Chen Wei Ting
/
LSM9DS1_project_5_zerotorque
zero torque and encoder
LSM9DS1.cpp
- Committer:
- JJting
- Date:
- 2018-08-14
- Revision:
- 8:9c3b291b3288
- Parent:
- 0:c23e915f255b
File content as of revision 8:9c3b291b3288:
#include "LSM9DS1.h" LSM9DS1::LSM9DS1(PinName sda, PinName scl, uint8_t xgAddr, uint8_t mAddr) : i2c(sda, scl) { // xgAddress and mAddress will store the 7-bit I2C address, if using I2C. xgAddress = xgAddr; mAddress = mAddr; } uint16_t LSM9DS1::begin(gyro_scale gScl, accel_scale aScl, mag_scale mScl, gyro_odr gODR, accel_odr aODR, mag_odr mODR) { // Store the given scales in class variables. These scale variables // are used throughout to calculate the actual g's, DPS,and Gs's. gScale = gScl; aScale = aScl; mScale = mScl; // Once we have the scale values, we can calculate the resolution // of each sensor. That's what these functions are for. One for each sensor calcgRes(); // Calculate DPS / ADC tick, stored in gRes variable calcmRes(); // Calculate Gs / ADC tick, stored in mRes variable calcaRes(); // Calculate g / ADC tick, stored in aRes variable // To verify communication, we can read from the WHO_AM_I register of // each device. Store those in a variable so we can return them. // The start of the addresses we want to read from char cmd[2] = { WHO_AM_I_XG, 0 }; // Write the address we are going to read from and don't end the transaction i2c.write(xgAddress, cmd, 1, true); // Read in all the 8 bits of data i2c.read(xgAddress, cmd+1, 1); uint8_t xgTest = cmd[1]; // Read the accel/gyro WHO_AM_I // Reset to the address of the mag who am i cmd[1] = WHO_AM_I_M; // Write the address we are going to read from and don't end the transaction i2c.write(mAddress, cmd, 1, true); // Read in all the 8 bits of data i2c.read(mAddress, cmd+1, 1); uint8_t mTest = cmd[1]; // Read the mag WHO_AM_I // Gyro initialization stuff: initGyro(); // This will "turn on" the gyro. Setting up interrupts, etc. setGyroODR(gODR); // Set the gyro output data rate and bandwidth. setGyroScale(gScale); // Set the gyro range // Accelerometer initialization stuff: initAccel(); // "Turn on" all axes of the accel. Set up interrupts, etc. setAccelODR(aODR); // Set the accel data rate. setAccelScale(aScale); // Set the accel range. // Magnetometer initialization stuff: initMag(); // "Turn on" all axes of the mag. Set up interrupts, etc. setMagODR(mODR); // Set the magnetometer output data rate. setMagScale(mScale); // Set the magnetometer's range. // Once everything is initialized, return the WHO_AM_I registers we read: return (xgTest << 8) | mTest; } void LSM9DS1::initGyro() { char cmd[4] = { CTRL_REG1_G, gScale | G_ODR_119_BW_14, 0, // Default data out and int out 0 // Default power mode and high pass settings }; // Write the data to the gyro control registers i2c.write(xgAddress, cmd, 4); } void LSM9DS1::initAccel() { char cmd[4] = { CTRL_REG5_XL, 0x38, // Enable all axis and don't decimate data in out Registers (A_ODR_119 << 5) | (aScale << 3) | (A_BW_AUTO_SCALE), // 119 Hz ODR, set scale, and auto BW 0 // Default resolution mode and filtering settings }; // Write the data to the accel control registers i2c.write(xgAddress, cmd, 4); } void LSM9DS1::initMag() { char cmd[4] = { CTRL_REG1_M, 0x10, // Default data rate, xy axes mode, and temp comp mScale << 5, // Set mag scale 0 // Enable I2C, write only SPI, not LP mode, Continuous conversion mode }; // Write the data to the mag control registers i2c.write(mAddress, cmd, 4); } void LSM9DS1::readAccel() { // The data we are going to read from the accel char data[6]; // The start of the addresses we want to read from char subAddress = OUT_X_L_XL; // Write the address we are going to read from and don't end the transaction i2c.write(xgAddress, &subAddress, 1, true); // Read in all 8 bit registers containing the axes data i2c.read(xgAddress, data, 6); // Reassemble the data and convert to g ax_raw = data[0] | (data[1] << 8); ay_raw = data[2] | (data[3] << 8); az_raw = data[4] | (data[5] << 8); ax = ax_raw * aRes; ay = ay_raw * aRes; az = az_raw * aRes; } void LSM9DS1::readMag() { // The data we are going to read from the mag char data[6]; // The start of the addresses we want to read from char subAddress = OUT_X_L_M; // Write the address we are going to read from and don't end the transaction i2c.write(mAddress, &subAddress, 1, true); // Read in all 8 bit registers containing the axes data i2c.read(mAddress, data, 6); // Reassemble the data and convert to degrees mx_raw = data[0] | (data[1] << 8); my_raw = data[2] | (data[3] << 8); mz_raw = data[4] | (data[5] << 8); mx = mx_raw * mRes; my = my_raw * mRes; mz = mz_raw * mRes; } void LSM9DS1::readTemp() { // The data we are going to read from the temp char data[2]; // The start of the addresses we want to read from char subAddress = OUT_TEMP_L; // Write the address we are going to read from and don't end the transaction i2c.write(xgAddress, &subAddress, 1, true); // Read in all 8 bit registers containing the axes data i2c.read(xgAddress, data, 2); // Temperature is a 12-bit signed integer temperature_raw = data[0] | (data[1] << 8); temperature_c = (float)temperature_raw / 8.0 + 25; temperature_f = temperature_c * 1.8 + 32; } void LSM9DS1::readGyro() { // The data we are going to read from the gyro char data[6]; // The start of the addresses we want to read from char subAddress = OUT_X_L_G; // Write the address we are going to read from and don't end the transaction i2c.write(xgAddress, &subAddress, 1, true); // Read in all 8 bit registers containing the axes data i2c.read(xgAddress, data, 6); // Reassemble the data and convert to degrees/sec gx_raw = data[0] | (data[1] << 8); gy_raw = data[2] | (data[3] << 8); gz_raw = data[4] | (data[5] << 8); gx = gx_raw * gRes; gy = gy_raw * gRes; gz = gz_raw * gRes; } void LSM9DS1::setGyroScale(gyro_scale gScl) { // The start of the addresses we want to read from char cmd[2] = { CTRL_REG1_G, 0 }; // Write the address we are going to read from and don't end the transaction i2c.write(xgAddress, cmd, 1, true); // Read in all the 8 bits of data i2c.read(xgAddress, cmd+1, 1); // Then mask out the gyro scale bits: cmd[1] &= 0xFF^(0x3 << 3); // Then shift in our new scale bits: cmd[1] |= gScl << 3; // Write the gyroscale out to the gyro i2c.write(xgAddress, cmd, 2); // We've updated the sensor, but we also need to update our class variables // First update gScale: gScale = gScl; // Then calculate a new gRes, which relies on gScale being set correctly: calcgRes(); } void LSM9DS1::setAccelScale(accel_scale aScl) { // The start of the addresses we want to read from char cmd[2] = { CTRL_REG6_XL, 0 }; // Write the address we are going to read from and don't end the transaction i2c.write(xgAddress, cmd, 1, true); // Read in all the 8 bits of data i2c.read(xgAddress, cmd+1, 1); // Then mask out the accel scale bits: cmd[1] &= 0xFF^(0x3 << 3); // Then shift in our new scale bits: cmd[1] |= aScl << 3; // Write the accelscale out to the accel i2c.write(xgAddress, cmd, 2); // We've updated the sensor, but we also need to update our class variables // First update aScale: aScale = aScl; // Then calculate a new aRes, which relies on aScale being set correctly: calcaRes(); } void LSM9DS1::setMagScale(mag_scale mScl) { // The start of the addresses we want to read from char cmd[2] = { CTRL_REG2_M, 0 }; // Write the address we are going to read from and don't end the transaction i2c.write(mAddress, cmd, 1, true); // Read in all the 8 bits of data i2c.read(mAddress, cmd+1, 1); // Then mask out the mag scale bits: cmd[1] &= 0xFF^(0x3 << 5); // Then shift in our new scale bits: cmd[1] |= mScl << 5; // Write the magscale out to the mag i2c.write(mAddress, cmd, 2); // We've updated the sensor, but we also need to update our class variables // First update mScale: mScale = mScl; // Then calculate a new mRes, which relies on mScale being set correctly: calcmRes(); } void LSM9DS1::setGyroODR(gyro_odr gRate) { // The start of the addresses we want to read from char cmd[2] = { CTRL_REG1_G, 0 }; // Write the address we are going to read from and don't end the transaction i2c.write(xgAddress, cmd, 1, true); // Read in all the 8 bits of data i2c.read(xgAddress, cmd+1, 1); // Then mask out the gyro odr bits: cmd[1] &= (0x3 << 3); // Then shift in our new odr bits: cmd[1] |= gRate; // Write the gyroodr out to the gyro i2c.write(xgAddress, cmd, 2); } void LSM9DS1::setAccelODR(accel_odr aRate) { // The start of the addresses we want to read from char cmd[2] = { CTRL_REG6_XL, 0 }; // Write the address we are going to read from and don't end the transaction i2c.write(xgAddress, cmd, 1, true); // Read in all the 8 bits of data i2c.read(xgAddress, cmd+1, 1); // Then mask out the accel odr bits: cmd[1] &= 0xFF^(0x7 << 5); // Then shift in our new odr bits: cmd[1] |= aRate << 5; // Write the accelodr out to the accel i2c.write(xgAddress, cmd, 2); } void LSM9DS1::setMagODR(mag_odr mRate) { // The start of the addresses we want to read from char cmd[2] = { CTRL_REG1_M, 0 }; // Write the address we are going to read from and don't end the transaction i2c.write(mAddress, cmd, 1, true); // Read in all the 8 bits of data i2c.read(mAddress, cmd+1, 1); // Then mask out the mag odr bits: cmd[1] &= 0xFF^(0x7 << 2); // Then shift in our new odr bits: cmd[1] |= mRate << 2; // Write the magodr out to the mag i2c.write(mAddress, cmd, 2); } void LSM9DS1::calcgRes() { // Possible gyro scales (and their register bit settings) are: // 245 DPS (00), 500 DPS (01), 2000 DPS (10). switch (gScale) { case G_SCALE_245DPS: gRes = 245.0 / 32768.0; break; case G_SCALE_500DPS: gRes = 500.0 / 32768.0; break; case G_SCALE_2000DPS: gRes = 2000.0 / 32768.0; break; } } void LSM9DS1::calcaRes() { // Possible accelerometer scales (and their register bit settings) are: // 2 g (000), 4g (001), 6g (010) 8g (011), 16g (100). switch (aScale) { case A_SCALE_2G: aRes = 2.0 / 32768.0; break; case A_SCALE_4G: aRes = 4.0 / 32768.0; break; case A_SCALE_8G: aRes = 8.0 / 32768.0; break; case A_SCALE_16G: aRes = 16.0 / 32768.0; break; } } void LSM9DS1::calcmRes() { // Possible magnetometer scales (and their register bit settings) are: // 2 Gs (00), 4 Gs (01), 8 Gs (10) 12 Gs (11). switch (mScale) { case M_SCALE_4GS: mRes = 4.0 / 32768.0; break; case M_SCALE_8GS: mRes = 8.0 / 32768.0; break; case M_SCALE_12GS: mRes = 12.0 / 32768.0; break; case M_SCALE_16GS: mRes = 16.0 / 32768.0; break; } }