PI Controller working!
Dependencies: HIDScope MODSERIAL QEI biquadFilter mbed
Fork of prog_pract3_3_feedback by
main.cpp
- Committer:
- GerhardBerman
- Date:
- 2016-10-14
- Revision:
- 0:43160ef59f9f
- Child:
- 1:ace33633653b
File content as of revision 0:43160ef59f9f:
#include "mbed.h" #include <math.h> #include "MODSERIAL.h" #include "QEI.h" #include "HIDScope.h" #include "BiQuad.h" //set pins DigitalIn encoder1A (D13); //Channel A van Encoder 1 DigitalIn encoder1B (D12); //Channel B van Encoder 1 DigitalOut led1 (D11); DigitalOut led2 (D10); AnalogIn potMeter1(A0); AnalogIn potMeter2(A1); DigitalOut motor1DirectionPin(D7); PwmOut motor1MagnitudePin(D6); DigitalIn button1(D5); //set settings Serial pc(USBTX,USBRX); Ticker MeasureTicker, BiQuadTicker, FeedbackTickere;// sampleT, TimeTracker; HIDScope scope(2); //set datatypes int counts; double DerivativeCounts; int countsPrev = 0; float referenceVelocity = 0; double bqcDerivativeCounts = 0; const double PI = 3.141592653589793; double Potmeter1 = potMeter1.read(); double Potmeter2 = potMeter2.read(); const int cw = 1; const int ccw = 0; //define encoder counts and degrees QEI Encoder(D12, D13, NC, 32); // turns on encoder int counts_per_revolution = 4200; const double gear_ratio = 131; const double resolution = counts_per_revolution/(2*PI/gear_ratio); //counts per radian //set BiQuad BiQuadChain bqc; BiQuad bq1(0.0186, 0.0743, 0.1114, 0.0743, 0.0186); //get numbers from butter filter MATLAB BiQuad bq2(1.0000, -1.5704, 1.2756, -0.4844, 0.0762); //set go-Ticker settings volatile bool MeasurePTicker_go=false, PTicker_go=false, MotorControllerTicker_go=false;// TimeTracker_go=false, sampleT_go=false; void MeasurePTicker_act(){MeasurePTicker_go=true;}; // Activates go-flags void PTicker_act(){PTicker_go=true;}; void MotorControllerTicker_act(){MotorControllerTicker_go=true;}; //void TimeTracker_act(){TimeTracker_go=true;}; //void sampleT_act(){sampleT_go=true;}; /* float GetReferenceVelocity() { // Returns reference velocity in rad/s. // Positive value means clockwise rotation. const float maxVelocity = 8.4; // in rad/s of course! if (button1 == 0){ led1=1; led2=0; // Counterclockwise rotation referenceVelocity = potMeterIn * maxVelocity; } else { led1=0; led2=1; // Clockwise rotation referenceVelocity = -1*potMeterIn * maxVelocity; } return referenceVelocity; } float FeedForwardControl(float referenceVelocity) { // very simple linear feed-forward control const float MotorGain=8.4; // unit: (rad/s) / PWM float motorValue = referenceVelocity / MotorGain; return motorValue; } void SetMotor1(float motorValue) { // Given -1<=motorValue<=1, this sets the PWM and direction // bits for motor 1. Positive value makes motor rotating // clockwise. motorValues outside range are truncated to // within range if (motorValue >=0) motor1DirectionPin=1; else motor1DirectionPin=0; if (fabs(motorValue)>1) motor1MagnitudePin = 1; else motor1MagnitudePin = fabs(motorValue); } void MeasureAndControl() { // This function measures the potmeter position, extracts a // reference velocity from it, and controls the motor with // a simple FeedForward controller. Call this from a Ticker. float referenceVelocity = GetReferenceVelocity(); float motorValue = FeedForwardControl(referenceVelocity); SetMotor1(motorValue); } void TimeTrackerF(){ wait(1); float Potmeter = potMeterIn.read(); pc.printf("Reference velocity: %f rad/s \r\n", referenceVelocity); pc.printf("Potmeter: %f rad/s \r\n", Potmeter); //pc.printf("Counts: %i rad/s \r\n", counts); //pc.printf("Derivative Counts: %i rad/s \r\n", DerivativeCounts); } void sample() { int countsPrev = 0; QEI Encoder(D12, D13, NC, 32); counts = Encoder.getPulses(); // gives position //scope.set(0,counts); DerivativeCounts = (counts-countsPrev)/0.001; //scope.set(1,DerivativeCounts); countsPrev = counts; //scope.send(); pc.printf("Counts: %i rad/s \r\n", counts); pc.printf("Derivative Counts: %d rad/s \r\n", DerivativeCounts); } void BiQuadFilter(){ //this function creates a BiQuad filter for the DerivativeCounts //double in=DerivativeCounts(); bqcDerivativeCounts=bqc.step(DerivativeCounts); //return(bqcDerivativeCounts); } */ void MeasureP(){ double ref_position = Potmeter1; //reference position from potmeter int counts = Encoder.getPulses(); // gives position double position = counts/resolution; //position in radians double rotation = ref_position-position; //rotation is 'position error' in radians double movement = rotation/(2*PI); //movement in rotations double Kp = Potmeter2; } double P(double rotation, double Kp){ double P_output = Kp*movement; return P_output; } void MotorController(){ double output = P(rotation, Kp); if(rotation>0){ motor1DirectionPin.write(cw); motor1MagnitudePin.write(output); } if(rotation<0){ motor1DirectionPin.write(ccw); motor1MagnitudePin.write(-output); } } int main() { //Initialize led1=0; led2=0; float Potmeter = potMeterIn.read(); MeasureP.attach(&MeasureP_act, 0.01f); P.attach(&P_act, 0.01f); MotorController.attach(&MotorController_act, 0.01f); pc.baud(115200); QEI Encoder(D12, D13, NC, 32); // turns on encoder //sampleT.attach(&sampleT_act, 0.1f); //pc.printf("Reference velocity: %f rad/s \r\n", referenceVelocity); //pc.printf("Potmeter: %f rad/s \r\n", Potmeter); while(1) { if (MeasureP_go){ MeasureP_go=false; MeasureP(); // Encoder part /* counts = Encoder.getPulses(); // gives position DerivativeCounts = ((double) counts-countsPrev)/0.01; scope.set(0,counts); scope.set(1,DerivativeCounts); //scope.set(1,bqcDerivativeCounts); scope.send(); countsPrev = counts; //pc.printf("Counts: %i rad/s \r\n", counts); //pc.printf("Derivative Counts: %f rad/s \r\n", DerivativeCounts); */ } if (PTicker_go){ PTicker_go=false; P(); } if (MotorControllerTicker_go){ MotorControllerTicker_go=false; MotorController(); /*if (TimeTracker_go){ TimeTracker_go=false; TimeTrackerF(); } if (sampleT_go){ sampleT_go=false; sample(); }*/ } }