83b8636 332 // pc.printf(", ");
onehorse 1:cea9d83b8636 333 // pc.printf("%f\n\r", roll);
onehorse 1:cea9d83b8636 334 // pc.printf("average rate = "); pc.printf("%f", (sumCount/sum)); pc.printf(" Hz\n\r");
onehorse 0:65aa78c10981 335
JohanBeverini 3:4c1180a712e3 336 //pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll);
JohanBeverini 3:4c1180a712e3 337 //pc.printf("average rate = %f\n\r", (float) sumCount/sum);
JohanBeverini 3:4c1180a712e3 338
JohanBeverini 3:4c1180a712e3 339 //BT.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll);
JohanBeverini 3:4c1180a712e3 340 //BT.printf("average rate = %f\n\r", (float) sumCount/sum);
JohanBeverini 3:4c1180a712e3 341
JohanBeverini 3:4c1180a712e3 342 //alpha=yaw;
JohanBeverini 3:4c1180a712e3 343 //betaa=pitch;
JohanBeverini 3:4c1180a712e3 344 //gammaa=roll;
JohanBeverini 3:4c1180a712e3 345
JohanBeverini 3:4c1180a712e3 346 pc.printf("delta = %f\n\r", (float) deltat);
JohanBeverini 3:4c1180a712e3 347 // pc.printf("alpha, beta, gamma: %f %f %f\n\r", alpha, betaa, gammaa);
JohanBeverini 3:4c1180a712e3 348
JohanBeverini 3:4c1180a712e3 349 axx=ax;
JohanBeverini 3:4c1180a712e3 350 ayy=ay;
JohanBeverini 3:4c1180a712e3 351 azz=az;
JohanBeverini 3:4c1180a712e3 352
JohanBeverini 3:4c1180a712e3 353 ////////////////////////////////////////////////////////Matrice d'Euler();
JohanBeverini 3:4c1180a712e3 354 c = cos(alpha*PI/180.0f); s = sin(alpha*PI/180.0f);
JohanBeverini 3:4c1180a712e3 355 a = cos(betaa*PI/180.0f); b = sin(betaa*PI/180.0f);
JohanBeverini 3:4c1180a712e3 356 d = cos(gammaa*PI/180.0f); e = sin(gammaa*PI/180.0f);
JohanBeverini 3:4c1180a712e3 357
JohanBeverini 3:4c1180a712e3 358 matrice[0][0] = e*a - e*c*b;
JohanBeverini 3:4c1180a712e3 359 matrice[0][1] = (-d)*b - e*c*a;
JohanBeverini 3:4c1180a712e3 360 matrice[0][2] = e*s;
JohanBeverini 3:4c1180a712e3 361 matrice[1][0] = e*a + d*c*b;
JohanBeverini 3:4c1180a712e3 362 matrice[1][1] = (-e)*b + d*c*a;
JohanBeverini 3:4c1180a712e3 363 matrice[1][2] = (-d)*s;
JohanBeverini 3:4c1180a712e3 364 matrice[2][0] = s*b;
JohanBeverini 3:4c1180a712e3 365 matrice[2][1] = s*a;
JohanBeverini 3:4c1180a712e3 366 matrice[2][2] = c;
JohanBeverini 3:4c1180a712e3 367
JohanBeverini 3:4c1180a712e3 368 for(i=0; i<3; i++)
JohanBeverini 3:4c1180a712e3 369 {
JohanBeverini 3:4c1180a712e3 370 float temp = 0;
JohanBeverini 3:4c1180a712e3 371 temp = axx * matrice[i][0] + ayy * matrice[i][1] + azz * matrice[i][2];
JohanBeverini 3:4c1180a712e3 372 resultat[i] = temp;
JohanBeverini 3:4c1180a712e3 373 }
JohanBeverini 3:4c1180a712e3 374 //////////////////////////////////////////////////////////
JohanBeverini 3:4c1180a712e3 375
JohanBeverini 3:4c1180a712e3 376 // if (first==true){
JohanBeverini 3:4c1180a712e3 377 // poid[0]=resultat[0];
JohanBeverini 3:4c1180a712e3 378 // poid[1]=resultat[1];
JohanBeverini 3:4c1180a712e3 379 // poid[2]=resultat[2];
JohanBeverini 3:4c1180a712e3 380 // first=false;
JohanBeverini 3:4c1180a712e3 381 // } else {
JohanBeverini 3:4c1180a712e3 382 // resultat[0]-=poid[0];
JohanBeverini 3:4c1180a712e3 383 // resultat[1]-=poid[1];
JohanBeverini 3:4c1180a712e3 384 // resultat[2]-=poid[2];
JohanBeverini 3:4c1180a712e3 385 // }
JohanBeverini 3:4c1180a712e3 386
JohanBeverini 3:4c1180a712e3 387 // pc.printf("acceleration sans Euler : %f ; %f ; %f\n\r", axx, ayy, azz);
JohanBeverini 3:4c1180a712e3 388 // pc.printf("acceleration avec Euler : %f ; %f ; %f\n\r", resultat[0], resultat[1], resultat[2]);
JohanBeverini 3:4c1180a712e3 389 BT.printf("acceleration sans Euler : %f ; %f ; %f\n\r", axx, ayy, azz);
JohanBeverini 3:4c1180a712e3 390 BT.printf("acceleration avec Euler : %f ; %f ; %f\n\r", resultat[0], resultat[1], resultat[2]);
JohanBeverini 3:4c1180a712e3 391
onehorse 1:cea9d83b8636 392
onehorse 1:cea9d83b8636 393 myled= !myled;
onehorse 1:cea9d83b8636 394 count = t.read_ms();
onehorse 1:cea9d83b8636 395 sum = 0;
onehorse 1:cea9d83b8636 396 sumCount = 0;
onehorse 0:65aa78c10981 397 }
onehorse 0:65aa78c10981 398 }
JohanBeverini 3:4c1180a712e3 399 if (BT.readable()) {
JohanBeverini 3:4c1180a712e3 400 char c = BT.getc();
JohanBeverini 3:4c1180a712e3 401 if(c == 'a') {
JohanBeverini 3:4c1180a712e3 402 BT.printf("\nOK\n");
JohanBeverini 3:4c1180a712e3 403 }
JohanBeverini 3:4c1180a712e3 404 }
JohanBeverini 3:4c1180a712e3 405 }
onehorse 1:cea9d83b8636 406
JohanBeverini 3:4c1180a712e3 407 }
JohanBeverini 3:4c1180a712e3 408
JohanBeverini 3:4c1180a712e3 409
JohanBeverini 3:4c1180a712e3 410