Chen Wei Ting
/
LSM9DS1_project_5_zerotorque
zero torque and encoder
main.cpp
- Committer:
- JJting
- Date:
- 2018-08-10
- Revision:
- 5:4dbed091ec5a
- Parent:
- 4:f19e7669d1b5
- Child:
- 6:f48c51662e27
File content as of revision 5:4dbed091ec5a:
#include "mbed.h" #include "encoder.h" #include "Mx28.h" #include "PID.h" #include "LSM9DS1.h" //********************* Dynamxiel ****************************** #define SERVO_ID 0x01 // ID of which we will set Dynamixel too #define SERVO_ControlPin A2 // Control pin of buffer chip, NOTE: this does not matter becasue we are not using a half to full contorl buffer. #define SERVO_SET_Baudrate 1000000 // Baud rate speed which the Dynamixel will be set too (1Mbps) #define TxPin A0 #define RxPin A1 #define CW_LIMIT_ANGLE 1 // lowest clockwise angle is 1, as when set to 0 it set servo to wheel mode #define CCW_LIMIT_ANGLE 4095 // Highest anit-clockwise angle is 0XFFF, as when set to 0 it set servo to wheel mode #define _PI 3.14159265f //*************************************************************** Serial uart(USBTX, USBRX); //Serial uart(D10,D2); // TX : D10 RX : D2 // blueteeth DigitalOut LED(A4); // check if the code is running DigitalOut led2(A5); // check if the code is running interrupt uint8_t led2f; AnalogIn EMG(PC_4); DigitalOut test(PC_8); //AnalogOut test2(PA_5); // IMU LSM9DS1 imu(D14, D15); //SDA SCL LSM9DS1 imu2(PC_9, D7); //SDA SCL void init_IMU(); int16_t Gyro_axis_data[6] = {0}; // X, Y, Z axis int16_t Acce_axis_data[6] = {0}; // X, Y, Z axis float Acce_axis_data_f[6] = {0}; float Acce_axis_data_f_old[6] = {0}; float Gyro_axis_data_f[6] = {0}; float Gyro_axis_data_f_old[6] = {0}; // Timer Ticker timer1; float ITR_time1 = 6000.0; // unit:us float Ts = ITR_time1/1000000; uint8_t flag; // EMG float lpf(float input, float output_old, float frequency); float emg_value; float emg_value_f; float emg_value_f_old; float Tf = ITR_time1*0.000001f; // uart_tx union splitter { short j; char C[2]; // C[0] is lowbyte of j, C[1] is highbyte of j }; char T[16] = {255,255,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; int i = 0; // PID PID motor_pid(5, 0, 0, Ts);// 6.4 0.13 7.2 0.13 4.8, 0.568, 0.142 float PIDout = 0.0f; // Dynamixel DynamixelClass dynamixelClass(SERVO_SET_Baudrate,SERVO_ControlPin,TxPin,RxPin); int servo_cmd; int row_cmd; int D_angle = 0; int D_angle_dif = 0; int D_Angle; int D_angle_old; unsigned short d = 0; // Find Torque double _angle_difference = 0.0; double torque_measured = 0.0; float ks = 2.6393*2; //spring constant //int angle_dif = 0; float torque_ref = 0; //float friction = 0.0f; float friction = 0.0f; float rate = 0.8; //float friction = 0.0f; //float check = 0.0f; float Angle_Dif; short rotation_; // function void init_UART(); void init_TIMER(); void timer1_ITR(); void uart_tx(); void init_DYNAMIXEL(); void D_angle_measure(); void find_torque(); int main() { LED = 1; // darken wait_ms(500); // initial sensor init_SPI_encoder(); init_encoder(); init_IMU(); init_DYNAMIXEL(); // initial uart init_UART(); wait_ms(500); led2 = 1; // led2f = 0; LED = 0; // lighten init_TIMER(); while(1) { } } void init_IMU() { imu.begin(); imu2.begin(); } void init_DYNAMIXEL() { // dynamixelClass.torqueMode(SERVO_ID, 0); dynamixelClass.setMode(SERVO_ID, WHEEL, 0, 0); // dynamixelClass.setPID(SERVO_ID, 1, 0, 0); wait_ms(1); } void init_UART() { uart.baud(115200); } void init_TIMER() { timer1.attach_us(&timer1_ITR, ITR_time1); } void timer1_ITR() { test = 1; led2 = !led2; angle_measure(); D_angle_measure(); find_torque(); motor_pid.Compute(torque_ref, torque_measured); PIDout = motor_pid.output; servo_cmd = -PIDout*22.73f; // 1023/45rpm = 22.73 if (servo_cmd > 0) { // servo_cmd = servo_cmd + ((-torque_ref)*rate+friction)*22.73f; servo_cmd = servo_cmd; rotation_ = 0;// 0:Move Left if (servo_cmd >= 1023) servo_cmd = 1023; } else { // servo_cmd = -servo_cmd + 1024 + ((torque_ref)*rate+friction)*22.73f; // servo_cmd = -servo_cmd+1024; servo_cmd = -servo_cmd; rotation_ = 1;// 1:Move Right // if (servo_cmd >= 2047) // servo_cmd = 2047; if (servo_cmd >= 1023) servo_cmd = 1023; } row_cmd = servo_cmd; // if (servo_cmd > 1023) { // row_cmd = -(servo_cmd-1023); // } else { // row_cmd = servo_cmd; // } // EMG emg_value = EMG.read(); emg_value_f = lpf(emg_value,emg_value_f_old,15); emg_value_f_old = emg_value_f; // // AnalogOut // if (torque_measured*10 > 3.3) { // torque_measured = 0.33; // } else { // test2 = torque_measured*10; // } // IMU // imu.readAccel(); // imu.readGyro(); // imu2.readAccel(); // imu2.readGyro(); /* Acce_axis_data[0] = imu.ax*Acce_gain_x; Acce_axis_data[1] = imu.ay*Acce_gain_y; Acce_axis_data[2] = imu.az*Acce_gain_z; Acce_axis_data[3] = -imu2.ax*Acce_gain_x_2; Acce_axis_data[4] = imu2.az*Acce_gain_y_2; Acce_axis_data[5] = imu2.ay*Acce_gain_z_2; Gyro_axis_data[0] = imu.gx*Gyro_gain_x; Gyro_axis_data[1] = imu.gy*Gyro_gain_y; Gyro_axis_data[2] = imu.gz*Gyro_gain_z; Gyro_axis_data[3] = -imu2.gx*Gyro_gain_x_2; Gyro_axis_data[4] = imu2.gz*Gyro_gain_y_2; Gyro_axis_data[5] = imu2.gy*Gyro_gain_z_2; for(i=0; i<6; i++) { Acce_axis_data_f[i] = lpf(Acce_axis_data[i],Acce_axis_data_f_old[i],15); Acce_axis_data_f_old[i] = Acce_axis_data_f[i]; Gyro_axis_data_f[i] = lpf(Gyro_axis_data[i],Gyro_axis_data_f_old[i],15); Gyro_axis_data_f_old[i] = Gyro_axis_data_f[i]; } */ // dynamixelClass.torque(SERVO_ID, servo_cmd); dynamixelClass.wheel(SERVO_ID, rotation_, servo_cmd); //0~1023 wait_ms(1); uart_tx(); flag = 0; wait_ms(1); test = 0; } void uart_tx() { splitter s1; splitter s2; splitter s3; splitter s4; splitter s5; splitter s6; splitter s7; s1.j = Angle_Dif; s2.j = row_cmd; // s2.j = 1; s3.j = servo_cmd; s4.j = D_Angle; s5.j = D_angle; s6.j = Angle; s7.j = 1; T[2] = s1.C[0]; T[3] = s1.C[1]; T[4] = s2.C[0]; T[5] = s2.C[1]; T[6] = s3.C[0]; T[7] = s3.C[1]; T[8] = s4.C[0]; T[9] = s4.C[1]; T[10] = s5.C[0]; T[11] = s5.C[1]; T[12] = s6.C[0]; T[13] = s6.C[1]; T[14] = s7.C[0]; T[15] = s7.C[1]; while(1) { if (uart.writeable() == 1) { uart.putc(T[i]); i++; } if (i >= sizeof(T)) { i = 0; break; } } } void D_angle_measure() { D_angle = dynamixelClass.readPosition(SERVO_ID); if (d == 0) { D_Angle = 0; D_angle_old = D_angle; d++; } else { D_angle_dif = D_angle - D_angle_old; D_Angle = D_Angle + D_angle_dif; D_angle_old = D_angle; } } void find_torque() { Angle_Dif = (-Angle*3+D_Angle); // _angle_difference = (Angle*3-D_Angle)/4096.0f*2*_PI; _angle_difference = Angle_Dif/4096*2*_PI; // if ((_angle_difference < 0) && (D_angle < 0)) { if (_angle_difference < -99) { _angle_difference = _angle_difference-100.54; } if (_angle_difference > 99) { _angle_difference = _angle_difference-100.54; } torque_measured = _angle_difference*ks; // torque_measured = Angle_Dif; } float lpf(float input, float output_old, float frequency) { float output = 0; output = (output_old + frequency*Tf*input) / (1 + frequency*Tf); return output; }