Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
satapi.c
00001 /**************************************************************************** 00002 * Copyright 2010 Andy Kirkham, Stellar Technologies Ltd 00003 * 00004 * This file is part of the Satellite Observers Workbench (SOWB). 00005 * 00006 * SOWB is free software: you can redistribute it and/or modify 00007 * it under the terms of the GNU General Public License as published by 00008 * the Free Software Foundation, either version 3 of the License, or 00009 * (at your option) any later version. 00010 * 00011 * SOWB is distributed in the hope that it will be useful, 00012 * but WITHOUT ANY WARRANTY; without even the implied warranty of 00013 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00014 * GNU General Public License for more details. 00015 * 00016 * You should have received a copy of the GNU General Public License 00017 * along with SOWB. If not, see <http://www.gnu.org/licenses/>. 00018 * 00019 * $Id: main.cpp 5 2010-07-12 20:51:11Z ajk $ 00020 * 00021 ***************************************************************************/ 00022 00023 #include "sowb.h" 00024 #include "user.h" 00025 #include "satapi.h" 00026 #include "utils.h" 00027 #include "debug.h" 00028 #include "gpio.h" 00029 #include "osd.h" 00030 #include "nexstar.h" 00031 #include "utils.h" 00032 00033 #ifndef M_PI 00034 #define M_PI 3.1415926535898 00035 #endif 00036 00037 #define SCAN_INTERVAL 60 00038 00039 double satapi_aos(SAT_POS_DATA *q, bool goto_aos) { 00040 double tsince; 00041 char temp1[32], temp2[32]; 00042 00043 strcpy(q->elements[0], "Lacrosse 2"); 00044 strcpy(q->elements[1], "1 21147U 91017A 10269.82093092 0.00000020 00000-0 28786-5 0 05"); 00045 strcpy(q->elements[2], "2 21147 67.9820 220.2995 0002000 244.7811 115.2189 14.76261286 07"); 00046 00047 observer_now(q); 00048 00049 P22_ASSERT; 00050 00051 for (q->tsince = 0; q->tsince < (SCAN_INTERVAL * 90); q->tsince += SCAN_INTERVAL) { 00052 KICK_WATCHDOG; /* We are busy! */ 00053 satallite_calculate(q); 00054 if (q->elevation >= 10.) { 00055 /* Above horizon viewing. Work back to AOS. */ 00056 for (tsince = q->tsince, q->tsince--; q->elevation > 10. ; tsince = q->tsince--) { 00057 satallite_calculate(q); 00058 if (q->elevation < 10.) { 00059 //sprintf(temp, "%03f Q AOS El:%.1f AZ:%.1f %dKm\r\n", q->tsince, q->elevation, q->azimuth, (int)q->range); 00060 //debug_printf(temp); 00061 q->tsince = tsince; 00062 satallite_calculate(q); 00063 sprintf(temp1, "%03f T AOS El:%.1f AZ:%.1f %dKm\r\n", q->tsince, q->elevation, q->azimuth, (int)q->range); 00064 debug_printf(temp1); 00065 P22_DEASSERT; 00066 if (goto_aos) { 00067 sprintf(temp1, "%s T-%.2f", q->elements[0], tsince); 00068 osd_string_xy(1, 12, temp1); 00069 sprintf(temp1, "AOS %.2f%c %s%c %dKm", q->elevation, 176, printDouble_3_2(temp2, q->azimuth), 176, (int)q->range); 00070 osd_string_xy(1, 13, temp1); 00071 _nexstar_goto((uint32_t)((q->elevation / 360.) * 65536), (uint32_t)((q->azimuth / 360.) * 65536)); 00072 } 00073 return tsince; 00074 } 00075 } 00076 } 00077 } 00078 00079 P22_DEASSERT; 00080 return 0.; 00081 } 00082 00083 int satallite_calculate(SAT_POS_DATA *q) { 00084 double tsince; 00085 00086 /* Ensure the time and place are valid. */ 00087 if (!q->time.is_valid) return -1; 00088 if (!q->location.is_valid) return -2; 00089 00090 ClearFlag(ALL_FLAGS); 00091 00092 Get_Next_Tle_Set(q->elements, &q->tle); 00093 00094 select_ephemeris(&q->tle); 00095 00096 q->jd_utc = gps_julian_date(&q->time); 00097 q->jd_epoch = Julian_Date_of_Epoch(q->tle.epoch); 00098 00099 tsince = ((q->jd_utc + (q->tsince * (1 / 86400.))) - q->jd_epoch) * xmnpda; 00100 00101 if (isFlagSet(DEEP_SPACE_EPHEM_FLAG)) { 00102 SDP4(tsince, &q->tle, &q->pos, &q->vel, &q->phase); 00103 } 00104 else { 00105 SGP4(tsince, &q->tle, &q->pos, &q->vel, &q->phase); 00106 } 00107 00108 Convert_Sat_State(&q->pos, &q->vel); 00109 SgpMagnitude(&q->vel); // scalar magnitude, not brightness... 00110 q->velocity = q->vel.w; 00111 00112 /* Populate the geodetic_t struct from data supplied. */ 00113 q->observer.lat = q->location.latitude * de2ra; 00114 q->observer.lon = q->location.longitude * de2ra; 00115 q->observer.alt = q->location.height / 1000.; 00116 if (q->location.north_south == 'S') q->observer.lat *= -1.; 00117 if (q->location.east_west == 'W') q->observer.lon *= -1.; 00118 00119 Calculate_Obs(q->jd_utc, &q->pos, &q->vel, &q->observer, &q->obs_set); 00120 Calculate_LatLonAlt(q->jd_utc, &q->pos, &q->sat_geodetic); 00121 00122 q->azimuth = Degrees(q->obs_set.x); 00123 q->elevation = Degrees(q->obs_set.y); 00124 q->range = q->obs_set.z; 00125 q->rangeRate = q->obs_set.w; 00126 q->height = q->sat_geodetic.alt; 00127 00128 return 0; 00129 } 00130 00131 /** observer_now 00132 * 00133 * Fills the data structure with the observers time and position. 00134 * 00135 * @param SAT_POS_DATA * A pointer to the data structure. 00136 */ 00137 SAT_POS_DATA * observer_now(SAT_POS_DATA *q) { 00138 gps_get_time(&q->time); 00139 gps_get_location_average(&q->location); 00140 return q; 00141 } 00142 00143 AltAz * radec2altaz(double siderealDegrees, GPS_LOCATION_AVERAGE *location, RaDec *radec, AltAz *altaz) { 00144 double HA, DEC, LAT, mul, altitude, azimuth; 00145 00146 mul = location->north_south == 'S' ? -1.0 : 1.0; 00147 00148 /* Convert to radians. */ 00149 HA = siderealDegrees * (M_PI / 180.0) - (radec->ra * (M_PI / 180)); 00150 DEC = radec->dec * (M_PI / 180.0); 00151 LAT = (location->latitude * mul) * (M_PI / 180.0); 00152 00153 altitude = atan2(- sin(HA) * cos(DEC), cos(LAT) * sin(DEC) - sin(LAT) * cos(DEC) * cos(HA)); 00154 azimuth = asin(sin(LAT) * sin(DEC) + cos(LAT) * cos(DEC) * cos(HA)); 00155 00156 // Convert to degrees and swing azimuth around if needed. 00157 altaz->alt = azimuth * 180.0 / M_PI; 00158 altaz->azm = altitude * 180.0 / M_PI; 00159 if (altaz->azm < 0) altaz->azm += 360.0; 00160 00161 return altaz; 00162 } 00163 00164 RaDec * altaz2radec(double siderealDegrees, GPS_LOCATION_AVERAGE *location, AltAz *altaz, RaDec *radec) { 00165 double ALT, AZM, LAT, HA, DEC, mul; 00166 00167 mul = location->north_south == 'S' ? -1.0 : 1.0; 00168 00169 /* Convert to radians. */ 00170 LAT = (location->latitude * mul) * (M_PI / 180.0); 00171 ALT = altaz->alt * (M_PI / 180.0); 00172 AZM = altaz->azm * (M_PI / 180.0); 00173 00174 /* Calculate the declination. */ 00175 DEC = asin( ( sin(ALT) * sin(LAT) ) + ( cos(ALT) * cos(LAT) * cos(AZM) ) ); 00176 radec->dec = DEC * 180.0 / M_PI; 00177 while (radec->dec < 0.0) radec->dec += 360.0; 00178 while (radec->dec > 360.0) radec->dec -= 360.0; 00179 00180 /* Calculate the hour angle. */ 00181 HA = ( acos((sin(ALT) - sin(LAT) * sin(DEC)) / (cos(LAT) * cos(DEC)))) * 180.0 / M_PI; 00182 if (sin(AZM) > 0.0) HA = 360.0 - HA; 00183 00184 /* Correct the HA for our sidereal time. */ 00185 HA = (siderealDegrees / 360.0 * 24.0) - (HA / 15.0); 00186 if (HA < 0.0) HA += 24.0; 00187 00188 /* Convert the HA into degrees for the return. */ 00189 radec->ra = HA / 24.0 * 360.0; 00190 00191 return radec; 00192 } 00193
Generated on Tue Jul 12 2022 18:05:35 by
1.7.2