PI Controller working!
Dependencies: HIDScope MODSERIAL QEI biquadFilter mbed
Fork of prog_pract3_3_feedback by
Diff: main.cpp
- Revision:
- 0:43160ef59f9f
- Child:
- 1:ace33633653b
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/main.cpp Fri Oct 14 14:18:14 2016 +0000 @@ -0,0 +1,213 @@ +#include "mbed.h" +#include <math.h> +#include "MODSERIAL.h" +#include "QEI.h" +#include "HIDScope.h" +#include "BiQuad.h" + +//set pins +DigitalIn encoder1A (D13); //Channel A van Encoder 1 +DigitalIn encoder1B (D12); //Channel B van Encoder 1 +DigitalOut led1 (D11); +DigitalOut led2 (D10); +AnalogIn potMeter1(A0); +AnalogIn potMeter2(A1); +DigitalOut motor1DirectionPin(D7); +PwmOut motor1MagnitudePin(D6); +DigitalIn button1(D5); + +//set settings +Serial pc(USBTX,USBRX); +Ticker MeasureTicker, BiQuadTicker, FeedbackTickere;// sampleT, TimeTracker; +HIDScope scope(2); + +//set datatypes +int counts; +double DerivativeCounts; +int countsPrev = 0; +float referenceVelocity = 0; +double bqcDerivativeCounts = 0; +const double PI = 3.141592653589793; +double Potmeter1 = potMeter1.read(); +double Potmeter2 = potMeter2.read(); +const int cw = 1; +const int ccw = 0; + +//define encoder counts and degrees +QEI Encoder(D12, D13, NC, 32); // turns on encoder +int counts_per_revolution = 4200; +const double gear_ratio = 131; +const double resolution = counts_per_revolution/(2*PI/gear_ratio); //counts per radian + +//set BiQuad +BiQuadChain bqc; +BiQuad bq1(0.0186, 0.0743, 0.1114, 0.0743, 0.0186); //get numbers from butter filter MATLAB +BiQuad bq2(1.0000, -1.5704, 1.2756, -0.4844, 0.0762); + +//set go-Ticker settings +volatile bool MeasurePTicker_go=false, PTicker_go=false, MotorControllerTicker_go=false;// TimeTracker_go=false, sampleT_go=false; +void MeasurePTicker_act(){MeasurePTicker_go=true;}; // Activates go-flags +void PTicker_act(){PTicker_go=true;}; +void MotorControllerTicker_act(){MotorControllerTicker_go=true;}; +//void TimeTracker_act(){TimeTracker_go=true;}; +//void sampleT_act(){sampleT_go=true;}; + +/* +float GetReferenceVelocity() +{ + // Returns reference velocity in rad/s. + // Positive value means clockwise rotation. + const float maxVelocity = 8.4; // in rad/s of course! + if (button1 == 0){ + led1=1; + led2=0; + // Counterclockwise rotation + referenceVelocity = potMeterIn * maxVelocity; + } + else { + led1=0; + led2=1; + // Clockwise rotation + referenceVelocity = -1*potMeterIn * maxVelocity; + } + return referenceVelocity; +} + +float FeedForwardControl(float referenceVelocity) +{ + // very simple linear feed-forward control + const float MotorGain=8.4; // unit: (rad/s) / PWM + float motorValue = referenceVelocity / MotorGain; + return motorValue; +} + +void SetMotor1(float motorValue) +{ + // Given -1<=motorValue<=1, this sets the PWM and direction + // bits for motor 1. Positive value makes motor rotating + // clockwise. motorValues outside range are truncated to + // within range + if (motorValue >=0) motor1DirectionPin=1; + else motor1DirectionPin=0; + if (fabs(motorValue)>1) motor1MagnitudePin = 1; + else motor1MagnitudePin = fabs(motorValue); +} + +void MeasureAndControl() +{ + // This function measures the potmeter position, extracts a + // reference velocity from it, and controls the motor with + // a simple FeedForward controller. Call this from a Ticker. + float referenceVelocity = GetReferenceVelocity(); + float motorValue = FeedForwardControl(referenceVelocity); + SetMotor1(motorValue); +} + +void TimeTrackerF(){ + wait(1); + float Potmeter = potMeterIn.read(); + pc.printf("Reference velocity: %f rad/s \r\n", referenceVelocity); + pc.printf("Potmeter: %f rad/s \r\n", Potmeter); + //pc.printf("Counts: %i rad/s \r\n", counts); + //pc.printf("Derivative Counts: %i rad/s \r\n", DerivativeCounts); +} + +void sample() +{ + int countsPrev = 0; + QEI Encoder(D12, D13, NC, 32); + counts = Encoder.getPulses(); // gives position + //scope.set(0,counts); + DerivativeCounts = (counts-countsPrev)/0.001; + //scope.set(1,DerivativeCounts); + countsPrev = counts; + //scope.send(); + pc.printf("Counts: %i rad/s \r\n", counts); + pc.printf("Derivative Counts: %d rad/s \r\n", DerivativeCounts); +} + +void BiQuadFilter(){ //this function creates a BiQuad filter for the DerivativeCounts + //double in=DerivativeCounts(); + bqcDerivativeCounts=bqc.step(DerivativeCounts); + //return(bqcDerivativeCounts); + } + */ +void MeasureP(){ + double ref_position = Potmeter1; //reference position from potmeter + int counts = Encoder.getPulses(); // gives position + double position = counts/resolution; //position in radians + double rotation = ref_position-position; //rotation is 'position error' in radians + double movement = rotation/(2*PI); //movement in rotations + double Kp = Potmeter2; + } + +double P(double rotation, double Kp){ + double P_output = Kp*movement; + return P_output; + } + +void MotorController(){ + double output = P(rotation, Kp); + + if(rotation>0){ + motor1DirectionPin.write(cw); + motor1MagnitudePin.write(output); + } + if(rotation<0){ + motor1DirectionPin.write(ccw); + motor1MagnitudePin.write(-output); + } + } + +int main() +{ + //Initialize + led1=0; + led2=0; + float Potmeter = potMeterIn.read(); + MeasureP.attach(&MeasureP_act, 0.01f); + P.attach(&P_act, 0.01f); + MotorController.attach(&MotorController_act, 0.01f); + pc.baud(115200); + QEI Encoder(D12, D13, NC, 32); // turns on encoder + //sampleT.attach(&sampleT_act, 0.1f); + //pc.printf("Reference velocity: %f rad/s \r\n", referenceVelocity); + //pc.printf("Potmeter: %f rad/s \r\n", Potmeter); + + while(1) + { + if (MeasureP_go){ + MeasureP_go=false; + MeasureP(); + // Encoder part + /* + counts = Encoder.getPulses(); // gives position + DerivativeCounts = ((double) counts-countsPrev)/0.01; + + scope.set(0,counts); + scope.set(1,DerivativeCounts); + //scope.set(1,bqcDerivativeCounts); + scope.send(); + countsPrev = counts; + //pc.printf("Counts: %i rad/s \r\n", counts); + //pc.printf("Derivative Counts: %f rad/s \r\n", DerivativeCounts); + */ + } + + if (PTicker_go){ + PTicker_go=false; + P(); + } + if (MotorControllerTicker_go){ + MotorControllerTicker_go=false; + MotorController(); + /*if (TimeTracker_go){ + TimeTracker_go=false; + TimeTrackerF(); + } + if (sampleT_go){ + sampleT_go=false; + sample(); + }*/ + } +} \ No newline at end of file