AP mode
Dependencies: NetworkSocketAPI WizFi310Interface mbed
Fork of WizFi310_TCP_Echo_Server_Example by
DetectHumanClass/VL53L0X.cpp@8:e26236864101, 2017-10-03 (annotated)
- Committer:
- maru536
- Date:
- Tue Oct 03 05:38:58 2017 +0000
- Revision:
- 8:e26236864101
- Parent:
- 2:8d119e9b8f5a
comp
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
maru536 | 2:8d119e9b8f5a | 1 | // Most of the functionality of this library is based on the VL53L0X API |
maru536 | 2:8d119e9b8f5a | 2 | // provided by ST (STSW-IMG005), and some of the explanatory comments are quoted |
maru536 | 2:8d119e9b8f5a | 3 | // or paraphrased from the API source code, API user manual (UM2039), and the |
maru536 | 2:8d119e9b8f5a | 4 | // VL53L0X datasheet. |
maru536 | 2:8d119e9b8f5a | 5 | |
maru536 | 2:8d119e9b8f5a | 6 | #include <memory> |
maru536 | 2:8d119e9b8f5a | 7 | #include <VL53L0X.h> |
maru536 | 2:8d119e9b8f5a | 8 | |
maru536 | 2:8d119e9b8f5a | 9 | // Defines ///////////////////////////////////////////////////////////////////// |
maru536 | 2:8d119e9b8f5a | 10 | |
maru536 | 2:8d119e9b8f5a | 11 | // The Arduino two-wire interface uses a 7-bit number for the address, |
maru536 | 2:8d119e9b8f5a | 12 | // and sets the last bit correctly based on reads and writes |
maru536 | 2:8d119e9b8f5a | 13 | #define ADDRESS_DEFAULT (0b0101001 << 1) |
maru536 | 2:8d119e9b8f5a | 14 | |
maru536 | 2:8d119e9b8f5a | 15 | // Record the current time to check an upcoming timeout against |
maru536 | 2:8d119e9b8f5a | 16 | #define startTimeout() (timeout_start_ms = millis()) |
maru536 | 2:8d119e9b8f5a | 17 | |
maru536 | 2:8d119e9b8f5a | 18 | // Check if timeout is enabled (set to nonzero value) and has expired |
maru536 | 2:8d119e9b8f5a | 19 | #define checkTimeoutExpired() (io_timeout > 0 && ((uint16_t)millis() - timeout_start_ms) > io_timeout) |
maru536 | 2:8d119e9b8f5a | 20 | |
maru536 | 2:8d119e9b8f5a | 21 | // Decode VCSEL (vertical cavity surface emitting laser) pulse period in PCLKs |
maru536 | 2:8d119e9b8f5a | 22 | // from register value |
maru536 | 2:8d119e9b8f5a | 23 | // based on VL53L0X_decode_vcsel_period() |
maru536 | 2:8d119e9b8f5a | 24 | #define decodeVcselPeriod(reg_val) (((reg_val) + 1) << 1) |
maru536 | 2:8d119e9b8f5a | 25 | |
maru536 | 2:8d119e9b8f5a | 26 | // Encode VCSEL pulse period register value from period in PCLKs |
maru536 | 2:8d119e9b8f5a | 27 | // based on VL53L0X_encode_vcsel_period() |
maru536 | 2:8d119e9b8f5a | 28 | #define encodeVcselPeriod(period_pclks) (((period_pclks) >> 1) - 1) |
maru536 | 2:8d119e9b8f5a | 29 | |
maru536 | 2:8d119e9b8f5a | 30 | // Calculate macro period in *nanoseconds* from VCSEL period in PCLKs |
maru536 | 2:8d119e9b8f5a | 31 | // based on VL53L0X_calc_macro_period_ps() |
maru536 | 2:8d119e9b8f5a | 32 | // PLL_period_ps = 1655; macro_period_vclks = 2304 |
maru536 | 2:8d119e9b8f5a | 33 | #define calcMacroPeriod(vcsel_period_pclks) ((((uint32_t)2304 * (vcsel_period_pclks) * 1655) + 500) / 1000) |
maru536 | 2:8d119e9b8f5a | 34 | |
maru536 | 2:8d119e9b8f5a | 35 | // Transmission status (https://www.arduino.cc/en/Reference/WireEndTransmission) |
maru536 | 2:8d119e9b8f5a | 36 | #define ERR_OK 0 |
maru536 | 2:8d119e9b8f5a | 37 | #define ERR_NACK_ADDR 2 // received NACK on transmit of address |
maru536 | 2:8d119e9b8f5a | 38 | #define ERR_NACK_DATA 3 // received NACK on transmit of data |
maru536 | 2:8d119e9b8f5a | 39 | #define ERR_OTHER 4 |
maru536 | 2:8d119e9b8f5a | 40 | |
maru536 | 2:8d119e9b8f5a | 41 | #define millis() timer->read_ms() |
maru536 | 2:8d119e9b8f5a | 42 | |
maru536 | 2:8d119e9b8f5a | 43 | // Constructors //////////////////////////////////////////////////////////////// |
maru536 | 2:8d119e9b8f5a | 44 | |
maru536 | 2:8d119e9b8f5a | 45 | VL53L0X::VL53L0X(I2C* i2c, Timer* timer) |
maru536 | 2:8d119e9b8f5a | 46 | : address(ADDRESS_DEFAULT) |
maru536 | 2:8d119e9b8f5a | 47 | , io_timeout(0) // no timeout |
maru536 | 2:8d119e9b8f5a | 48 | , did_timeout(false) |
maru536 | 2:8d119e9b8f5a | 49 | , i2c(i2c) |
maru536 | 2:8d119e9b8f5a | 50 | , timer(timer) |
maru536 | 2:8d119e9b8f5a | 51 | { |
maru536 | 2:8d119e9b8f5a | 52 | } |
maru536 | 2:8d119e9b8f5a | 53 | |
maru536 | 2:8d119e9b8f5a | 54 | // Public Methods ////////////////////////////////////////////////////////////// |
maru536 | 2:8d119e9b8f5a | 55 | |
maru536 | 2:8d119e9b8f5a | 56 | void VL53L0X::setAddress(uint8_t new_addr) |
maru536 | 2:8d119e9b8f5a | 57 | { |
maru536 | 2:8d119e9b8f5a | 58 | writeReg(I2C_SLAVE_DEVICE_ADDRESS, new_addr & 0x7F); |
maru536 | 2:8d119e9b8f5a | 59 | address = new_addr << 1; |
maru536 | 2:8d119e9b8f5a | 60 | } |
maru536 | 2:8d119e9b8f5a | 61 | |
maru536 | 2:8d119e9b8f5a | 62 | // Initialize sensor using sequence based on VL53L0X_DataInit(), |
maru536 | 2:8d119e9b8f5a | 63 | // VL53L0X_StaticInit(), and VL53L0X_PerformRefCalibration(). |
maru536 | 2:8d119e9b8f5a | 64 | // This function does not perform reference SPAD calibration |
maru536 | 2:8d119e9b8f5a | 65 | // (VL53L0X_PerformRefSpadManagement()), since the API user manual says that it |
maru536 | 2:8d119e9b8f5a | 66 | // is performed by ST on the bare modules; it seems like that should work well |
maru536 | 2:8d119e9b8f5a | 67 | // enough unless a cover glass is added. |
maru536 | 2:8d119e9b8f5a | 68 | // If io_2v8 (optional) is true or not given, the sensor is configured for 2V8 |
maru536 | 2:8d119e9b8f5a | 69 | // mode. |
maru536 | 2:8d119e9b8f5a | 70 | bool VL53L0X::init(bool io_2v8) |
maru536 | 2:8d119e9b8f5a | 71 | { |
maru536 | 2:8d119e9b8f5a | 72 | // VL53L0X_DataInit() begin |
maru536 | 2:8d119e9b8f5a | 73 | |
maru536 | 2:8d119e9b8f5a | 74 | // sensor uses 1V8 mode for I/O by default; switch to 2V8 mode if necessary |
maru536 | 2:8d119e9b8f5a | 75 | if (io_2v8) |
maru536 | 2:8d119e9b8f5a | 76 | { |
maru536 | 2:8d119e9b8f5a | 77 | writeReg(VHV_CONFIG_PAD_SCL_SDA__EXTSUP_HV, |
maru536 | 2:8d119e9b8f5a | 78 | readReg(VHV_CONFIG_PAD_SCL_SDA__EXTSUP_HV) | 0x01); // set bit 0 |
maru536 | 2:8d119e9b8f5a | 79 | } |
maru536 | 2:8d119e9b8f5a | 80 | |
maru536 | 2:8d119e9b8f5a | 81 | // "Set I2C standard mode" |
maru536 | 2:8d119e9b8f5a | 82 | writeReg(0x88, 0x00); |
maru536 | 2:8d119e9b8f5a | 83 | |
maru536 | 2:8d119e9b8f5a | 84 | writeReg(0x80, 0x01); |
maru536 | 2:8d119e9b8f5a | 85 | writeReg(0xFF, 0x01); |
maru536 | 2:8d119e9b8f5a | 86 | writeReg(0x00, 0x00); |
maru536 | 2:8d119e9b8f5a | 87 | stop_variable = readReg(0x91); |
maru536 | 2:8d119e9b8f5a | 88 | writeReg(0x00, 0x01); |
maru536 | 2:8d119e9b8f5a | 89 | writeReg(0xFF, 0x00); |
maru536 | 2:8d119e9b8f5a | 90 | writeReg(0x80, 0x00); |
maru536 | 2:8d119e9b8f5a | 91 | |
maru536 | 2:8d119e9b8f5a | 92 | // disable SIGNAL_RATE_MSRC (bit 1) and SIGNAL_RATE_PRE_RANGE (bit 4) limit checks |
maru536 | 2:8d119e9b8f5a | 93 | writeReg(MSRC_CONFIG_CONTROL, readReg(MSRC_CONFIG_CONTROL) | 0x12); |
maru536 | 2:8d119e9b8f5a | 94 | |
maru536 | 2:8d119e9b8f5a | 95 | // set final range signal rate limit to 0.25 MCPS (million counts per second) |
maru536 | 2:8d119e9b8f5a | 96 | setSignalRateLimit(0.25); |
maru536 | 2:8d119e9b8f5a | 97 | |
maru536 | 2:8d119e9b8f5a | 98 | writeReg(SYSTEM_SEQUENCE_CONFIG, 0xFF); |
maru536 | 2:8d119e9b8f5a | 99 | |
maru536 | 2:8d119e9b8f5a | 100 | // VL53L0X_DataInit() end |
maru536 | 2:8d119e9b8f5a | 101 | |
maru536 | 2:8d119e9b8f5a | 102 | // VL53L0X_StaticInit() begin |
maru536 | 2:8d119e9b8f5a | 103 | |
maru536 | 2:8d119e9b8f5a | 104 | uint8_t spad_count; |
maru536 | 2:8d119e9b8f5a | 105 | bool spad_type_is_aperture; |
maru536 | 2:8d119e9b8f5a | 106 | if (!getSpadInfo(&spad_count, &spad_type_is_aperture)) { return false; } |
maru536 | 2:8d119e9b8f5a | 107 | |
maru536 | 2:8d119e9b8f5a | 108 | // The SPAD map (RefGoodSpadMap) is read by VL53L0X_get_info_from_device() in |
maru536 | 2:8d119e9b8f5a | 109 | // the API, but the same data seems to be more easily readable from |
maru536 | 2:8d119e9b8f5a | 110 | // GLOBAL_CONFIG_SPAD_ENABLES_REF_0 through _6, so read it from there |
maru536 | 2:8d119e9b8f5a | 111 | uint8_t ref_spad_map[6]; |
maru536 | 2:8d119e9b8f5a | 112 | readMulti(GLOBAL_CONFIG_SPAD_ENABLES_REF_0, ref_spad_map, 6); |
maru536 | 2:8d119e9b8f5a | 113 | |
maru536 | 2:8d119e9b8f5a | 114 | // -- VL53L0X_set_reference_spads() begin (assume NVM values are valid) |
maru536 | 2:8d119e9b8f5a | 115 | |
maru536 | 2:8d119e9b8f5a | 116 | writeReg(0xFF, 0x01); |
maru536 | 2:8d119e9b8f5a | 117 | writeReg(DYNAMIC_SPAD_REF_EN_START_OFFSET, 0x00); |
maru536 | 2:8d119e9b8f5a | 118 | writeReg(DYNAMIC_SPAD_NUM_REQUESTED_REF_SPAD, 0x2C); |
maru536 | 2:8d119e9b8f5a | 119 | writeReg(0xFF, 0x00); |
maru536 | 2:8d119e9b8f5a | 120 | writeReg(GLOBAL_CONFIG_REF_EN_START_SELECT, 0xB4); |
maru536 | 2:8d119e9b8f5a | 121 | |
maru536 | 2:8d119e9b8f5a | 122 | uint8_t first_spad_to_enable = spad_type_is_aperture ? 12 : 0; // 12 is the first aperture spad |
maru536 | 2:8d119e9b8f5a | 123 | uint8_t spads_enabled = 0; |
maru536 | 2:8d119e9b8f5a | 124 | |
maru536 | 2:8d119e9b8f5a | 125 | for (uint8_t i = 0; i < 48; i++) |
maru536 | 2:8d119e9b8f5a | 126 | { |
maru536 | 2:8d119e9b8f5a | 127 | if (i < first_spad_to_enable || spads_enabled == spad_count) |
maru536 | 2:8d119e9b8f5a | 128 | { |
maru536 | 2:8d119e9b8f5a | 129 | // This bit is lower than the first one that should be enabled, or |
maru536 | 2:8d119e9b8f5a | 130 | // (reference_spad_count) bits have already been enabled, so zero this bit |
maru536 | 2:8d119e9b8f5a | 131 | ref_spad_map[i / 8] &= ~(1 << (i % 8)); |
maru536 | 2:8d119e9b8f5a | 132 | } |
maru536 | 2:8d119e9b8f5a | 133 | else if ((ref_spad_map[i / 8] >> (i % 8)) & 0x1) |
maru536 | 2:8d119e9b8f5a | 134 | { |
maru536 | 2:8d119e9b8f5a | 135 | spads_enabled++; |
maru536 | 2:8d119e9b8f5a | 136 | } |
maru536 | 2:8d119e9b8f5a | 137 | } |
maru536 | 2:8d119e9b8f5a | 138 | |
maru536 | 2:8d119e9b8f5a | 139 | writeMulti(GLOBAL_CONFIG_SPAD_ENABLES_REF_0, ref_spad_map, 6); |
maru536 | 2:8d119e9b8f5a | 140 | |
maru536 | 2:8d119e9b8f5a | 141 | // -- VL53L0X_set_reference_spads() end |
maru536 | 2:8d119e9b8f5a | 142 | |
maru536 | 2:8d119e9b8f5a | 143 | // -- VL53L0X_load_tuning_settings() begin |
maru536 | 2:8d119e9b8f5a | 144 | // DefaultTuningSettings from vl53l0x_tuning.h |
maru536 | 2:8d119e9b8f5a | 145 | |
maru536 | 2:8d119e9b8f5a | 146 | writeReg(0xFF, 0x01); |
maru536 | 2:8d119e9b8f5a | 147 | writeReg(0x00, 0x00); |
maru536 | 2:8d119e9b8f5a | 148 | |
maru536 | 2:8d119e9b8f5a | 149 | writeReg(0xFF, 0x00); |
maru536 | 2:8d119e9b8f5a | 150 | writeReg(0x09, 0x00); |
maru536 | 2:8d119e9b8f5a | 151 | writeReg(0x10, 0x00); |
maru536 | 2:8d119e9b8f5a | 152 | writeReg(0x11, 0x00); |
maru536 | 2:8d119e9b8f5a | 153 | |
maru536 | 2:8d119e9b8f5a | 154 | writeReg(0x24, 0x01); |
maru536 | 2:8d119e9b8f5a | 155 | writeReg(0x25, 0xFF); |
maru536 | 2:8d119e9b8f5a | 156 | writeReg(0x75, 0x00); |
maru536 | 2:8d119e9b8f5a | 157 | |
maru536 | 2:8d119e9b8f5a | 158 | writeReg(0xFF, 0x01); |
maru536 | 2:8d119e9b8f5a | 159 | writeReg(0x4E, 0x2C); |
maru536 | 2:8d119e9b8f5a | 160 | writeReg(0x48, 0x00); |
maru536 | 2:8d119e9b8f5a | 161 | writeReg(0x30, 0x20); |
maru536 | 2:8d119e9b8f5a | 162 | |
maru536 | 2:8d119e9b8f5a | 163 | writeReg(0xFF, 0x00); |
maru536 | 2:8d119e9b8f5a | 164 | writeReg(0x30, 0x09); |
maru536 | 2:8d119e9b8f5a | 165 | writeReg(0x54, 0x00); |
maru536 | 2:8d119e9b8f5a | 166 | writeReg(0x31, 0x04); |
maru536 | 2:8d119e9b8f5a | 167 | writeReg(0x32, 0x03); |
maru536 | 2:8d119e9b8f5a | 168 | writeReg(0x40, 0x83); |
maru536 | 2:8d119e9b8f5a | 169 | writeReg(0x46, 0x25); |
maru536 | 2:8d119e9b8f5a | 170 | writeReg(0x60, 0x00); |
maru536 | 2:8d119e9b8f5a | 171 | writeReg(0x27, 0x00); |
maru536 | 2:8d119e9b8f5a | 172 | writeReg(0x50, 0x06); |
maru536 | 2:8d119e9b8f5a | 173 | writeReg(0x51, 0x00); |
maru536 | 2:8d119e9b8f5a | 174 | writeReg(0x52, 0x96); |
maru536 | 2:8d119e9b8f5a | 175 | writeReg(0x56, 0x08); |
maru536 | 2:8d119e9b8f5a | 176 | writeReg(0x57, 0x30); |
maru536 | 2:8d119e9b8f5a | 177 | writeReg(0x61, 0x00); |
maru536 | 2:8d119e9b8f5a | 178 | writeReg(0x62, 0x00); |
maru536 | 2:8d119e9b8f5a | 179 | writeReg(0x64, 0x00); |
maru536 | 2:8d119e9b8f5a | 180 | writeReg(0x65, 0x00); |
maru536 | 2:8d119e9b8f5a | 181 | writeReg(0x66, 0xA0); |
maru536 | 2:8d119e9b8f5a | 182 | |
maru536 | 2:8d119e9b8f5a | 183 | writeReg(0xFF, 0x01); |
maru536 | 2:8d119e9b8f5a | 184 | writeReg(0x22, 0x32); |
maru536 | 2:8d119e9b8f5a | 185 | writeReg(0x47, 0x14); |
maru536 | 2:8d119e9b8f5a | 186 | writeReg(0x49, 0xFF); |
maru536 | 2:8d119e9b8f5a | 187 | writeReg(0x4A, 0x00); |
maru536 | 2:8d119e9b8f5a | 188 | |
maru536 | 2:8d119e9b8f5a | 189 | writeReg(0xFF, 0x00); |
maru536 | 2:8d119e9b8f5a | 190 | writeReg(0x7A, 0x0A); |
maru536 | 2:8d119e9b8f5a | 191 | writeReg(0x7B, 0x00); |
maru536 | 2:8d119e9b8f5a | 192 | writeReg(0x78, 0x21); |
maru536 | 2:8d119e9b8f5a | 193 | |
maru536 | 2:8d119e9b8f5a | 194 | writeReg(0xFF, 0x01); |
maru536 | 2:8d119e9b8f5a | 195 | writeReg(0x23, 0x34); |
maru536 | 2:8d119e9b8f5a | 196 | writeReg(0x42, 0x00); |
maru536 | 2:8d119e9b8f5a | 197 | writeReg(0x44, 0xFF); |
maru536 | 2:8d119e9b8f5a | 198 | writeReg(0x45, 0x26); |
maru536 | 2:8d119e9b8f5a | 199 | writeReg(0x46, 0x05); |
maru536 | 2:8d119e9b8f5a | 200 | writeReg(0x40, 0x40); |
maru536 | 2:8d119e9b8f5a | 201 | writeReg(0x0E, 0x06); |
maru536 | 2:8d119e9b8f5a | 202 | writeReg(0x20, 0x1A); |
maru536 | 2:8d119e9b8f5a | 203 | writeReg(0x43, 0x40); |
maru536 | 2:8d119e9b8f5a | 204 | |
maru536 | 2:8d119e9b8f5a | 205 | writeReg(0xFF, 0x00); |
maru536 | 2:8d119e9b8f5a | 206 | writeReg(0x34, 0x03); |
maru536 | 2:8d119e9b8f5a | 207 | writeReg(0x35, 0x44); |
maru536 | 2:8d119e9b8f5a | 208 | |
maru536 | 2:8d119e9b8f5a | 209 | writeReg(0xFF, 0x01); |
maru536 | 2:8d119e9b8f5a | 210 | writeReg(0x31, 0x04); |
maru536 | 2:8d119e9b8f5a | 211 | writeReg(0x4B, 0x09); |
maru536 | 2:8d119e9b8f5a | 212 | writeReg(0x4C, 0x05); |
maru536 | 2:8d119e9b8f5a | 213 | writeReg(0x4D, 0x04); |
maru536 | 2:8d119e9b8f5a | 214 | |
maru536 | 2:8d119e9b8f5a | 215 | writeReg(0xFF, 0x00); |
maru536 | 2:8d119e9b8f5a | 216 | writeReg(0x44, 0x00); |
maru536 | 2:8d119e9b8f5a | 217 | writeReg(0x45, 0x20); |
maru536 | 2:8d119e9b8f5a | 218 | writeReg(0x47, 0x08); |
maru536 | 2:8d119e9b8f5a | 219 | writeReg(0x48, 0x28); |
maru536 | 2:8d119e9b8f5a | 220 | writeReg(0x67, 0x00); |
maru536 | 2:8d119e9b8f5a | 221 | writeReg(0x70, 0x04); |
maru536 | 2:8d119e9b8f5a | 222 | writeReg(0x71, 0x01); |
maru536 | 2:8d119e9b8f5a | 223 | writeReg(0x72, 0xFE); |
maru536 | 2:8d119e9b8f5a | 224 | writeReg(0x76, 0x00); |
maru536 | 2:8d119e9b8f5a | 225 | writeReg(0x77, 0x00); |
maru536 | 2:8d119e9b8f5a | 226 | |
maru536 | 2:8d119e9b8f5a | 227 | writeReg(0xFF, 0x01); |
maru536 | 2:8d119e9b8f5a | 228 | writeReg(0x0D, 0x01); |
maru536 | 2:8d119e9b8f5a | 229 | |
maru536 | 2:8d119e9b8f5a | 230 | writeReg(0xFF, 0x00); |
maru536 | 2:8d119e9b8f5a | 231 | writeReg(0x80, 0x01); |
maru536 | 2:8d119e9b8f5a | 232 | writeReg(0x01, 0xF8); |
maru536 | 2:8d119e9b8f5a | 233 | |
maru536 | 2:8d119e9b8f5a | 234 | writeReg(0xFF, 0x01); |
maru536 | 2:8d119e9b8f5a | 235 | writeReg(0x8E, 0x01); |
maru536 | 2:8d119e9b8f5a | 236 | writeReg(0x00, 0x01); |
maru536 | 2:8d119e9b8f5a | 237 | writeReg(0xFF, 0x00); |
maru536 | 2:8d119e9b8f5a | 238 | writeReg(0x80, 0x00); |
maru536 | 2:8d119e9b8f5a | 239 | |
maru536 | 2:8d119e9b8f5a | 240 | // -- VL53L0X_load_tuning_settings() end |
maru536 | 2:8d119e9b8f5a | 241 | |
maru536 | 2:8d119e9b8f5a | 242 | // "Set interrupt config to new sample ready" |
maru536 | 2:8d119e9b8f5a | 243 | // -- VL53L0X_SetGpioConfig() begin |
maru536 | 2:8d119e9b8f5a | 244 | |
maru536 | 2:8d119e9b8f5a | 245 | writeReg(SYSTEM_INTERRUPT_CONFIG_GPIO, 0x04); |
maru536 | 2:8d119e9b8f5a | 246 | writeReg(GPIO_HV_MUX_ACTIVE_HIGH, readReg(GPIO_HV_MUX_ACTIVE_HIGH) & ~0x10); // active low |
maru536 | 2:8d119e9b8f5a | 247 | writeReg(SYSTEM_INTERRUPT_CLEAR, 0x01); |
maru536 | 2:8d119e9b8f5a | 248 | |
maru536 | 2:8d119e9b8f5a | 249 | // -- VL53L0X_SetGpioConfig() end |
maru536 | 2:8d119e9b8f5a | 250 | |
maru536 | 2:8d119e9b8f5a | 251 | measurement_timing_budget_us = getMeasurementTimingBudget(); |
maru536 | 2:8d119e9b8f5a | 252 | |
maru536 | 2:8d119e9b8f5a | 253 | // "Disable MSRC and TCC by default" |
maru536 | 2:8d119e9b8f5a | 254 | // MSRC = Minimum Signal Rate Check |
maru536 | 2:8d119e9b8f5a | 255 | // TCC = Target CentreCheck |
maru536 | 2:8d119e9b8f5a | 256 | // -- VL53L0X_SetSequenceStepEnable() begin |
maru536 | 2:8d119e9b8f5a | 257 | |
maru536 | 2:8d119e9b8f5a | 258 | writeReg(SYSTEM_SEQUENCE_CONFIG, 0xE8); |
maru536 | 2:8d119e9b8f5a | 259 | |
maru536 | 2:8d119e9b8f5a | 260 | // -- VL53L0X_SetSequenceStepEnable() end |
maru536 | 2:8d119e9b8f5a | 261 | |
maru536 | 2:8d119e9b8f5a | 262 | // "Recalculate timing budget" |
maru536 | 2:8d119e9b8f5a | 263 | setMeasurementTimingBudget(measurement_timing_budget_us); |
maru536 | 2:8d119e9b8f5a | 264 | |
maru536 | 2:8d119e9b8f5a | 265 | // VL53L0X_StaticInit() end |
maru536 | 2:8d119e9b8f5a | 266 | |
maru536 | 2:8d119e9b8f5a | 267 | // VL53L0X_PerformRefCalibration() begin (VL53L0X_perform_ref_calibration()) |
maru536 | 2:8d119e9b8f5a | 268 | |
maru536 | 2:8d119e9b8f5a | 269 | // -- VL53L0X_perform_vhv_calibration() begin |
maru536 | 2:8d119e9b8f5a | 270 | |
maru536 | 2:8d119e9b8f5a | 271 | writeReg(SYSTEM_SEQUENCE_CONFIG, 0x01); |
maru536 | 2:8d119e9b8f5a | 272 | if (!performSingleRefCalibration(0x40)) { return false; } |
maru536 | 2:8d119e9b8f5a | 273 | |
maru536 | 2:8d119e9b8f5a | 274 | // -- VL53L0X_perform_vhv_calibration() end |
maru536 | 2:8d119e9b8f5a | 275 | |
maru536 | 2:8d119e9b8f5a | 276 | // -- VL53L0X_perform_phase_calibration() begin |
maru536 | 2:8d119e9b8f5a | 277 | |
maru536 | 2:8d119e9b8f5a | 278 | writeReg(SYSTEM_SEQUENCE_CONFIG, 0x02); |
maru536 | 2:8d119e9b8f5a | 279 | if (!performSingleRefCalibration(0x00)) { return false; } |
maru536 | 2:8d119e9b8f5a | 280 | |
maru536 | 2:8d119e9b8f5a | 281 | // -- VL53L0X_perform_phase_calibration() end |
maru536 | 2:8d119e9b8f5a | 282 | |
maru536 | 2:8d119e9b8f5a | 283 | // "restore the previous Sequence Config" |
maru536 | 2:8d119e9b8f5a | 284 | writeReg(SYSTEM_SEQUENCE_CONFIG, 0xE8); |
maru536 | 2:8d119e9b8f5a | 285 | |
maru536 | 2:8d119e9b8f5a | 286 | // VL53L0X_PerformRefCalibration() end |
maru536 | 2:8d119e9b8f5a | 287 | |
maru536 | 2:8d119e9b8f5a | 288 | return true; |
maru536 | 2:8d119e9b8f5a | 289 | } |
maru536 | 2:8d119e9b8f5a | 290 | |
maru536 | 2:8d119e9b8f5a | 291 | // Write an 8-bit register |
maru536 | 2:8d119e9b8f5a | 292 | void VL53L0X::writeReg(uint8_t reg, uint8_t value) |
maru536 | 2:8d119e9b8f5a | 293 | { |
maru536 | 2:8d119e9b8f5a | 294 | char data[] = { |
maru536 | 2:8d119e9b8f5a | 295 | reg, |
maru536 | 2:8d119e9b8f5a | 296 | value |
maru536 | 2:8d119e9b8f5a | 297 | }; |
maru536 | 2:8d119e9b8f5a | 298 | if (i2c->write(address, data, 2)) { |
maru536 | 2:8d119e9b8f5a | 299 | last_status = ERR_OTHER; |
maru536 | 2:8d119e9b8f5a | 300 | } else { |
maru536 | 2:8d119e9b8f5a | 301 | last_status = ERR_OK; |
maru536 | 2:8d119e9b8f5a | 302 | } |
maru536 | 2:8d119e9b8f5a | 303 | } |
maru536 | 2:8d119e9b8f5a | 304 | |
maru536 | 2:8d119e9b8f5a | 305 | // Write a 16-bit register |
maru536 | 2:8d119e9b8f5a | 306 | void VL53L0X::writeReg16Bit(uint8_t reg, uint16_t value) |
maru536 | 2:8d119e9b8f5a | 307 | { |
maru536 | 2:8d119e9b8f5a | 308 | char data[] = { |
maru536 | 2:8d119e9b8f5a | 309 | reg, |
maru536 | 2:8d119e9b8f5a | 310 | static_cast<char>((value >> 8) & 0xFF), // value high byte |
maru536 | 2:8d119e9b8f5a | 311 | static_cast<char>(value & 0xFF) // value low byte |
maru536 | 2:8d119e9b8f5a | 312 | }; |
maru536 | 2:8d119e9b8f5a | 313 | if (i2c->write(address, data, 3)) { |
maru536 | 2:8d119e9b8f5a | 314 | last_status = ERR_OTHER; |
maru536 | 2:8d119e9b8f5a | 315 | } else { |
maru536 | 2:8d119e9b8f5a | 316 | last_status = ERR_OK; |
maru536 | 2:8d119e9b8f5a | 317 | } |
maru536 | 2:8d119e9b8f5a | 318 | } |
maru536 | 2:8d119e9b8f5a | 319 | |
maru536 | 2:8d119e9b8f5a | 320 | // Write a 32-bit register |
maru536 | 2:8d119e9b8f5a | 321 | void VL53L0X::writeReg32Bit(uint8_t reg, uint32_t value) |
maru536 | 2:8d119e9b8f5a | 322 | { |
maru536 | 2:8d119e9b8f5a | 323 | char data[] = { |
maru536 | 2:8d119e9b8f5a | 324 | reg, |
maru536 | 2:8d119e9b8f5a | 325 | static_cast<char>((value >> 24) & 0xFF), // value highest byte |
maru536 | 2:8d119e9b8f5a | 326 | static_cast<char>((value >> 16) & 0xFF), |
maru536 | 2:8d119e9b8f5a | 327 | static_cast<char>((value >> 8) & 0xFF), |
maru536 | 2:8d119e9b8f5a | 328 | static_cast<char>(value & 0xFF) // value lowest byte |
maru536 | 2:8d119e9b8f5a | 329 | }; |
maru536 | 2:8d119e9b8f5a | 330 | if (i2c->write(address, data, 5)) { |
maru536 | 2:8d119e9b8f5a | 331 | last_status = ERR_OTHER; |
maru536 | 2:8d119e9b8f5a | 332 | } else { |
maru536 | 2:8d119e9b8f5a | 333 | last_status = ERR_OK; |
maru536 | 2:8d119e9b8f5a | 334 | } |
maru536 | 2:8d119e9b8f5a | 335 | } |
maru536 | 2:8d119e9b8f5a | 336 | |
maru536 | 2:8d119e9b8f5a | 337 | // Read an 8-bit register |
maru536 | 2:8d119e9b8f5a | 338 | uint8_t VL53L0X::readReg(uint8_t reg) |
maru536 | 2:8d119e9b8f5a | 339 | { |
maru536 | 2:8d119e9b8f5a | 340 | uint8_t value; |
maru536 | 2:8d119e9b8f5a | 341 | |
maru536 | 2:8d119e9b8f5a | 342 | if (i2c->write(address, reinterpret_cast<char *>(®), 1)) { |
maru536 | 2:8d119e9b8f5a | 343 | last_status = ERR_NACK_ADDR; |
maru536 | 2:8d119e9b8f5a | 344 | return 0; |
maru536 | 2:8d119e9b8f5a | 345 | } |
maru536 | 2:8d119e9b8f5a | 346 | if (i2c->read(address, reinterpret_cast<char *>(&value), 1)) { |
maru536 | 2:8d119e9b8f5a | 347 | last_status = ERR_NACK_DATA; |
maru536 | 2:8d119e9b8f5a | 348 | return 0; |
maru536 | 2:8d119e9b8f5a | 349 | } |
maru536 | 2:8d119e9b8f5a | 350 | last_status = ERR_OK; |
maru536 | 2:8d119e9b8f5a | 351 | |
maru536 | 2:8d119e9b8f5a | 352 | return value; |
maru536 | 2:8d119e9b8f5a | 353 | } |
maru536 | 2:8d119e9b8f5a | 354 | |
maru536 | 2:8d119e9b8f5a | 355 | // Read a 16-bit register |
maru536 | 2:8d119e9b8f5a | 356 | uint16_t VL53L0X::readReg16Bit(uint8_t reg) |
maru536 | 2:8d119e9b8f5a | 357 | { |
maru536 | 2:8d119e9b8f5a | 358 | uint16_t value; |
maru536 | 2:8d119e9b8f5a | 359 | uint8_t data[2]; |
maru536 | 2:8d119e9b8f5a | 360 | |
maru536 | 2:8d119e9b8f5a | 361 | if (i2c->write(address, reinterpret_cast<char *>(®), 1)) { |
maru536 | 2:8d119e9b8f5a | 362 | last_status = ERR_NACK_ADDR; |
maru536 | 2:8d119e9b8f5a | 363 | return 0; |
maru536 | 2:8d119e9b8f5a | 364 | } |
maru536 | 2:8d119e9b8f5a | 365 | if (i2c->read(address, reinterpret_cast<char *>(data), 2)) { |
maru536 | 2:8d119e9b8f5a | 366 | last_status = ERR_NACK_DATA; |
maru536 | 2:8d119e9b8f5a | 367 | return 0; |
maru536 | 2:8d119e9b8f5a | 368 | } |
maru536 | 2:8d119e9b8f5a | 369 | last_status = ERR_OK; |
maru536 | 2:8d119e9b8f5a | 370 | |
maru536 | 2:8d119e9b8f5a | 371 | value = static_cast<uint16_t>(data[0] << 8); // value high byte |
maru536 | 2:8d119e9b8f5a | 372 | value |= data[1]; // value low byte |
maru536 | 2:8d119e9b8f5a | 373 | |
maru536 | 2:8d119e9b8f5a | 374 | return value; |
maru536 | 2:8d119e9b8f5a | 375 | } |
maru536 | 2:8d119e9b8f5a | 376 | |
maru536 | 2:8d119e9b8f5a | 377 | // Read a 32-bit register |
maru536 | 2:8d119e9b8f5a | 378 | uint32_t VL53L0X::readReg32Bit(uint8_t reg) |
maru536 | 2:8d119e9b8f5a | 379 | { |
maru536 | 2:8d119e9b8f5a | 380 | uint32_t value; |
maru536 | 2:8d119e9b8f5a | 381 | uint8_t data[4]; |
maru536 | 2:8d119e9b8f5a | 382 | |
maru536 | 2:8d119e9b8f5a | 383 | if (i2c->write(address, reinterpret_cast<char *>(®), 1)) { |
maru536 | 2:8d119e9b8f5a | 384 | last_status = ERR_NACK_ADDR; |
maru536 | 2:8d119e9b8f5a | 385 | return 0; |
maru536 | 2:8d119e9b8f5a | 386 | } |
maru536 | 2:8d119e9b8f5a | 387 | if (i2c->read(address, reinterpret_cast<char *>(data), 4)) { |
maru536 | 2:8d119e9b8f5a | 388 | last_status = ERR_NACK_DATA; |
maru536 | 2:8d119e9b8f5a | 389 | return 0; |
maru536 | 2:8d119e9b8f5a | 390 | } |
maru536 | 2:8d119e9b8f5a | 391 | last_status = ERR_OK; |
maru536 | 2:8d119e9b8f5a | 392 | |
maru536 | 2:8d119e9b8f5a | 393 | value = static_cast<uint32_t>(data[0] << 24); // value highest byte |
maru536 | 2:8d119e9b8f5a | 394 | value |= static_cast<uint32_t>(data[1] << 16); |
maru536 | 2:8d119e9b8f5a | 395 | value |= static_cast<uint32_t>(data[2] << 8); |
maru536 | 2:8d119e9b8f5a | 396 | value |= data[3]; // value lowest byte |
maru536 | 2:8d119e9b8f5a | 397 | |
maru536 | 2:8d119e9b8f5a | 398 | return value; |
maru536 | 2:8d119e9b8f5a | 399 | } |
maru536 | 2:8d119e9b8f5a | 400 | |
maru536 | 2:8d119e9b8f5a | 401 | // Write an arbitrary number of bytes from the given array to the sensor, |
maru536 | 2:8d119e9b8f5a | 402 | // starting at the given register |
maru536 | 2:8d119e9b8f5a | 403 | void VL53L0X::writeMulti(uint8_t reg, uint8_t const * src, uint8_t count) |
maru536 | 2:8d119e9b8f5a | 404 | { |
maru536 | 2:8d119e9b8f5a | 405 | if (i2c->write(address, reinterpret_cast<char *>(®), 1, true)) { |
maru536 | 2:8d119e9b8f5a | 406 | last_status = ERR_NACK_ADDR; |
maru536 | 2:8d119e9b8f5a | 407 | return; |
maru536 | 2:8d119e9b8f5a | 408 | } |
maru536 | 2:8d119e9b8f5a | 409 | |
maru536 | 2:8d119e9b8f5a | 410 | if (i2c->write(address, const_cast<char *>( |
maru536 | 2:8d119e9b8f5a | 411 | reinterpret_cast<const char *>(src)), count)) { |
maru536 | 2:8d119e9b8f5a | 412 | last_status = ERR_NACK_DATA; |
maru536 | 2:8d119e9b8f5a | 413 | return; |
maru536 | 2:8d119e9b8f5a | 414 | } |
maru536 | 2:8d119e9b8f5a | 415 | last_status = ERR_OK; |
maru536 | 2:8d119e9b8f5a | 416 | } |
maru536 | 2:8d119e9b8f5a | 417 | |
maru536 | 2:8d119e9b8f5a | 418 | // Read an arbitrary number of bytes from the sensor, starting at the given |
maru536 | 2:8d119e9b8f5a | 419 | // register, into the given array |
maru536 | 2:8d119e9b8f5a | 420 | void VL53L0X::readMulti(uint8_t reg, uint8_t * dst, uint8_t count) |
maru536 | 2:8d119e9b8f5a | 421 | { |
maru536 | 2:8d119e9b8f5a | 422 | if (i2c->write(address, reinterpret_cast<char *>(®), 1)) { |
maru536 | 2:8d119e9b8f5a | 423 | last_status = ERR_NACK_ADDR; |
maru536 | 2:8d119e9b8f5a | 424 | return; |
maru536 | 2:8d119e9b8f5a | 425 | } |
maru536 | 2:8d119e9b8f5a | 426 | if (i2c->read(address, reinterpret_cast<char *>(dst), count)) { |
maru536 | 2:8d119e9b8f5a | 427 | last_status = ERR_NACK_DATA; |
maru536 | 2:8d119e9b8f5a | 428 | return; |
maru536 | 2:8d119e9b8f5a | 429 | } |
maru536 | 2:8d119e9b8f5a | 430 | last_status = ERR_OK; |
maru536 | 2:8d119e9b8f5a | 431 | } |
maru536 | 2:8d119e9b8f5a | 432 | |
maru536 | 2:8d119e9b8f5a | 433 | // Set the return signal rate limit check value in units of MCPS (mega counts |
maru536 | 2:8d119e9b8f5a | 434 | // per second). "This represents the amplitude of the signal reflected from the |
maru536 | 2:8d119e9b8f5a | 435 | // target and detected by the device"; setting this limit presumably determines |
maru536 | 2:8d119e9b8f5a | 436 | // the minimum measurement necessary for the sensor to report a valid reading. |
maru536 | 2:8d119e9b8f5a | 437 | // Setting a lower limit increases the potential range of the sensor but also |
maru536 | 2:8d119e9b8f5a | 438 | // seems to increase the likelihood of getting an inaccurate reading because of |
maru536 | 2:8d119e9b8f5a | 439 | // unwanted reflections from objects other than the intended target. |
maru536 | 2:8d119e9b8f5a | 440 | // Defaults to 0.25 MCPS as initialized by the ST API and this library. |
maru536 | 2:8d119e9b8f5a | 441 | bool VL53L0X::setSignalRateLimit(float limit_Mcps) |
maru536 | 2:8d119e9b8f5a | 442 | { |
maru536 | 2:8d119e9b8f5a | 443 | if (limit_Mcps < 0 || limit_Mcps > 511.99) { return false; } |
maru536 | 2:8d119e9b8f5a | 444 | |
maru536 | 2:8d119e9b8f5a | 445 | // Q9.7 fixed point format (9 integer bits, 7 fractional bits) |
maru536 | 2:8d119e9b8f5a | 446 | writeReg16Bit(FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT, limit_Mcps * (1 << 7)); |
maru536 | 2:8d119e9b8f5a | 447 | return true; |
maru536 | 2:8d119e9b8f5a | 448 | } |
maru536 | 2:8d119e9b8f5a | 449 | |
maru536 | 2:8d119e9b8f5a | 450 | // Get the return signal rate limit check value in MCPS |
maru536 | 2:8d119e9b8f5a | 451 | float VL53L0X::getSignalRateLimit(void) |
maru536 | 2:8d119e9b8f5a | 452 | { |
maru536 | 2:8d119e9b8f5a | 453 | return (float)readReg16Bit(FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT) / (1 << 7); |
maru536 | 2:8d119e9b8f5a | 454 | } |
maru536 | 2:8d119e9b8f5a | 455 | |
maru536 | 2:8d119e9b8f5a | 456 | // Set the measurement timing budget in microseconds, which is the time allowed |
maru536 | 2:8d119e9b8f5a | 457 | // for one measurement; the ST API and this library take care of splitting the |
maru536 | 2:8d119e9b8f5a | 458 | // timing budget among the sub-steps in the ranging sequence. A longer timing |
maru536 | 2:8d119e9b8f5a | 459 | // budget allows for more accurate measurements. Increasing the budget by a |
maru536 | 2:8d119e9b8f5a | 460 | // factor of N decreases the range measurement standard deviation by a factor of |
maru536 | 2:8d119e9b8f5a | 461 | // sqrt(N). Defaults to about 33 milliseconds; the minimum is 20 ms. |
maru536 | 2:8d119e9b8f5a | 462 | // based on VL53L0X_set_measurement_timing_budget_micro_seconds() |
maru536 | 2:8d119e9b8f5a | 463 | bool VL53L0X::setMeasurementTimingBudget(uint32_t budget_us) |
maru536 | 2:8d119e9b8f5a | 464 | { |
maru536 | 2:8d119e9b8f5a | 465 | SequenceStepEnables enables; |
maru536 | 2:8d119e9b8f5a | 466 | SequenceStepTimeouts timeouts; |
maru536 | 2:8d119e9b8f5a | 467 | |
maru536 | 2:8d119e9b8f5a | 468 | uint16_t const StartOverhead = 1320; // note that this is different than the value in get_ |
maru536 | 2:8d119e9b8f5a | 469 | uint16_t const EndOverhead = 960; |
maru536 | 2:8d119e9b8f5a | 470 | uint16_t const MsrcOverhead = 660; |
maru536 | 2:8d119e9b8f5a | 471 | uint16_t const TccOverhead = 590; |
maru536 | 2:8d119e9b8f5a | 472 | uint16_t const DssOverhead = 690; |
maru536 | 2:8d119e9b8f5a | 473 | uint16_t const PreRangeOverhead = 660; |
maru536 | 2:8d119e9b8f5a | 474 | uint16_t const FinalRangeOverhead = 550; |
maru536 | 2:8d119e9b8f5a | 475 | |
maru536 | 2:8d119e9b8f5a | 476 | uint32_t const MinTimingBudget = 20000; |
maru536 | 2:8d119e9b8f5a | 477 | |
maru536 | 2:8d119e9b8f5a | 478 | if (budget_us < MinTimingBudget) { return false; } |
maru536 | 2:8d119e9b8f5a | 479 | |
maru536 | 2:8d119e9b8f5a | 480 | uint32_t used_budget_us = StartOverhead + EndOverhead; |
maru536 | 2:8d119e9b8f5a | 481 | |
maru536 | 2:8d119e9b8f5a | 482 | getSequenceStepEnables(&enables); |
maru536 | 2:8d119e9b8f5a | 483 | getSequenceStepTimeouts(&enables, &timeouts); |
maru536 | 2:8d119e9b8f5a | 484 | |
maru536 | 2:8d119e9b8f5a | 485 | if (enables.tcc) |
maru536 | 2:8d119e9b8f5a | 486 | { |
maru536 | 2:8d119e9b8f5a | 487 | used_budget_us += (timeouts.msrc_dss_tcc_us + TccOverhead); |
maru536 | 2:8d119e9b8f5a | 488 | } |
maru536 | 2:8d119e9b8f5a | 489 | |
maru536 | 2:8d119e9b8f5a | 490 | if (enables.dss) |
maru536 | 2:8d119e9b8f5a | 491 | { |
maru536 | 2:8d119e9b8f5a | 492 | used_budget_us += 2 * (timeouts.msrc_dss_tcc_us + DssOverhead); |
maru536 | 2:8d119e9b8f5a | 493 | } |
maru536 | 2:8d119e9b8f5a | 494 | else if (enables.msrc) |
maru536 | 2:8d119e9b8f5a | 495 | { |
maru536 | 2:8d119e9b8f5a | 496 | used_budget_us += (timeouts.msrc_dss_tcc_us + MsrcOverhead); |
maru536 | 2:8d119e9b8f5a | 497 | } |
maru536 | 2:8d119e9b8f5a | 498 | |
maru536 | 2:8d119e9b8f5a | 499 | if (enables.pre_range) |
maru536 | 2:8d119e9b8f5a | 500 | { |
maru536 | 2:8d119e9b8f5a | 501 | used_budget_us += (timeouts.pre_range_us + PreRangeOverhead); |
maru536 | 2:8d119e9b8f5a | 502 | } |
maru536 | 2:8d119e9b8f5a | 503 | |
maru536 | 2:8d119e9b8f5a | 504 | if (enables.final_range) |
maru536 | 2:8d119e9b8f5a | 505 | { |
maru536 | 2:8d119e9b8f5a | 506 | used_budget_us += FinalRangeOverhead; |
maru536 | 2:8d119e9b8f5a | 507 | |
maru536 | 2:8d119e9b8f5a | 508 | // "Note that the final range timeout is determined by the timing |
maru536 | 2:8d119e9b8f5a | 509 | // budget and the sum of all other timeouts within the sequence. |
maru536 | 2:8d119e9b8f5a | 510 | // If there is no room for the final range timeout, then an error |
maru536 | 2:8d119e9b8f5a | 511 | // will be set. Otherwise the remaining time will be applied to |
maru536 | 2:8d119e9b8f5a | 512 | // the final range." |
maru536 | 2:8d119e9b8f5a | 513 | |
maru536 | 2:8d119e9b8f5a | 514 | if (used_budget_us > budget_us) |
maru536 | 2:8d119e9b8f5a | 515 | { |
maru536 | 2:8d119e9b8f5a | 516 | // "Requested timeout too big." |
maru536 | 2:8d119e9b8f5a | 517 | return false; |
maru536 | 2:8d119e9b8f5a | 518 | } |
maru536 | 2:8d119e9b8f5a | 519 | |
maru536 | 2:8d119e9b8f5a | 520 | uint32_t final_range_timeout_us = budget_us - used_budget_us; |
maru536 | 2:8d119e9b8f5a | 521 | |
maru536 | 2:8d119e9b8f5a | 522 | // set_sequence_step_timeout() begin |
maru536 | 2:8d119e9b8f5a | 523 | // (SequenceStepId == VL53L0X_SEQUENCESTEP_FINAL_RANGE) |
maru536 | 2:8d119e9b8f5a | 524 | |
maru536 | 2:8d119e9b8f5a | 525 | // "For the final range timeout, the pre-range timeout |
maru536 | 2:8d119e9b8f5a | 526 | // must be added. To do this both final and pre-range |
maru536 | 2:8d119e9b8f5a | 527 | // timeouts must be expressed in macro periods MClks |
maru536 | 2:8d119e9b8f5a | 528 | // because they have different vcsel periods." |
maru536 | 2:8d119e9b8f5a | 529 | |
maru536 | 2:8d119e9b8f5a | 530 | uint16_t final_range_timeout_mclks = |
maru536 | 2:8d119e9b8f5a | 531 | timeoutMicrosecondsToMclks(final_range_timeout_us, |
maru536 | 2:8d119e9b8f5a | 532 | timeouts.final_range_vcsel_period_pclks); |
maru536 | 2:8d119e9b8f5a | 533 | |
maru536 | 2:8d119e9b8f5a | 534 | if (enables.pre_range) |
maru536 | 2:8d119e9b8f5a | 535 | { |
maru536 | 2:8d119e9b8f5a | 536 | final_range_timeout_mclks += timeouts.pre_range_mclks; |
maru536 | 2:8d119e9b8f5a | 537 | } |
maru536 | 2:8d119e9b8f5a | 538 | |
maru536 | 2:8d119e9b8f5a | 539 | writeReg16Bit(FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI, |
maru536 | 2:8d119e9b8f5a | 540 | encodeTimeout(final_range_timeout_mclks)); |
maru536 | 2:8d119e9b8f5a | 541 | |
maru536 | 2:8d119e9b8f5a | 542 | // set_sequence_step_timeout() end |
maru536 | 2:8d119e9b8f5a | 543 | |
maru536 | 2:8d119e9b8f5a | 544 | measurement_timing_budget_us = budget_us; // store for internal reuse |
maru536 | 2:8d119e9b8f5a | 545 | } |
maru536 | 2:8d119e9b8f5a | 546 | return true; |
maru536 | 2:8d119e9b8f5a | 547 | } |
maru536 | 2:8d119e9b8f5a | 548 | |
maru536 | 2:8d119e9b8f5a | 549 | // Get the measurement timing budget in microseconds |
maru536 | 2:8d119e9b8f5a | 550 | // based on VL53L0X_get_measurement_timing_budget_micro_seconds() |
maru536 | 2:8d119e9b8f5a | 551 | // in us |
maru536 | 2:8d119e9b8f5a | 552 | uint32_t VL53L0X::getMeasurementTimingBudget(void) |
maru536 | 2:8d119e9b8f5a | 553 | { |
maru536 | 2:8d119e9b8f5a | 554 | SequenceStepEnables enables; |
maru536 | 2:8d119e9b8f5a | 555 | SequenceStepTimeouts timeouts; |
maru536 | 2:8d119e9b8f5a | 556 | |
maru536 | 2:8d119e9b8f5a | 557 | uint16_t const StartOverhead = 1910; // note that this is different than the value in set_ |
maru536 | 2:8d119e9b8f5a | 558 | uint16_t const EndOverhead = 960; |
maru536 | 2:8d119e9b8f5a | 559 | uint16_t const MsrcOverhead = 660; |
maru536 | 2:8d119e9b8f5a | 560 | uint16_t const TccOverhead = 590; |
maru536 | 2:8d119e9b8f5a | 561 | uint16_t const DssOverhead = 690; |
maru536 | 2:8d119e9b8f5a | 562 | uint16_t const PreRangeOverhead = 660; |
maru536 | 2:8d119e9b8f5a | 563 | uint16_t const FinalRangeOverhead = 550; |
maru536 | 2:8d119e9b8f5a | 564 | |
maru536 | 2:8d119e9b8f5a | 565 | // "Start and end overhead times always present" |
maru536 | 2:8d119e9b8f5a | 566 | uint32_t budget_us = StartOverhead + EndOverhead; |
maru536 | 2:8d119e9b8f5a | 567 | |
maru536 | 2:8d119e9b8f5a | 568 | getSequenceStepEnables(&enables); |
maru536 | 2:8d119e9b8f5a | 569 | getSequenceStepTimeouts(&enables, &timeouts); |
maru536 | 2:8d119e9b8f5a | 570 | |
maru536 | 2:8d119e9b8f5a | 571 | if (enables.tcc) |
maru536 | 2:8d119e9b8f5a | 572 | { |
maru536 | 2:8d119e9b8f5a | 573 | budget_us += (timeouts.msrc_dss_tcc_us + TccOverhead); |
maru536 | 2:8d119e9b8f5a | 574 | } |
maru536 | 2:8d119e9b8f5a | 575 | |
maru536 | 2:8d119e9b8f5a | 576 | if (enables.dss) |
maru536 | 2:8d119e9b8f5a | 577 | { |
maru536 | 2:8d119e9b8f5a | 578 | budget_us += 2 * (timeouts.msrc_dss_tcc_us + DssOverhead); |
maru536 | 2:8d119e9b8f5a | 579 | } |
maru536 | 2:8d119e9b8f5a | 580 | else if (enables.msrc) |
maru536 | 2:8d119e9b8f5a | 581 | { |
maru536 | 2:8d119e9b8f5a | 582 | budget_us += (timeouts.msrc_dss_tcc_us + MsrcOverhead); |
maru536 | 2:8d119e9b8f5a | 583 | } |
maru536 | 2:8d119e9b8f5a | 584 | |
maru536 | 2:8d119e9b8f5a | 585 | if (enables.pre_range) |
maru536 | 2:8d119e9b8f5a | 586 | { |
maru536 | 2:8d119e9b8f5a | 587 | budget_us += (timeouts.pre_range_us + PreRangeOverhead); |
maru536 | 2:8d119e9b8f5a | 588 | } |
maru536 | 2:8d119e9b8f5a | 589 | |
maru536 | 2:8d119e9b8f5a | 590 | if (enables.final_range) |
maru536 | 2:8d119e9b8f5a | 591 | { |
maru536 | 2:8d119e9b8f5a | 592 | budget_us += (timeouts.final_range_us + FinalRangeOverhead); |
maru536 | 2:8d119e9b8f5a | 593 | } |
maru536 | 2:8d119e9b8f5a | 594 | |
maru536 | 2:8d119e9b8f5a | 595 | measurement_timing_budget_us = budget_us; // store for internal reuse |
maru536 | 2:8d119e9b8f5a | 596 | return budget_us; |
maru536 | 2:8d119e9b8f5a | 597 | } |
maru536 | 2:8d119e9b8f5a | 598 | |
maru536 | 2:8d119e9b8f5a | 599 | // Set the VCSEL (vertical cavity surface emitting laser) pulse period for the |
maru536 | 2:8d119e9b8f5a | 600 | // given period type (pre-range or final range) to the given value in PCLKs. |
maru536 | 2:8d119e9b8f5a | 601 | // Longer periods seem to increase the potential range of the sensor. |
maru536 | 2:8d119e9b8f5a | 602 | // Valid values are (even numbers only): |
maru536 | 2:8d119e9b8f5a | 603 | // pre: 12 to 18 (initialized default: 14) |
maru536 | 2:8d119e9b8f5a | 604 | // final: 8 to 14 (initialized default: 10) |
maru536 | 2:8d119e9b8f5a | 605 | // based on VL53L0X_set_vcsel_pulse_period() |
maru536 | 2:8d119e9b8f5a | 606 | bool VL53L0X::setVcselPulsePeriod(vcselPeriodType type, uint8_t period_pclks) |
maru536 | 2:8d119e9b8f5a | 607 | { |
maru536 | 2:8d119e9b8f5a | 608 | uint8_t vcsel_period_reg = encodeVcselPeriod(period_pclks); |
maru536 | 2:8d119e9b8f5a | 609 | |
maru536 | 2:8d119e9b8f5a | 610 | SequenceStepEnables enables; |
maru536 | 2:8d119e9b8f5a | 611 | SequenceStepTimeouts timeouts; |
maru536 | 2:8d119e9b8f5a | 612 | |
maru536 | 2:8d119e9b8f5a | 613 | getSequenceStepEnables(&enables); |
maru536 | 2:8d119e9b8f5a | 614 | getSequenceStepTimeouts(&enables, &timeouts); |
maru536 | 2:8d119e9b8f5a | 615 | |
maru536 | 2:8d119e9b8f5a | 616 | // "Apply specific settings for the requested clock period" |
maru536 | 2:8d119e9b8f5a | 617 | // "Re-calculate and apply timeouts, in macro periods" |
maru536 | 2:8d119e9b8f5a | 618 | |
maru536 | 2:8d119e9b8f5a | 619 | // "When the VCSEL period for the pre or final range is changed, |
maru536 | 2:8d119e9b8f5a | 620 | // the corresponding timeout must be read from the device using |
maru536 | 2:8d119e9b8f5a | 621 | // the current VCSEL period, then the new VCSEL period can be |
maru536 | 2:8d119e9b8f5a | 622 | // applied. The timeout then must be written back to the device |
maru536 | 2:8d119e9b8f5a | 623 | // using the new VCSEL period. |
maru536 | 2:8d119e9b8f5a | 624 | // |
maru536 | 2:8d119e9b8f5a | 625 | // For the MSRC timeout, the same applies - this timeout being |
maru536 | 2:8d119e9b8f5a | 626 | // dependant on the pre-range vcsel period." |
maru536 | 2:8d119e9b8f5a | 627 | |
maru536 | 2:8d119e9b8f5a | 628 | |
maru536 | 2:8d119e9b8f5a | 629 | if (type == VcselPeriodPreRange) |
maru536 | 2:8d119e9b8f5a | 630 | { |
maru536 | 2:8d119e9b8f5a | 631 | // "Set phase check limits" |
maru536 | 2:8d119e9b8f5a | 632 | switch (period_pclks) |
maru536 | 2:8d119e9b8f5a | 633 | { |
maru536 | 2:8d119e9b8f5a | 634 | case 12: |
maru536 | 2:8d119e9b8f5a | 635 | writeReg(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x18); |
maru536 | 2:8d119e9b8f5a | 636 | break; |
maru536 | 2:8d119e9b8f5a | 637 | |
maru536 | 2:8d119e9b8f5a | 638 | case 14: |
maru536 | 2:8d119e9b8f5a | 639 | writeReg(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x30); |
maru536 | 2:8d119e9b8f5a | 640 | break; |
maru536 | 2:8d119e9b8f5a | 641 | |
maru536 | 2:8d119e9b8f5a | 642 | case 16: |
maru536 | 2:8d119e9b8f5a | 643 | writeReg(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x40); |
maru536 | 2:8d119e9b8f5a | 644 | break; |
maru536 | 2:8d119e9b8f5a | 645 | |
maru536 | 2:8d119e9b8f5a | 646 | case 18: |
maru536 | 2:8d119e9b8f5a | 647 | writeReg(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x50); |
maru536 | 2:8d119e9b8f5a | 648 | break; |
maru536 | 2:8d119e9b8f5a | 649 | |
maru536 | 2:8d119e9b8f5a | 650 | default: |
maru536 | 2:8d119e9b8f5a | 651 | // invalid period |
maru536 | 2:8d119e9b8f5a | 652 | return false; |
maru536 | 2:8d119e9b8f5a | 653 | } |
maru536 | 2:8d119e9b8f5a | 654 | writeReg(PRE_RANGE_CONFIG_VALID_PHASE_LOW, 0x08); |
maru536 | 2:8d119e9b8f5a | 655 | |
maru536 | 2:8d119e9b8f5a | 656 | // apply new VCSEL period |
maru536 | 2:8d119e9b8f5a | 657 | writeReg(PRE_RANGE_CONFIG_VCSEL_PERIOD, vcsel_period_reg); |
maru536 | 2:8d119e9b8f5a | 658 | |
maru536 | 2:8d119e9b8f5a | 659 | // update timeouts |
maru536 | 2:8d119e9b8f5a | 660 | |
maru536 | 2:8d119e9b8f5a | 661 | // set_sequence_step_timeout() begin |
maru536 | 2:8d119e9b8f5a | 662 | // (SequenceStepId == VL53L0X_SEQUENCESTEP_PRE_RANGE) |
maru536 | 2:8d119e9b8f5a | 663 | |
maru536 | 2:8d119e9b8f5a | 664 | uint16_t new_pre_range_timeout_mclks = |
maru536 | 2:8d119e9b8f5a | 665 | timeoutMicrosecondsToMclks(timeouts.pre_range_us, period_pclks); |
maru536 | 2:8d119e9b8f5a | 666 | |
maru536 | 2:8d119e9b8f5a | 667 | writeReg16Bit(PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI, |
maru536 | 2:8d119e9b8f5a | 668 | encodeTimeout(new_pre_range_timeout_mclks)); |
maru536 | 2:8d119e9b8f5a | 669 | |
maru536 | 2:8d119e9b8f5a | 670 | // set_sequence_step_timeout() end |
maru536 | 2:8d119e9b8f5a | 671 | |
maru536 | 2:8d119e9b8f5a | 672 | // set_sequence_step_timeout() begin |
maru536 | 2:8d119e9b8f5a | 673 | // (SequenceStepId == VL53L0X_SEQUENCESTEP_MSRC) |
maru536 | 2:8d119e9b8f5a | 674 | |
maru536 | 2:8d119e9b8f5a | 675 | uint16_t new_msrc_timeout_mclks = |
maru536 | 2:8d119e9b8f5a | 676 | timeoutMicrosecondsToMclks(timeouts.msrc_dss_tcc_us, period_pclks); |
maru536 | 2:8d119e9b8f5a | 677 | |
maru536 | 2:8d119e9b8f5a | 678 | writeReg(MSRC_CONFIG_TIMEOUT_MACROP, |
maru536 | 2:8d119e9b8f5a | 679 | (new_msrc_timeout_mclks > 256) ? 255 : (new_msrc_timeout_mclks - 1)); |
maru536 | 2:8d119e9b8f5a | 680 | |
maru536 | 2:8d119e9b8f5a | 681 | // set_sequence_step_timeout() end |
maru536 | 2:8d119e9b8f5a | 682 | } |
maru536 | 2:8d119e9b8f5a | 683 | else if (type == VcselPeriodFinalRange) |
maru536 | 2:8d119e9b8f5a | 684 | { |
maru536 | 2:8d119e9b8f5a | 685 | switch (period_pclks) |
maru536 | 2:8d119e9b8f5a | 686 | { |
maru536 | 2:8d119e9b8f5a | 687 | case 8: |
maru536 | 2:8d119e9b8f5a | 688 | writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x10); |
maru536 | 2:8d119e9b8f5a | 689 | writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_LOW, 0x08); |
maru536 | 2:8d119e9b8f5a | 690 | writeReg(GLOBAL_CONFIG_VCSEL_WIDTH, 0x02); |
maru536 | 2:8d119e9b8f5a | 691 | writeReg(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x0C); |
maru536 | 2:8d119e9b8f5a | 692 | writeReg(0xFF, 0x01); |
maru536 | 2:8d119e9b8f5a | 693 | writeReg(ALGO_PHASECAL_LIM, 0x30); |
maru536 | 2:8d119e9b8f5a | 694 | writeReg(0xFF, 0x00); |
maru536 | 2:8d119e9b8f5a | 695 | break; |
maru536 | 2:8d119e9b8f5a | 696 | |
maru536 | 2:8d119e9b8f5a | 697 | case 10: |
maru536 | 2:8d119e9b8f5a | 698 | writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x28); |
maru536 | 2:8d119e9b8f5a | 699 | writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_LOW, 0x08); |
maru536 | 2:8d119e9b8f5a | 700 | writeReg(GLOBAL_CONFIG_VCSEL_WIDTH, 0x03); |
maru536 | 2:8d119e9b8f5a | 701 | writeReg(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x09); |
maru536 | 2:8d119e9b8f5a | 702 | writeReg(0xFF, 0x01); |
maru536 | 2:8d119e9b8f5a | 703 | writeReg(ALGO_PHASECAL_LIM, 0x20); |
maru536 | 2:8d119e9b8f5a | 704 | writeReg(0xFF, 0x00); |
maru536 | 2:8d119e9b8f5a | 705 | break; |
maru536 | 2:8d119e9b8f5a | 706 | |
maru536 | 2:8d119e9b8f5a | 707 | case 12: |
maru536 | 2:8d119e9b8f5a | 708 | writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x38); |
maru536 | 2:8d119e9b8f5a | 709 | writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_LOW, 0x08); |
maru536 | 2:8d119e9b8f5a | 710 | writeReg(GLOBAL_CONFIG_VCSEL_WIDTH, 0x03); |
maru536 | 2:8d119e9b8f5a | 711 | writeReg(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x08); |
maru536 | 2:8d119e9b8f5a | 712 | writeReg(0xFF, 0x01); |
maru536 | 2:8d119e9b8f5a | 713 | writeReg(ALGO_PHASECAL_LIM, 0x20); |
maru536 | 2:8d119e9b8f5a | 714 | writeReg(0xFF, 0x00); |
maru536 | 2:8d119e9b8f5a | 715 | break; |
maru536 | 2:8d119e9b8f5a | 716 | |
maru536 | 2:8d119e9b8f5a | 717 | case 14: |
maru536 | 2:8d119e9b8f5a | 718 | writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x48); |
maru536 | 2:8d119e9b8f5a | 719 | writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_LOW, 0x08); |
maru536 | 2:8d119e9b8f5a | 720 | writeReg(GLOBAL_CONFIG_VCSEL_WIDTH, 0x03); |
maru536 | 2:8d119e9b8f5a | 721 | writeReg(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x07); |
maru536 | 2:8d119e9b8f5a | 722 | writeReg(0xFF, 0x01); |
maru536 | 2:8d119e9b8f5a | 723 | writeReg(ALGO_PHASECAL_LIM, 0x20); |
maru536 | 2:8d119e9b8f5a | 724 | writeReg(0xFF, 0x00); |
maru536 | 2:8d119e9b8f5a | 725 | break; |
maru536 | 2:8d119e9b8f5a | 726 | |
maru536 | 2:8d119e9b8f5a | 727 | default: |
maru536 | 2:8d119e9b8f5a | 728 | // invalid period |
maru536 | 2:8d119e9b8f5a | 729 | return false; |
maru536 | 2:8d119e9b8f5a | 730 | } |
maru536 | 2:8d119e9b8f5a | 731 | |
maru536 | 2:8d119e9b8f5a | 732 | // apply new VCSEL period |
maru536 | 2:8d119e9b8f5a | 733 | writeReg(FINAL_RANGE_CONFIG_VCSEL_PERIOD, vcsel_period_reg); |
maru536 | 2:8d119e9b8f5a | 734 | |
maru536 | 2:8d119e9b8f5a | 735 | // update timeouts |
maru536 | 2:8d119e9b8f5a | 736 | |
maru536 | 2:8d119e9b8f5a | 737 | // set_sequence_step_timeout() begin |
maru536 | 2:8d119e9b8f5a | 738 | // (SequenceStepId == VL53L0X_SEQUENCESTEP_FINAL_RANGE) |
maru536 | 2:8d119e9b8f5a | 739 | |
maru536 | 2:8d119e9b8f5a | 740 | // "For the final range timeout, the pre-range timeout |
maru536 | 2:8d119e9b8f5a | 741 | // must be added. To do this both final and pre-range |
maru536 | 2:8d119e9b8f5a | 742 | // timeouts must be expressed in macro periods MClks |
maru536 | 2:8d119e9b8f5a | 743 | // because they have different vcsel periods." |
maru536 | 2:8d119e9b8f5a | 744 | |
maru536 | 2:8d119e9b8f5a | 745 | uint16_t new_final_range_timeout_mclks = |
maru536 | 2:8d119e9b8f5a | 746 | timeoutMicrosecondsToMclks(timeouts.final_range_us, period_pclks); |
maru536 | 2:8d119e9b8f5a | 747 | |
maru536 | 2:8d119e9b8f5a | 748 | if (enables.pre_range) |
maru536 | 2:8d119e9b8f5a | 749 | { |
maru536 | 2:8d119e9b8f5a | 750 | new_final_range_timeout_mclks += timeouts.pre_range_mclks; |
maru536 | 2:8d119e9b8f5a | 751 | } |
maru536 | 2:8d119e9b8f5a | 752 | |
maru536 | 2:8d119e9b8f5a | 753 | writeReg16Bit(FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI, |
maru536 | 2:8d119e9b8f5a | 754 | encodeTimeout(new_final_range_timeout_mclks)); |
maru536 | 2:8d119e9b8f5a | 755 | |
maru536 | 2:8d119e9b8f5a | 756 | // set_sequence_step_timeout end |
maru536 | 2:8d119e9b8f5a | 757 | } |
maru536 | 2:8d119e9b8f5a | 758 | else |
maru536 | 2:8d119e9b8f5a | 759 | { |
maru536 | 2:8d119e9b8f5a | 760 | // invalid type |
maru536 | 2:8d119e9b8f5a | 761 | return false; |
maru536 | 2:8d119e9b8f5a | 762 | } |
maru536 | 2:8d119e9b8f5a | 763 | |
maru536 | 2:8d119e9b8f5a | 764 | // "Finally, the timing budget must be re-applied" |
maru536 | 2:8d119e9b8f5a | 765 | |
maru536 | 2:8d119e9b8f5a | 766 | setMeasurementTimingBudget(measurement_timing_budget_us); |
maru536 | 2:8d119e9b8f5a | 767 | |
maru536 | 2:8d119e9b8f5a | 768 | // "Perform the phase calibration. This is needed after changing on vcsel period." |
maru536 | 2:8d119e9b8f5a | 769 | // VL53L0X_perform_phase_calibration() begin |
maru536 | 2:8d119e9b8f5a | 770 | |
maru536 | 2:8d119e9b8f5a | 771 | uint8_t sequence_config = readReg(SYSTEM_SEQUENCE_CONFIG); |
maru536 | 2:8d119e9b8f5a | 772 | writeReg(SYSTEM_SEQUENCE_CONFIG, 0x02); |
maru536 | 2:8d119e9b8f5a | 773 | performSingleRefCalibration(0x0); |
maru536 | 2:8d119e9b8f5a | 774 | writeReg(SYSTEM_SEQUENCE_CONFIG, sequence_config); |
maru536 | 2:8d119e9b8f5a | 775 | |
maru536 | 2:8d119e9b8f5a | 776 | // VL53L0X_perform_phase_calibration() end |
maru536 | 2:8d119e9b8f5a | 777 | |
maru536 | 2:8d119e9b8f5a | 778 | return true; |
maru536 | 2:8d119e9b8f5a | 779 | } |
maru536 | 2:8d119e9b8f5a | 780 | |
maru536 | 2:8d119e9b8f5a | 781 | // Get the VCSEL pulse period in PCLKs for the given period type. |
maru536 | 2:8d119e9b8f5a | 782 | // based on VL53L0X_get_vcsel_pulse_period() |
maru536 | 2:8d119e9b8f5a | 783 | uint8_t VL53L0X::getVcselPulsePeriod(vcselPeriodType type) |
maru536 | 2:8d119e9b8f5a | 784 | { |
maru536 | 2:8d119e9b8f5a | 785 | if (type == VcselPeriodPreRange) |
maru536 | 2:8d119e9b8f5a | 786 | { |
maru536 | 2:8d119e9b8f5a | 787 | return decodeVcselPeriod(readReg(PRE_RANGE_CONFIG_VCSEL_PERIOD)); |
maru536 | 2:8d119e9b8f5a | 788 | } |
maru536 | 2:8d119e9b8f5a | 789 | else if (type == VcselPeriodFinalRange) |
maru536 | 2:8d119e9b8f5a | 790 | { |
maru536 | 2:8d119e9b8f5a | 791 | return decodeVcselPeriod(readReg(FINAL_RANGE_CONFIG_VCSEL_PERIOD)); |
maru536 | 2:8d119e9b8f5a | 792 | } |
maru536 | 2:8d119e9b8f5a | 793 | else { return 255; } |
maru536 | 2:8d119e9b8f5a | 794 | } |
maru536 | 2:8d119e9b8f5a | 795 | |
maru536 | 2:8d119e9b8f5a | 796 | // Start continuous ranging measurements. If period_ms (optional) is 0 or not |
maru536 | 2:8d119e9b8f5a | 797 | // given, continuous back-to-back mode is used (the sensor takes measurements as |
maru536 | 2:8d119e9b8f5a | 798 | // often as possible); otherwise, continuous timed mode is used, with the given |
maru536 | 2:8d119e9b8f5a | 799 | // inter-measurement period in milliseconds determining how often the sensor |
maru536 | 2:8d119e9b8f5a | 800 | // takes a measurement. |
maru536 | 2:8d119e9b8f5a | 801 | // based on VL53L0X_StartMeasurement() |
maru536 | 2:8d119e9b8f5a | 802 | void VL53L0X::startContinuous(uint32_t period_ms) |
maru536 | 2:8d119e9b8f5a | 803 | { |
maru536 | 2:8d119e9b8f5a | 804 | writeReg(0x80, 0x01); |
maru536 | 2:8d119e9b8f5a | 805 | writeReg(0xFF, 0x01); |
maru536 | 2:8d119e9b8f5a | 806 | writeReg(0x00, 0x00); |
maru536 | 2:8d119e9b8f5a | 807 | writeReg(0x91, stop_variable); |
maru536 | 2:8d119e9b8f5a | 808 | writeReg(0x00, 0x01); |
maru536 | 2:8d119e9b8f5a | 809 | writeReg(0xFF, 0x00); |
maru536 | 2:8d119e9b8f5a | 810 | writeReg(0x80, 0x00); |
maru536 | 2:8d119e9b8f5a | 811 | |
maru536 | 2:8d119e9b8f5a | 812 | if (period_ms != 0) |
maru536 | 2:8d119e9b8f5a | 813 | { |
maru536 | 2:8d119e9b8f5a | 814 | // continuous timed mode |
maru536 | 2:8d119e9b8f5a | 815 | |
maru536 | 2:8d119e9b8f5a | 816 | // VL53L0X_SetInterMeasurementPeriodMilliSeconds() begin |
maru536 | 2:8d119e9b8f5a | 817 | |
maru536 | 2:8d119e9b8f5a | 818 | uint16_t osc_calibrate_val = readReg16Bit(OSC_CALIBRATE_VAL); |
maru536 | 2:8d119e9b8f5a | 819 | |
maru536 | 2:8d119e9b8f5a | 820 | if (osc_calibrate_val != 0) |
maru536 | 2:8d119e9b8f5a | 821 | { |
maru536 | 2:8d119e9b8f5a | 822 | period_ms *= osc_calibrate_val; |
maru536 | 2:8d119e9b8f5a | 823 | } |
maru536 | 2:8d119e9b8f5a | 824 | |
maru536 | 2:8d119e9b8f5a | 825 | writeReg32Bit(SYSTEM_INTERMEASUREMENT_PERIOD, period_ms); |
maru536 | 2:8d119e9b8f5a | 826 | |
maru536 | 2:8d119e9b8f5a | 827 | // VL53L0X_SetInterMeasurementPeriodMilliSeconds() end |
maru536 | 2:8d119e9b8f5a | 828 | |
maru536 | 2:8d119e9b8f5a | 829 | writeReg(SYSRANGE_START, 0x04); // VL53L0X_REG_SYSRANGE_MODE_TIMED |
maru536 | 2:8d119e9b8f5a | 830 | } |
maru536 | 2:8d119e9b8f5a | 831 | else |
maru536 | 2:8d119e9b8f5a | 832 | { |
maru536 | 2:8d119e9b8f5a | 833 | // continuous back-to-back mode |
maru536 | 2:8d119e9b8f5a | 834 | writeReg(SYSRANGE_START, 0x02); // VL53L0X_REG_SYSRANGE_MODE_BACKTOBACK |
maru536 | 2:8d119e9b8f5a | 835 | } |
maru536 | 2:8d119e9b8f5a | 836 | } |
maru536 | 2:8d119e9b8f5a | 837 | |
maru536 | 2:8d119e9b8f5a | 838 | // Stop continuous measurements |
maru536 | 2:8d119e9b8f5a | 839 | // based on VL53L0X_StopMeasurement() |
maru536 | 2:8d119e9b8f5a | 840 | void VL53L0X::stopContinuous(void) |
maru536 | 2:8d119e9b8f5a | 841 | { |
maru536 | 2:8d119e9b8f5a | 842 | writeReg(SYSRANGE_START, 0x01); // VL53L0X_REG_SYSRANGE_MODE_SINGLESHOT |
maru536 | 2:8d119e9b8f5a | 843 | |
maru536 | 2:8d119e9b8f5a | 844 | writeReg(0xFF, 0x01); |
maru536 | 2:8d119e9b8f5a | 845 | writeReg(0x00, 0x00); |
maru536 | 2:8d119e9b8f5a | 846 | writeReg(0x91, 0x00); |
maru536 | 2:8d119e9b8f5a | 847 | writeReg(0x00, 0x01); |
maru536 | 2:8d119e9b8f5a | 848 | writeReg(0xFF, 0x00); |
maru536 | 2:8d119e9b8f5a | 849 | } |
maru536 | 2:8d119e9b8f5a | 850 | |
maru536 | 2:8d119e9b8f5a | 851 | // Returns a range reading in millimeters when continuous mode is active |
maru536 | 2:8d119e9b8f5a | 852 | // (readRangeSingleMillimeters() also calls this function after starting a |
maru536 | 2:8d119e9b8f5a | 853 | // single-shot range measurement) |
maru536 | 2:8d119e9b8f5a | 854 | uint16_t VL53L0X::readRangeContinuousMillimeters(void) |
maru536 | 2:8d119e9b8f5a | 855 | { |
maru536 | 2:8d119e9b8f5a | 856 | startTimeout(); |
maru536 | 2:8d119e9b8f5a | 857 | while ((readReg(RESULT_INTERRUPT_STATUS) & 0x07) == 0) |
maru536 | 2:8d119e9b8f5a | 858 | { |
maru536 | 2:8d119e9b8f5a | 859 | if (checkTimeoutExpired()) |
maru536 | 2:8d119e9b8f5a | 860 | { |
maru536 | 2:8d119e9b8f5a | 861 | did_timeout = true; |
maru536 | 2:8d119e9b8f5a | 862 | return 65535; |
maru536 | 2:8d119e9b8f5a | 863 | } |
maru536 | 2:8d119e9b8f5a | 864 | } |
maru536 | 2:8d119e9b8f5a | 865 | |
maru536 | 2:8d119e9b8f5a | 866 | // assumptions: Linearity Corrective Gain is 1000 (default); |
maru536 | 2:8d119e9b8f5a | 867 | // fractional ranging is not enabled |
maru536 | 2:8d119e9b8f5a | 868 | uint16_t range = readReg16Bit(RESULT_RANGE_STATUS + 10); |
maru536 | 2:8d119e9b8f5a | 869 | |
maru536 | 2:8d119e9b8f5a | 870 | writeReg(SYSTEM_INTERRUPT_CLEAR, 0x01); |
maru536 | 2:8d119e9b8f5a | 871 | |
maru536 | 2:8d119e9b8f5a | 872 | return range; |
maru536 | 2:8d119e9b8f5a | 873 | } |
maru536 | 2:8d119e9b8f5a | 874 | |
maru536 | 2:8d119e9b8f5a | 875 | // Performs a single-shot range measurement and returns the reading in |
maru536 | 2:8d119e9b8f5a | 876 | // millimeters |
maru536 | 2:8d119e9b8f5a | 877 | // based on VL53L0X_PerformSingleRangingMeasurement() |
maru536 | 2:8d119e9b8f5a | 878 | uint16_t VL53L0X::readRangeSingleMillimeters(void) |
maru536 | 2:8d119e9b8f5a | 879 | { |
maru536 | 2:8d119e9b8f5a | 880 | writeReg(0x80, 0x01); |
maru536 | 2:8d119e9b8f5a | 881 | writeReg(0xFF, 0x01); |
maru536 | 2:8d119e9b8f5a | 882 | writeReg(0x00, 0x00); |
maru536 | 2:8d119e9b8f5a | 883 | writeReg(0x91, stop_variable); |
maru536 | 2:8d119e9b8f5a | 884 | writeReg(0x00, 0x01); |
maru536 | 2:8d119e9b8f5a | 885 | writeReg(0xFF, 0x00); |
maru536 | 2:8d119e9b8f5a | 886 | writeReg(0x80, 0x00); |
maru536 | 2:8d119e9b8f5a | 887 | |
maru536 | 2:8d119e9b8f5a | 888 | writeReg(SYSRANGE_START, 0x01); |
maru536 | 2:8d119e9b8f5a | 889 | |
maru536 | 2:8d119e9b8f5a | 890 | // "Wait until start bit has been cleared" |
maru536 | 2:8d119e9b8f5a | 891 | startTimeout(); |
maru536 | 2:8d119e9b8f5a | 892 | while (readReg(SYSRANGE_START) & 0x01) |
maru536 | 2:8d119e9b8f5a | 893 | { |
maru536 | 2:8d119e9b8f5a | 894 | if (checkTimeoutExpired()) |
maru536 | 2:8d119e9b8f5a | 895 | { |
maru536 | 2:8d119e9b8f5a | 896 | did_timeout = true; |
maru536 | 2:8d119e9b8f5a | 897 | return 65535; |
maru536 | 2:8d119e9b8f5a | 898 | } |
maru536 | 2:8d119e9b8f5a | 899 | } |
maru536 | 2:8d119e9b8f5a | 900 | |
maru536 | 2:8d119e9b8f5a | 901 | return readRangeContinuousMillimeters(); |
maru536 | 2:8d119e9b8f5a | 902 | } |
maru536 | 2:8d119e9b8f5a | 903 | |
maru536 | 2:8d119e9b8f5a | 904 | // Did a timeout occur in one of the read functions since the last call to |
maru536 | 2:8d119e9b8f5a | 905 | // timeoutOccurred()? |
maru536 | 2:8d119e9b8f5a | 906 | bool VL53L0X::timeoutOccurred() |
maru536 | 2:8d119e9b8f5a | 907 | { |
maru536 | 2:8d119e9b8f5a | 908 | bool tmp = did_timeout; |
maru536 | 2:8d119e9b8f5a | 909 | did_timeout = false; |
maru536 | 2:8d119e9b8f5a | 910 | return tmp; |
maru536 | 2:8d119e9b8f5a | 911 | } |
maru536 | 2:8d119e9b8f5a | 912 | |
maru536 | 2:8d119e9b8f5a | 913 | // Private Methods ///////////////////////////////////////////////////////////// |
maru536 | 2:8d119e9b8f5a | 914 | |
maru536 | 2:8d119e9b8f5a | 915 | // Get reference SPAD (single photon avalanche diode) count and type |
maru536 | 2:8d119e9b8f5a | 916 | // based on VL53L0X_get_info_from_device(), |
maru536 | 2:8d119e9b8f5a | 917 | // but only gets reference SPAD count and type |
maru536 | 2:8d119e9b8f5a | 918 | bool VL53L0X::getSpadInfo(uint8_t * count, bool * type_is_aperture) |
maru536 | 2:8d119e9b8f5a | 919 | { |
maru536 | 2:8d119e9b8f5a | 920 | uint8_t tmp; |
maru536 | 2:8d119e9b8f5a | 921 | |
maru536 | 2:8d119e9b8f5a | 922 | writeReg(0x80, 0x01); |
maru536 | 2:8d119e9b8f5a | 923 | writeReg(0xFF, 0x01); |
maru536 | 2:8d119e9b8f5a | 924 | writeReg(0x00, 0x00); |
maru536 | 2:8d119e9b8f5a | 925 | |
maru536 | 2:8d119e9b8f5a | 926 | writeReg(0xFF, 0x06); |
maru536 | 2:8d119e9b8f5a | 927 | writeReg(0x83, readReg(0x83) | 0x04); |
maru536 | 2:8d119e9b8f5a | 928 | writeReg(0xFF, 0x07); |
maru536 | 2:8d119e9b8f5a | 929 | writeReg(0x81, 0x01); |
maru536 | 2:8d119e9b8f5a | 930 | |
maru536 | 2:8d119e9b8f5a | 931 | writeReg(0x80, 0x01); |
maru536 | 2:8d119e9b8f5a | 932 | |
maru536 | 2:8d119e9b8f5a | 933 | writeReg(0x94, 0x6b); |
maru536 | 2:8d119e9b8f5a | 934 | writeReg(0x83, 0x00); |
maru536 | 2:8d119e9b8f5a | 935 | startTimeout(); |
maru536 | 2:8d119e9b8f5a | 936 | while (readReg(0x83) == 0x00) |
maru536 | 2:8d119e9b8f5a | 937 | { |
maru536 | 2:8d119e9b8f5a | 938 | if (checkTimeoutExpired()) { return false; } |
maru536 | 2:8d119e9b8f5a | 939 | } |
maru536 | 2:8d119e9b8f5a | 940 | writeReg(0x83, 0x01); |
maru536 | 2:8d119e9b8f5a | 941 | tmp = readReg(0x92); |
maru536 | 2:8d119e9b8f5a | 942 | |
maru536 | 2:8d119e9b8f5a | 943 | *count = tmp & 0x7f; |
maru536 | 2:8d119e9b8f5a | 944 | *type_is_aperture = (tmp >> 7) & 0x01; |
maru536 | 2:8d119e9b8f5a | 945 | |
maru536 | 2:8d119e9b8f5a | 946 | writeReg(0x81, 0x00); |
maru536 | 2:8d119e9b8f5a | 947 | writeReg(0xFF, 0x06); |
maru536 | 2:8d119e9b8f5a | 948 | writeReg(0x83, readReg( 0x83 & ~0x04)); |
maru536 | 2:8d119e9b8f5a | 949 | writeReg(0xFF, 0x01); |
maru536 | 2:8d119e9b8f5a | 950 | writeReg(0x00, 0x01); |
maru536 | 2:8d119e9b8f5a | 951 | |
maru536 | 2:8d119e9b8f5a | 952 | writeReg(0xFF, 0x00); |
maru536 | 2:8d119e9b8f5a | 953 | writeReg(0x80, 0x00); |
maru536 | 2:8d119e9b8f5a | 954 | |
maru536 | 2:8d119e9b8f5a | 955 | return true; |
maru536 | 2:8d119e9b8f5a | 956 | } |
maru536 | 2:8d119e9b8f5a | 957 | |
maru536 | 2:8d119e9b8f5a | 958 | // Get sequence step enables |
maru536 | 2:8d119e9b8f5a | 959 | // based on VL53L0X_GetSequenceStepEnables() |
maru536 | 2:8d119e9b8f5a | 960 | void VL53L0X::getSequenceStepEnables(SequenceStepEnables * enables) |
maru536 | 2:8d119e9b8f5a | 961 | { |
maru536 | 2:8d119e9b8f5a | 962 | uint8_t sequence_config = readReg(SYSTEM_SEQUENCE_CONFIG); |
maru536 | 2:8d119e9b8f5a | 963 | |
maru536 | 2:8d119e9b8f5a | 964 | enables->tcc = (sequence_config >> 4) & 0x1; |
maru536 | 2:8d119e9b8f5a | 965 | enables->dss = (sequence_config >> 3) & 0x1; |
maru536 | 2:8d119e9b8f5a | 966 | enables->msrc = (sequence_config >> 2) & 0x1; |
maru536 | 2:8d119e9b8f5a | 967 | enables->pre_range = (sequence_config >> 6) & 0x1; |
maru536 | 2:8d119e9b8f5a | 968 | enables->final_range = (sequence_config >> 7) & 0x1; |
maru536 | 2:8d119e9b8f5a | 969 | } |
maru536 | 2:8d119e9b8f5a | 970 | |
maru536 | 2:8d119e9b8f5a | 971 | // Get sequence step timeouts |
maru536 | 2:8d119e9b8f5a | 972 | // based on get_sequence_step_timeout(), |
maru536 | 2:8d119e9b8f5a | 973 | // but gets all timeouts instead of just the requested one, and also stores |
maru536 | 2:8d119e9b8f5a | 974 | // intermediate values |
maru536 | 2:8d119e9b8f5a | 975 | void VL53L0X::getSequenceStepTimeouts(SequenceStepEnables const * enables, SequenceStepTimeouts * timeouts) |
maru536 | 2:8d119e9b8f5a | 976 | { |
maru536 | 2:8d119e9b8f5a | 977 | timeouts->pre_range_vcsel_period_pclks = getVcselPulsePeriod(VcselPeriodPreRange); |
maru536 | 2:8d119e9b8f5a | 978 | |
maru536 | 2:8d119e9b8f5a | 979 | timeouts->msrc_dss_tcc_mclks = readReg(MSRC_CONFIG_TIMEOUT_MACROP) + 1; |
maru536 | 2:8d119e9b8f5a | 980 | timeouts->msrc_dss_tcc_us = |
maru536 | 2:8d119e9b8f5a | 981 | timeoutMclksToMicroseconds(timeouts->msrc_dss_tcc_mclks, |
maru536 | 2:8d119e9b8f5a | 982 | timeouts->pre_range_vcsel_period_pclks); |
maru536 | 2:8d119e9b8f5a | 983 | |
maru536 | 2:8d119e9b8f5a | 984 | timeouts->pre_range_mclks = |
maru536 | 2:8d119e9b8f5a | 985 | decodeTimeout(readReg16Bit(PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI)); |
maru536 | 2:8d119e9b8f5a | 986 | timeouts->pre_range_us = |
maru536 | 2:8d119e9b8f5a | 987 | timeoutMclksToMicroseconds(timeouts->pre_range_mclks, |
maru536 | 2:8d119e9b8f5a | 988 | timeouts->pre_range_vcsel_period_pclks); |
maru536 | 2:8d119e9b8f5a | 989 | |
maru536 | 2:8d119e9b8f5a | 990 | timeouts->final_range_vcsel_period_pclks = getVcselPulsePeriod(VcselPeriodFinalRange); |
maru536 | 2:8d119e9b8f5a | 991 | |
maru536 | 2:8d119e9b8f5a | 992 | timeouts->final_range_mclks = |
maru536 | 2:8d119e9b8f5a | 993 | decodeTimeout(readReg16Bit(FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI)); |
maru536 | 2:8d119e9b8f5a | 994 | |
maru536 | 2:8d119e9b8f5a | 995 | if (enables->pre_range) |
maru536 | 2:8d119e9b8f5a | 996 | { |
maru536 | 2:8d119e9b8f5a | 997 | timeouts->final_range_mclks -= timeouts->pre_range_mclks; |
maru536 | 2:8d119e9b8f5a | 998 | } |
maru536 | 2:8d119e9b8f5a | 999 | |
maru536 | 2:8d119e9b8f5a | 1000 | timeouts->final_range_us = |
maru536 | 2:8d119e9b8f5a | 1001 | timeoutMclksToMicroseconds(timeouts->final_range_mclks, |
maru536 | 2:8d119e9b8f5a | 1002 | timeouts->final_range_vcsel_period_pclks); |
maru536 | 2:8d119e9b8f5a | 1003 | } |
maru536 | 2:8d119e9b8f5a | 1004 | |
maru536 | 2:8d119e9b8f5a | 1005 | // Decode sequence step timeout in MCLKs from register value |
maru536 | 2:8d119e9b8f5a | 1006 | // based on VL53L0X_decode_timeout() |
maru536 | 2:8d119e9b8f5a | 1007 | // Note: the original function returned a uint32_t, but the return value is |
maru536 | 2:8d119e9b8f5a | 1008 | // always stored in a uint16_t. |
maru536 | 2:8d119e9b8f5a | 1009 | uint16_t VL53L0X::decodeTimeout(uint16_t reg_val) |
maru536 | 2:8d119e9b8f5a | 1010 | { |
maru536 | 2:8d119e9b8f5a | 1011 | // format: "(LSByte * 2^MSByte) + 1" |
maru536 | 2:8d119e9b8f5a | 1012 | return (uint16_t)((reg_val & 0x00FF) << |
maru536 | 2:8d119e9b8f5a | 1013 | (uint16_t)((reg_val & 0xFF00) >> 8)) + 1; |
maru536 | 2:8d119e9b8f5a | 1014 | } |
maru536 | 2:8d119e9b8f5a | 1015 | |
maru536 | 2:8d119e9b8f5a | 1016 | // Encode sequence step timeout register value from timeout in MCLKs |
maru536 | 2:8d119e9b8f5a | 1017 | // based on VL53L0X_encode_timeout() |
maru536 | 2:8d119e9b8f5a | 1018 | // Note: the original function took a uint16_t, but the argument passed to it |
maru536 | 2:8d119e9b8f5a | 1019 | // is always a uint16_t. |
maru536 | 2:8d119e9b8f5a | 1020 | uint16_t VL53L0X::encodeTimeout(uint16_t timeout_mclks) |
maru536 | 2:8d119e9b8f5a | 1021 | { |
maru536 | 2:8d119e9b8f5a | 1022 | // format: "(LSByte * 2^MSByte) + 1" |
maru536 | 2:8d119e9b8f5a | 1023 | |
maru536 | 2:8d119e9b8f5a | 1024 | uint32_t ls_byte = 0; |
maru536 | 2:8d119e9b8f5a | 1025 | uint16_t ms_byte = 0; |
maru536 | 2:8d119e9b8f5a | 1026 | |
maru536 | 2:8d119e9b8f5a | 1027 | if (timeout_mclks > 0) |
maru536 | 2:8d119e9b8f5a | 1028 | { |
maru536 | 2:8d119e9b8f5a | 1029 | ls_byte = timeout_mclks - 1; |
maru536 | 2:8d119e9b8f5a | 1030 | |
maru536 | 2:8d119e9b8f5a | 1031 | while ((ls_byte & 0xFFFFFF00) > 0) |
maru536 | 2:8d119e9b8f5a | 1032 | { |
maru536 | 2:8d119e9b8f5a | 1033 | ls_byte >>= 1; |
maru536 | 2:8d119e9b8f5a | 1034 | ms_byte++; |
maru536 | 2:8d119e9b8f5a | 1035 | } |
maru536 | 2:8d119e9b8f5a | 1036 | |
maru536 | 2:8d119e9b8f5a | 1037 | return (ms_byte << 8) | (ls_byte & 0xFF); |
maru536 | 2:8d119e9b8f5a | 1038 | } |
maru536 | 2:8d119e9b8f5a | 1039 | else { return 0; } |
maru536 | 2:8d119e9b8f5a | 1040 | } |
maru536 | 2:8d119e9b8f5a | 1041 | |
maru536 | 2:8d119e9b8f5a | 1042 | // Convert sequence step timeout from MCLKs to microseconds with given VCSEL period in PCLKs |
maru536 | 2:8d119e9b8f5a | 1043 | // based on VL53L0X_calc_timeout_us() |
maru536 | 2:8d119e9b8f5a | 1044 | uint32_t VL53L0X::timeoutMclksToMicroseconds(uint16_t timeout_period_mclks, uint8_t vcsel_period_pclks) |
maru536 | 2:8d119e9b8f5a | 1045 | { |
maru536 | 2:8d119e9b8f5a | 1046 | uint32_t macro_period_ns = calcMacroPeriod(vcsel_period_pclks); |
maru536 | 2:8d119e9b8f5a | 1047 | |
maru536 | 2:8d119e9b8f5a | 1048 | return ((timeout_period_mclks * macro_period_ns) + (macro_period_ns / 2)) / 1000; |
maru536 | 2:8d119e9b8f5a | 1049 | } |
maru536 | 2:8d119e9b8f5a | 1050 | |
maru536 | 2:8d119e9b8f5a | 1051 | // Convert sequence step timeout from microseconds to MCLKs with given VCSEL period in PCLKs |
maru536 | 2:8d119e9b8f5a | 1052 | // based on VL53L0X_calc_timeout_mclks() |
maru536 | 2:8d119e9b8f5a | 1053 | uint32_t VL53L0X::timeoutMicrosecondsToMclks(uint32_t timeout_period_us, uint8_t vcsel_period_pclks) |
maru536 | 2:8d119e9b8f5a | 1054 | { |
maru536 | 2:8d119e9b8f5a | 1055 | uint32_t macro_period_ns = calcMacroPeriod(vcsel_period_pclks); |
maru536 | 2:8d119e9b8f5a | 1056 | |
maru536 | 2:8d119e9b8f5a | 1057 | return (((timeout_period_us * 1000) + (macro_period_ns / 2)) / macro_period_ns); |
maru536 | 2:8d119e9b8f5a | 1058 | } |
maru536 | 2:8d119e9b8f5a | 1059 | |
maru536 | 2:8d119e9b8f5a | 1060 | |
maru536 | 2:8d119e9b8f5a | 1061 | // based on VL53L0X_perform_single_ref_calibration() |
maru536 | 2:8d119e9b8f5a | 1062 | bool VL53L0X::performSingleRefCalibration(uint8_t vhv_init_byte) |
maru536 | 2:8d119e9b8f5a | 1063 | { |
maru536 | 2:8d119e9b8f5a | 1064 | writeReg(SYSRANGE_START, 0x01 | vhv_init_byte); // VL53L0X_REG_SYSRANGE_MODE_START_STOP |
maru536 | 2:8d119e9b8f5a | 1065 | |
maru536 | 2:8d119e9b8f5a | 1066 | startTimeout(); |
maru536 | 2:8d119e9b8f5a | 1067 | while ((readReg(RESULT_INTERRUPT_STATUS) & 0x07) == 0) |
maru536 | 2:8d119e9b8f5a | 1068 | { |
maru536 | 2:8d119e9b8f5a | 1069 | if (checkTimeoutExpired()) { return false; } |
maru536 | 2:8d119e9b8f5a | 1070 | } |
maru536 | 2:8d119e9b8f5a | 1071 | |
maru536 | 2:8d119e9b8f5a | 1072 | writeReg(SYSTEM_INTERRUPT_CLEAR, 0x01); |
maru536 | 2:8d119e9b8f5a | 1073 | |
maru536 | 2:8d119e9b8f5a | 1074 | writeReg(SYSRANGE_START, 0x00); |
maru536 | 2:8d119e9b8f5a | 1075 | |
maru536 | 2:8d119e9b8f5a | 1076 | return true; |
maru536 | 2:8d119e9b8f5a | 1077 | } |