This is a simple mbed client example demonstrating, registration of a device with mbed Device Connector and reading and writing values as well as deregistering on different Network Interfaces including Ethernet, WiFi, 6LoWPAN ND and Thread respectively.

Getting started with mbed Client on mbed OS

This is the mbed Client example for mbed OS. It demonstrates how to register a device with mbed Device Connector, how to read and write values, and how to deregister. If you are unfamiliar with mbed Device Connector, we recommend that you read the introduction to the data model first.

The application:

  • Connects to network with WiFi, Ethernet, 6LoWPAN ND or Thread connection.
  • Registers with mbed Device Connector.
  • Gives mbed Device Connector access to its resources (read and write).
  • Records the number of clicks on the device’s button and sends the number to mbed Device Connector.
  • Lets you control the blink pattern of the LED on the device (through mbed Device Connector).

Required hardware

  • K64F board.
  • 1-2 micro-USB cables.
  • mbed 6LoWPAN gateway router for 6LoWPAN ND and Thread.
  • mbed 6LoWPAN shield (AT86RF212B/AT86RF233 for 6LoWPAN ND and Thread.
  • Ethernet cable and connection to the internet.

Requirements for non K64F board

This example application is primarily designed for FRDM-K64F board but you can also use other mbed OS supported boards to run this example application , with some minor modifications for setup.

  • To get the application registering successfully on non K64F boards , you need Edit the mbed_app.json file to add NULL_ENTROPY feature for mbedTLS:

""macros": ["MBEDTLS_USER_CONFIG_FILE=\"mbedtls_mbed_client_config.h\"",
            "MBEDTLS_NO_DEFAULT_ENTROPY_SOURCES",
            "MBEDTLS_TEST_NULL_ENTROPY"],
  • On non K64F boards, there is no unregistration functionality and button press is simulated through timer ticks incrementing every 15 seconds.

Application setup

To configure the example application, please check following:

Connection type

The application uses Ethernet as the default connection type. To change the connection type, set one of them in mbed_app.json. For example, to enable 6LoWPAN ND mode:

    "network-interface": {
        "help": "options are ETHERNET,WIFI,MESH_LOWPAN_ND,MESH_THREAD.",
        "value": "MESH_LOWPAN_ND"
    }

Client credentials

To register the application to the Connector service, you need to create and set the client side certificate.

  • Go to mbed Device Connector and log in with your mbed account.
  • On mbed Device Connector, go to My Devices > Security credentials and click the Get my device security credentials button to get new credentials for your device.
  • Replace the contents in `security.h` of this project's directory with content copied above.

6LoWPAN ND and Thread settings

First you need to select the RF driver to be used by 6LoWPAN/Thread stack.

For example Atmel AT86RF233/212B driver is located in https://github.com/ARMmbed/atmel-rf-driver

To add that driver to you application , import library from following URL:

https://github.com/ARMmbed/atmel-rf-driver

Then you need to enable the IPV6 functionality as the 6LoWPAN and Thread are part of IPv6 stack. Edit the mbed_app.json file to add IPV6 feature:

"target.features_add": ["CLIENT", "IPV6", "COMMON_PAL"],

6LoWPAN ND and Thread use IPv6 for connectivity. Therefore, you need to verify first that you have a working IPv6 connection. To do that, ping the Connector IPv6 address 2607:f0d0:2601:52::20 from your network.

mbed gateway

To connect the example application in 6LoWPAN ND or Thread mode to Connector, you need to set up an mbed 6LoWPAN gateway router as follows:

  • Use an Ethernet cable to connect the mbed 6LoWPAN gateway router to the internet.
  • Use a micro-USB cable to connect the mbed 6LoWPAN gateway router to your computer. The computer will list the router as removable storage.
  • The firmware for the gateway is located in the `GW_Binary` folder in the root of this example. Select the binary matching your application bootstrap mode:
  • For the 6LoWPAN ND bootstrap, use `gateway6LoWPANDynamic.bin`.
  • For the Thread bootstrap, use `gatewayThreadDynamic.bin`.

The dynamic binaries use IPv6 autoconfiguration and enable the client to connect to the Connector service. The static binaries create a site-local IPv6 network and packets cannot be routed outside.

  • Copy the gateway binary file to the mbed 6LoWPAN gateway router to flash the device. The device reboots automatically after flashing. If that does not happen, press the Reset button on the board.

You can view debug traces from the gateway with a serial port monitor. The gateway uses baud rate 460800. The gateway IPv6 address is correctly configured when the following trace is visible: `Eth bootstrap ready, IP=XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX`.

Channel settings

The default 2.4GHz channel settings are already defined by the mbed-mesh-api to match the mbed gateway settings. The application can override these settings by adding them to the mbed_app.json file in the main project directory. For example:

    "target_overrides": {
        "*": {
            "mbed-mesh-api.6lowpan-nd-channel-page": 0,
            "mbed-mesh-api.6lowpan-nd-channel": 12,
            "mbed-mesh-api.thread-config-channel-page": 0,
            "mbed-mesh-api.thread-config-channel": 12
        }
    }

For sub-GHz shields (AT86RF212B) use the following overrides, 6LoWPAN ND only:

"mbed-mesh-api.6lowpan-nd-channel-page": 2,
"mbed-mesh-api.6lowpan-nd-channel": 1

For more information about the radio shields, see [the related documentation](docs/radio_module_identify.md). All the configurable settings can be found in the mbed-os-example-client/mbed-os/features/FEATURE_IPV6/mbed-mesh-api/mbed_lib.json file.

Thread-specific settings

With Thread, you can change the operating mode of the client from the default router mode to a sleepy end device by adding the following override to the `mbed_app.json` file:

    "mbed-mesh-api.thread-device-type": "MESH_DEVICE_TYPE_THREAD_SLEEPY_END_DEVICE"

Ethernet settings

For running the example application using Ethernet, you need:

  • An Ethernet cable.
  • An Ethernet connection to the internet.

Wi-Fi settings

The example application uses ESP8266 WiFi Interface for managing the wireless connectivity. To run this application using WiFi, you need:

    "network-interface": {
        "help": "options are ETHERNET,WIFI,MESH_LOWPAN_ND,MESH_THREAD.",
        "value": "WIFI"
    }

Provide your WiFi SSID and password here and leave `\"` in the beginning and end of your SSID and password (as shown in the example below). Otherwise, the example cannot pick up the SSID and password in correct format.

    "wifi-ssid": {
        "help": "WiFi SSID",
        "value": "\"SSID\""
    },
    "wifi-password": {
        "help": "WiFi Password",
        "value": "\"Password\""
    }

IP address setup

This example uses IPv4 to communicate with the mbed Device Connector Server except for 6LoWPAN ND and Thread. The example program should automatically get an IPv4 address from the router when connected over Ethernet.

If your network does not have DHCP enabled, you have to manually assign a static IP address to the board. We recommend having DHCP enabled to make everything run smoothly.

Changing socket type

Your device can connect to mbed Device Connector via UDP or TCP binding mode. The default is UDP. The binding mode cannot be changed in 6LoWPAN ND or Thread mode.

To change the binding mode:

  • In the `simpleclient.h` file, find the parameter `SOCKET_MODE`. The default is `M2MInterface::UDP`.
  • To switch to TCP, change it to `M2MInterface::TCP`.
  • Rebuild and flash the application.

Tip: The instructions in this document remain the same, irrespective of the socket mode you select.

Monitoring the application

The application prints debug messages over the serial port, so you can monitor its activity with a serial port monitor. The application uses baud rate 115200.

SerialPC

After connecting, you should see messages about connecting to mbed Device Connector:

In app_start()
IP address 10.2.15.222
Device name 6868df22-d353-4150-b90a-a878130859d9

When you click the `SW2` button on your board you should see messages about the value changes:

handle_button_click, new value of counter is 1

Testing the application

  • Flash the application.
  • Verify that the registration succeeded. You should see `Registered object successfully!` printed to the serial port.
  • On mbed Device Connector, go to My devices > Connected devices. Your device should be listed here.
  • Press the `SW2` button on the device a number of times (make a note of how many times you did that).
  • Go to Device Connector > API Console.
  • Enter https://api.connector.mbed.com/endpoints/DEVICE_NAME/3200/0/5501 in the URI field and click TEST API. Replace DEVICE_NAME with your actual endpoint name. The device name can be found in the security.h file, see variable MBED_ENDPOINT_NAME or it can be found from the traces.
  • The number of times you pressed SW2 is shown.
  • Press the SW3 button to unregister from mbed Device Connector. You should see Unregistered Object Successfully printed to the serial port and the LED starts blinking. This will also stop your application. Press the `RESET` button to run the program again.

For more methods check the mbed Device Connector Quick Start.

Application resources

The application exposes three resources:

  • 3200/0/5501. Number of presses of SW2 (GET).
  • 3201/0/5850. Blink function, blinks LED1 when executed (POST).
  • 3201/0/5853. Blink pattern, used by the blink function to determine how to blink. In the format of 1000:500:1000:500:1000:500 (PUT).

For information on how to get notifications when resource 1 changes, or how to use resources 2 and 3, take a look at the mbed Device Connector Quick Start.

Building this example

Building with mbed CLI

If you'd like to use mbed CLI to build this, then you should follow the instructions in the Handbook TODO - new link. The instructions here relate to using the developer.mbed.org Online Compiler

If you'd like to use the online Compiler, then you can Import this code into your compiler, select your platform from the top right, compile the code using the compile button, load it onto your board, press the reset button on the board and you code will run. See the client go online!

More instructions for using the mbed Online Compiler can be found at TODO - update this

Committer:
mbed_official
Date:
Mon Nov 06 10:30:12 2017 +0000
Revision:
110:c6ef55b9498a
Parent:
87:5092f48bb68c
Child:
115:45399116b171
Merge pull request #328 from ARMmbed/fix_armc6_compilation

Fix ARMC6 compilation.
.
Commit copied from https://github.com/ARMmbed/mbed-os-example-client

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mbed_official 21:b88cdeb5b302 1 /*
mbed_official 44:2b472e66a942 2 * Copyright (c) 2015, 2016 ARM Limited. All rights reserved.
mbed_official 21:b88cdeb5b302 3 * SPDX-License-Identifier: Apache-2.0
mbed_official 21:b88cdeb5b302 4 * Licensed under the Apache License, Version 2.0 (the License); you may
mbed_official 21:b88cdeb5b302 5 * not use this file except in compliance with the License.
mbed_official 21:b88cdeb5b302 6 * You may obtain a copy of the License at
mbed_official 21:b88cdeb5b302 7 *
mbed_official 21:b88cdeb5b302 8 * http://www.apache.org/licenses/LICENSE-2.0
mbed_official 21:b88cdeb5b302 9 *
mbed_official 21:b88cdeb5b302 10 * Unless required by applicable law or agreed to in writing, software
mbed_official 21:b88cdeb5b302 11 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
mbed_official 21:b88cdeb5b302 12 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
mbed_official 21:b88cdeb5b302 13 * See the License for the specific language governing permissions and
mbed_official 21:b88cdeb5b302 14 * limitations under the License.
mbed_official 21:b88cdeb5b302 15 */
mbed_official 63:c73f78fd7982 16 #define __STDC_FORMAT_MACROS
mbed_official 63:c73f78fd7982 17 #include <inttypes.h>
mbed_official 21:b88cdeb5b302 18 #include "simpleclient.h"
mbed_official 21:b88cdeb5b302 19 #include <string>
mbed_official 21:b88cdeb5b302 20 #include <sstream>
mbed_official 21:b88cdeb5b302 21 #include <vector>
mbed_official 21:b88cdeb5b302 22 #include "mbed-trace/mbed_trace.h"
mbed_official 21:b88cdeb5b302 23 #include "mbedtls/entropy_poll.h"
mbed_official 21:b88cdeb5b302 24
mbed_official 21:b88cdeb5b302 25 #include "security.h"
mbed_official 21:b88cdeb5b302 26
mbed_official 21:b88cdeb5b302 27 #include "mbed.h"
mbed_official 21:b88cdeb5b302 28
mbed_official 63:c73f78fd7982 29 // easy-connect compliancy, it has 2 sets of wifi pins we have only one
mbed_official 63:c73f78fd7982 30 #define MBED_CONF_APP_ESP8266_TX MBED_CONF_APP_WIFI_TX
mbed_official 63:c73f78fd7982 31 #define MBED_CONF_APP_ESP8266_RX MBED_CONF_APP_WIFI_RX
mbed_official 63:c73f78fd7982 32 #include "easy-connect/easy-connect.h"
mbed_official 21:b88cdeb5b302 33
mbed_official 71:ec259c9b02ea 34 #ifdef TARGET_STM
mbed_official 71:ec259c9b02ea 35 #define RED_LED (LED3)
mbed_official 71:ec259c9b02ea 36 #define GREEN_LED (LED1)
mbed_official 71:ec259c9b02ea 37 #define BLUE_LED (LED2)
mbed_official 71:ec259c9b02ea 38 #define LED_ON (1)
mbed_official 71:ec259c9b02ea 39 #else // !TARGET_STM
mbed_official 71:ec259c9b02ea 40 #define RED_LED (LED1)
mbed_official 71:ec259c9b02ea 41 #define GREEN_LED (LED2)
mbed_official 71:ec259c9b02ea 42 #define BLUE_LED (LED3)
mbed_official 71:ec259c9b02ea 43 #define LED_ON (0)
mbed_official 71:ec259c9b02ea 44 #endif // !TARGET_STM
mbed_official 71:ec259c9b02ea 45 #define LED_OFF (!LED_ON)
mbed_official 71:ec259c9b02ea 46
mbed_official 21:b88cdeb5b302 47 // Status indication
mbed_official 71:ec259c9b02ea 48 DigitalOut red_led(RED_LED);
mbed_official 71:ec259c9b02ea 49 DigitalOut green_led(GREEN_LED);
mbed_official 71:ec259c9b02ea 50 DigitalOut blue_led(BLUE_LED);
mbed_official 71:ec259c9b02ea 51
mbed_official 21:b88cdeb5b302 52 Ticker status_ticker;
mbed_official 21:b88cdeb5b302 53 void blinky() {
mbed_official 21:b88cdeb5b302 54 green_led = !green_led;
mbed_official 21:b88cdeb5b302 55 }
mbed_official 21:b88cdeb5b302 56
mbed_official 21:b88cdeb5b302 57 // These are example resource values for the Device Object
mbed_official 21:b88cdeb5b302 58 struct MbedClientDevice device = {
mbed_official 21:b88cdeb5b302 59 "Manufacturer_String", // Manufacturer
mbed_official 21:b88cdeb5b302 60 "Type_String", // Type
mbed_official 21:b88cdeb5b302 61 "ModelNumber_String", // ModelNumber
mbed_official 21:b88cdeb5b302 62 "SerialNumber_String" // SerialNumber
mbed_official 21:b88cdeb5b302 63 };
mbed_official 21:b88cdeb5b302 64
mbed_official 21:b88cdeb5b302 65 // Instantiate the class which implements LWM2M Client API (from simpleclient.h)
mbed_official 21:b88cdeb5b302 66 MbedClient mbed_client(device);
mbed_official 21:b88cdeb5b302 67
mbed_official 21:b88cdeb5b302 68
mbed_official 21:b88cdeb5b302 69 // In case of K64F board , there is button resource available
mbed_official 21:b88cdeb5b302 70 // to change resource value and unregister
mbed_official 21:b88cdeb5b302 71 #ifdef TARGET_K64F
mbed_official 21:b88cdeb5b302 72 // Set up Hardware interrupt button.
mbed_official 21:b88cdeb5b302 73 InterruptIn obs_button(SW2);
mbed_official 21:b88cdeb5b302 74 InterruptIn unreg_button(SW3);
mbed_official 21:b88cdeb5b302 75 #else
mbed_official 21:b88cdeb5b302 76 //In non K64F boards , set up a timer to simulate updating resource,
mbed_official 21:b88cdeb5b302 77 // there is no functionality to unregister.
mbed_official 21:b88cdeb5b302 78 Ticker timer;
mbed_official 21:b88cdeb5b302 79 #endif
mbed_official 21:b88cdeb5b302 80
mbed_official 21:b88cdeb5b302 81 /*
mbed_official 21:b88cdeb5b302 82 * Arguments for running "blink" in it's own thread.
mbed_official 21:b88cdeb5b302 83 */
mbed_official 21:b88cdeb5b302 84 class BlinkArgs {
mbed_official 21:b88cdeb5b302 85 public:
mbed_official 21:b88cdeb5b302 86 BlinkArgs() {
mbed_official 21:b88cdeb5b302 87 clear();
mbed_official 21:b88cdeb5b302 88 }
mbed_official 21:b88cdeb5b302 89 void clear() {
mbed_official 21:b88cdeb5b302 90 position = 0;
mbed_official 21:b88cdeb5b302 91 blink_pattern.clear();
mbed_official 21:b88cdeb5b302 92 }
mbed_official 21:b88cdeb5b302 93 uint16_t position;
mbed_official 21:b88cdeb5b302 94 std::vector<uint32_t> blink_pattern;
mbed_official 21:b88cdeb5b302 95 };
mbed_official 21:b88cdeb5b302 96
mbed_official 21:b88cdeb5b302 97 /*
mbed_official 21:b88cdeb5b302 98 * The Led contains one property (pattern) and a function (blink).
mbed_official 21:b88cdeb5b302 99 * When the function blink is executed, the pattern is read, and the LED
mbed_official 21:b88cdeb5b302 100 * will blink based on the pattern.
mbed_official 21:b88cdeb5b302 101 */
mbed_official 21:b88cdeb5b302 102 class LedResource {
mbed_official 21:b88cdeb5b302 103 public:
mbed_official 21:b88cdeb5b302 104 LedResource() {
mbed_official 21:b88cdeb5b302 105 // create ObjectID with metadata tag of '3201', which is 'digital output'
mbed_official 21:b88cdeb5b302 106 led_object = M2MInterfaceFactory::create_object("3201");
mbed_official 21:b88cdeb5b302 107 M2MObjectInstance* led_inst = led_object->create_object_instance();
mbed_official 21:b88cdeb5b302 108
mbed_official 21:b88cdeb5b302 109 // 5853 = Multi-state output
mbed_official 21:b88cdeb5b302 110 M2MResource* pattern_res = led_inst->create_dynamic_resource("5853", "Pattern",
mbed_official 21:b88cdeb5b302 111 M2MResourceInstance::STRING, false);
mbed_official 21:b88cdeb5b302 112 // read and write
mbed_official 21:b88cdeb5b302 113 pattern_res->set_operation(M2MBase::GET_PUT_ALLOWED);
mbed_official 21:b88cdeb5b302 114 // set initial pattern (toggle every 200ms. 7 toggles in total)
mbed_official 21:b88cdeb5b302 115 pattern_res->set_value((const uint8_t*)"500:500:500:500:500:500:500", 27);
mbed_official 21:b88cdeb5b302 116
mbed_official 21:b88cdeb5b302 117 // there's not really an execute LWM2M ID that matches... hmm...
mbed_official 21:b88cdeb5b302 118 M2MResource* led_res = led_inst->create_dynamic_resource("5850", "Blink",
mbed_official 21:b88cdeb5b302 119 M2MResourceInstance::OPAQUE, false);
mbed_official 21:b88cdeb5b302 120 // we allow executing a function here...
mbed_official 21:b88cdeb5b302 121 led_res->set_operation(M2MBase::POST_ALLOWED);
mbed_official 21:b88cdeb5b302 122 // when a POST comes in, we want to execute the led_execute_callback
mbed_official 21:b88cdeb5b302 123 led_res->set_execute_function(execute_callback(this, &LedResource::blink));
mbed_official 21:b88cdeb5b302 124 // Completion of execute function can take a time, that's why delayed response is used
mbed_official 21:b88cdeb5b302 125 led_res->set_delayed_response(true);
mbed_official 21:b88cdeb5b302 126 blink_args = new BlinkArgs();
mbed_official 21:b88cdeb5b302 127 }
mbed_official 21:b88cdeb5b302 128
mbed_official 21:b88cdeb5b302 129 ~LedResource() {
mbed_official 21:b88cdeb5b302 130 delete blink_args;
mbed_official 21:b88cdeb5b302 131 }
mbed_official 21:b88cdeb5b302 132
mbed_official 21:b88cdeb5b302 133 M2MObject* get_object() {
mbed_official 21:b88cdeb5b302 134 return led_object;
mbed_official 21:b88cdeb5b302 135 }
mbed_official 21:b88cdeb5b302 136
mbed_official 21:b88cdeb5b302 137 void blink(void *argument) {
mbed_official 21:b88cdeb5b302 138 // read the value of 'Pattern'
mbed_official 21:b88cdeb5b302 139 status_ticker.detach();
mbed_official 71:ec259c9b02ea 140 green_led = LED_OFF;
mbed_official 21:b88cdeb5b302 141
mbed_official 21:b88cdeb5b302 142 M2MObjectInstance* inst = led_object->object_instance();
mbed_official 21:b88cdeb5b302 143 M2MResource* res = inst->resource("5853");
mbed_official 21:b88cdeb5b302 144 // Clear previous blink data
mbed_official 21:b88cdeb5b302 145 blink_args->clear();
mbed_official 21:b88cdeb5b302 146
mbed_official 21:b88cdeb5b302 147 // values in mbed Client are all buffers, and we need a vector of int's
mbed_official 21:b88cdeb5b302 148 uint8_t* buffIn = NULL;
mbed_official 21:b88cdeb5b302 149 uint32_t sizeIn;
mbed_official 21:b88cdeb5b302 150 res->get_value(buffIn, sizeIn);
mbed_official 21:b88cdeb5b302 151
mbed_official 21:b88cdeb5b302 152 // turn the buffer into a string, and initialize a vector<int> on the heap
mbed_official 21:b88cdeb5b302 153 std::string s((char*)buffIn, sizeIn);
mbed_official 21:b88cdeb5b302 154 free(buffIn);
mbed_official 63:c73f78fd7982 155 printf("led_execute_callback pattern=%s\n", s.c_str());
mbed_official 21:b88cdeb5b302 156
mbed_official 21:b88cdeb5b302 157 // our pattern is something like 500:200:500, so parse that
mbed_official 21:b88cdeb5b302 158 std::size_t found = s.find_first_of(":");
mbed_official 21:b88cdeb5b302 159 while (found!=std::string::npos) {
mbed_official 21:b88cdeb5b302 160 blink_args->blink_pattern.push_back(atoi((const char*)s.substr(0,found).c_str()));
mbed_official 21:b88cdeb5b302 161 s = s.substr(found+1);
mbed_official 21:b88cdeb5b302 162 found=s.find_first_of(":");
mbed_official 21:b88cdeb5b302 163 if(found == std::string::npos) {
mbed_official 21:b88cdeb5b302 164 blink_args->blink_pattern.push_back(atoi((const char*)s.c_str()));
mbed_official 21:b88cdeb5b302 165 }
mbed_official 21:b88cdeb5b302 166 }
mbed_official 21:b88cdeb5b302 167 // check if POST contains payload
mbed_official 21:b88cdeb5b302 168 if (argument) {
mbed_official 21:b88cdeb5b302 169 M2MResource::M2MExecuteParameter* param = (M2MResource::M2MExecuteParameter*)argument;
mbed_official 21:b88cdeb5b302 170 String object_name = param->get_argument_object_name();
mbed_official 21:b88cdeb5b302 171 uint16_t object_instance_id = param->get_argument_object_instance_id();
mbed_official 21:b88cdeb5b302 172 String resource_name = param->get_argument_resource_name();
mbed_official 21:b88cdeb5b302 173 int payload_length = param->get_argument_value_length();
mbed_official 110:c6ef55b9498a 174 const uint8_t* payload = param->get_argument_value();
mbed_official 63:c73f78fd7982 175 printf("Resource: %s/%d/%s executed\n", object_name.c_str(), object_instance_id, resource_name.c_str());
mbed_official 63:c73f78fd7982 176 printf("Payload: %.*s\n", payload_length, payload);
mbed_official 21:b88cdeb5b302 177 }
mbed_official 21:b88cdeb5b302 178 // do_blink is called with the vector, and starting at -1
mbed_official 63:c73f78fd7982 179 blinky_thread.start(callback(this, &LedResource::do_blink));
mbed_official 21:b88cdeb5b302 180 }
mbed_official 21:b88cdeb5b302 181
mbed_official 21:b88cdeb5b302 182 private:
mbed_official 21:b88cdeb5b302 183 M2MObject* led_object;
mbed_official 21:b88cdeb5b302 184 Thread blinky_thread;
mbed_official 21:b88cdeb5b302 185 BlinkArgs *blink_args;
mbed_official 21:b88cdeb5b302 186 void do_blink() {
mbed_official 49:10f84adec19e 187 for (;;) {
mbed_official 49:10f84adec19e 188 // blink the LED
mbed_official 49:10f84adec19e 189 red_led = !red_led;
mbed_official 49:10f84adec19e 190 // up the position, if we reached the end of the vector
mbed_official 49:10f84adec19e 191 if (blink_args->position >= blink_args->blink_pattern.size()) {
mbed_official 49:10f84adec19e 192 // send delayed response after blink is done
mbed_official 49:10f84adec19e 193 M2MObjectInstance* inst = led_object->object_instance();
mbed_official 49:10f84adec19e 194 M2MResource* led_res = inst->resource("5850");
mbed_official 49:10f84adec19e 195 led_res->send_delayed_post_response();
mbed_official 71:ec259c9b02ea 196 red_led = LED_OFF;
mbed_official 49:10f84adec19e 197 status_ticker.attach_us(blinky, 250000);
mbed_official 49:10f84adec19e 198 return;
mbed_official 49:10f84adec19e 199 }
mbed_official 49:10f84adec19e 200 // Wait requested time, then continue prosessing the blink pattern from next position.
mbed_official 49:10f84adec19e 201 Thread::wait(blink_args->blink_pattern.at(blink_args->position));
mbed_official 49:10f84adec19e 202 blink_args->position++;
mbed_official 21:b88cdeb5b302 203 }
mbed_official 21:b88cdeb5b302 204 }
mbed_official 21:b88cdeb5b302 205 };
mbed_official 21:b88cdeb5b302 206
mbed_official 21:b88cdeb5b302 207 /*
mbed_official 21:b88cdeb5b302 208 * The button contains one property (click count).
mbed_official 21:b88cdeb5b302 209 * When `handle_button_click` is executed, the counter updates.
mbed_official 21:b88cdeb5b302 210 */
mbed_official 21:b88cdeb5b302 211 class ButtonResource {
mbed_official 21:b88cdeb5b302 212 public:
mbed_official 21:b88cdeb5b302 213 ButtonResource(): counter(0) {
mbed_official 21:b88cdeb5b302 214 // create ObjectID with metadata tag of '3200', which is 'digital input'
mbed_official 21:b88cdeb5b302 215 btn_object = M2MInterfaceFactory::create_object("3200");
mbed_official 21:b88cdeb5b302 216 M2MObjectInstance* btn_inst = btn_object->create_object_instance();
mbed_official 21:b88cdeb5b302 217 // create resource with ID '5501', which is digital input counter
mbed_official 21:b88cdeb5b302 218 M2MResource* btn_res = btn_inst->create_dynamic_resource("5501", "Button",
mbed_official 21:b88cdeb5b302 219 M2MResourceInstance::INTEGER, true /* observable */);
mbed_official 21:b88cdeb5b302 220 // we can read this value
mbed_official 21:b88cdeb5b302 221 btn_res->set_operation(M2MBase::GET_ALLOWED);
mbed_official 21:b88cdeb5b302 222 // set initial value (all values in mbed Client are buffers)
mbed_official 21:b88cdeb5b302 223 // to be able to read this data easily in the Connector console, we'll use a string
mbed_official 21:b88cdeb5b302 224 btn_res->set_value((uint8_t*)"0", 1);
mbed_official 21:b88cdeb5b302 225 }
mbed_official 21:b88cdeb5b302 226
mbed_official 21:b88cdeb5b302 227 ~ButtonResource() {
mbed_official 21:b88cdeb5b302 228 }
mbed_official 21:b88cdeb5b302 229
mbed_official 21:b88cdeb5b302 230 M2MObject* get_object() {
mbed_official 21:b88cdeb5b302 231 return btn_object;
mbed_official 21:b88cdeb5b302 232 }
mbed_official 21:b88cdeb5b302 233
mbed_official 21:b88cdeb5b302 234 /*
mbed_official 21:b88cdeb5b302 235 * When you press the button, we read the current value of the click counter
mbed_official 21:b88cdeb5b302 236 * from mbed Device Connector, then up the value with one.
mbed_official 21:b88cdeb5b302 237 */
mbed_official 21:b88cdeb5b302 238 void handle_button_click() {
mbed_official 65:ea64e559b7d3 239 if (mbed_client.register_successful()) {
mbed_official 65:ea64e559b7d3 240 M2MObjectInstance* inst = btn_object->object_instance();
mbed_official 65:ea64e559b7d3 241 M2MResource* res = inst->resource("5501");
mbed_official 21:b88cdeb5b302 242
mbed_official 65:ea64e559b7d3 243 // up counter
mbed_official 65:ea64e559b7d3 244 counter++;
mbed_official 65:ea64e559b7d3 245 #ifdef TARGET_K64F
mbed_official 65:ea64e559b7d3 246 printf("handle_button_click, new value of counter is %d\n", counter);
mbed_official 65:ea64e559b7d3 247 #else
mbed_official 65:ea64e559b7d3 248 printf("simulate button_click, new value of counter is %d\n", counter);
mbed_official 65:ea64e559b7d3 249 #endif
mbed_official 65:ea64e559b7d3 250 // serialize the value of counter as a string, and tell connector
mbed_official 65:ea64e559b7d3 251 char buffer[20];
mbed_official 65:ea64e559b7d3 252 int size = sprintf(buffer,"%d",counter);
mbed_official 65:ea64e559b7d3 253 res->set_value((uint8_t*)buffer, size);
mbed_official 65:ea64e559b7d3 254 } else {
mbed_official 65:ea64e559b7d3 255 printf("simulate button_click, device not registered\n");
mbed_official 65:ea64e559b7d3 256 }
mbed_official 21:b88cdeb5b302 257 }
mbed_official 21:b88cdeb5b302 258
mbed_official 21:b88cdeb5b302 259 private:
mbed_official 21:b88cdeb5b302 260 M2MObject* btn_object;
mbed_official 21:b88cdeb5b302 261 uint16_t counter;
mbed_official 21:b88cdeb5b302 262 };
mbed_official 21:b88cdeb5b302 263
mbed_official 21:b88cdeb5b302 264 class BigPayloadResource {
mbed_official 21:b88cdeb5b302 265 public:
mbed_official 21:b88cdeb5b302 266 BigPayloadResource() {
mbed_official 21:b88cdeb5b302 267 big_payload = M2MInterfaceFactory::create_object("1000");
mbed_official 21:b88cdeb5b302 268 M2MObjectInstance* payload_inst = big_payload->create_object_instance();
mbed_official 21:b88cdeb5b302 269 M2MResource* payload_res = payload_inst->create_dynamic_resource("1", "BigData",
mbed_official 21:b88cdeb5b302 270 M2MResourceInstance::STRING, true /* observable */);
mbed_official 21:b88cdeb5b302 271 payload_res->set_operation(M2MBase::GET_PUT_ALLOWED);
mbed_official 21:b88cdeb5b302 272 payload_res->set_value((uint8_t*)"0", 1);
mbed_official 21:b88cdeb5b302 273 payload_res->set_incoming_block_message_callback(
mbed_official 21:b88cdeb5b302 274 incoming_block_message_callback(this, &BigPayloadResource::block_message_received));
mbed_official 21:b88cdeb5b302 275 payload_res->set_outgoing_block_message_callback(
mbed_official 21:b88cdeb5b302 276 outgoing_block_message_callback(this, &BigPayloadResource::block_message_requested));
mbed_official 21:b88cdeb5b302 277 }
mbed_official 21:b88cdeb5b302 278
mbed_official 21:b88cdeb5b302 279 M2MObject* get_object() {
mbed_official 21:b88cdeb5b302 280 return big_payload;
mbed_official 21:b88cdeb5b302 281 }
mbed_official 21:b88cdeb5b302 282
mbed_official 21:b88cdeb5b302 283 void block_message_received(M2MBlockMessage *argument) {
mbed_official 21:b88cdeb5b302 284 if (argument) {
mbed_official 21:b88cdeb5b302 285 if (M2MBlockMessage::ErrorNone == argument->error_code()) {
mbed_official 21:b88cdeb5b302 286 if (argument->is_last_block()) {
mbed_official 63:c73f78fd7982 287 printf("Last block received\n");
mbed_official 21:b88cdeb5b302 288 }
mbed_official 63:c73f78fd7982 289 printf("Block number: %d\n", argument->block_number());
mbed_official 21:b88cdeb5b302 290 // First block received
mbed_official 21:b88cdeb5b302 291 if (argument->block_number() == 0) {
mbed_official 21:b88cdeb5b302 292 // Store block
mbed_official 21:b88cdeb5b302 293 // More blocks coming
mbed_official 21:b88cdeb5b302 294 } else {
mbed_official 21:b88cdeb5b302 295 // Store blocks
mbed_official 21:b88cdeb5b302 296 }
mbed_official 21:b88cdeb5b302 297 } else {
mbed_official 63:c73f78fd7982 298 printf("Error when receiving block message! - EntityTooLarge\n");
mbed_official 21:b88cdeb5b302 299 }
mbed_official 63:c73f78fd7982 300 printf("Total message size: %" PRIu32 "\n", argument->total_message_size());
mbed_official 21:b88cdeb5b302 301 }
mbed_official 21:b88cdeb5b302 302 }
mbed_official 21:b88cdeb5b302 303
mbed_official 21:b88cdeb5b302 304 void block_message_requested(const String& resource, uint8_t *&/*data*/, uint32_t &/*len*/) {
mbed_official 63:c73f78fd7982 305 printf("GET request received for resource: %s\n", resource.c_str());
mbed_official 21:b88cdeb5b302 306 // Copy data and length to coap response
mbed_official 21:b88cdeb5b302 307 }
mbed_official 21:b88cdeb5b302 308
mbed_official 21:b88cdeb5b302 309 private:
mbed_official 21:b88cdeb5b302 310 M2MObject* big_payload;
mbed_official 21:b88cdeb5b302 311 };
mbed_official 21:b88cdeb5b302 312
mbed_official 21:b88cdeb5b302 313 // Network interaction must be performed outside of interrupt context
mbed_official 21:b88cdeb5b302 314 Semaphore updates(0);
mbed_official 21:b88cdeb5b302 315 volatile bool registered = false;
mbed_official 21:b88cdeb5b302 316 volatile bool clicked = false;
mbed_official 21:b88cdeb5b302 317 osThreadId mainThread;
mbed_official 21:b88cdeb5b302 318
mbed_official 21:b88cdeb5b302 319 void unregister() {
mbed_official 21:b88cdeb5b302 320 registered = false;
mbed_official 21:b88cdeb5b302 321 updates.release();
mbed_official 21:b88cdeb5b302 322 }
mbed_official 21:b88cdeb5b302 323
mbed_official 21:b88cdeb5b302 324 void button_clicked() {
mbed_official 21:b88cdeb5b302 325 clicked = true;
mbed_official 21:b88cdeb5b302 326 updates.release();
mbed_official 21:b88cdeb5b302 327 }
mbed_official 21:b88cdeb5b302 328
mbed_official 21:b88cdeb5b302 329 // Entry point to the program
mbed_official 21:b88cdeb5b302 330 int main() {
mbed_official 21:b88cdeb5b302 331
mbed_official 21:b88cdeb5b302 332 unsigned int seed;
mbed_official 21:b88cdeb5b302 333 size_t len;
mbed_official 21:b88cdeb5b302 334
mbed_official 21:b88cdeb5b302 335 #ifdef MBEDTLS_ENTROPY_HARDWARE_ALT
mbed_official 21:b88cdeb5b302 336 // Used to randomize source port
mbed_official 21:b88cdeb5b302 337 mbedtls_hardware_poll(NULL, (unsigned char *) &seed, sizeof seed, &len);
mbed_official 21:b88cdeb5b302 338
mbed_official 21:b88cdeb5b302 339 #elif defined MBEDTLS_TEST_NULL_ENTROPY
mbed_official 21:b88cdeb5b302 340
mbed_official 21:b88cdeb5b302 341 #warning "mbedTLS security feature is disabled. Connection will not be secure !! Implement proper hardware entropy for your selected hardware."
mbed_official 21:b88cdeb5b302 342 // Used to randomize source port
mbed_official 21:b88cdeb5b302 343 mbedtls_null_entropy_poll( NULL,(unsigned char *) &seed, sizeof seed, &len);
mbed_official 21:b88cdeb5b302 344
mbed_official 21:b88cdeb5b302 345 #else
mbed_official 21:b88cdeb5b302 346
mbed_official 21:b88cdeb5b302 347 #error "This hardware does not have entropy, endpoint will not register to Connector.\
mbed_official 21:b88cdeb5b302 348 You need to enable NULL ENTROPY for your application, but if this configuration change is made then no security is offered by mbed TLS.\
mbed_official 21:b88cdeb5b302 349 Add MBEDTLS_NO_DEFAULT_ENTROPY_SOURCES and MBEDTLS_TEST_NULL_ENTROPY in mbed_app.json macros to register your endpoint."
mbed_official 21:b88cdeb5b302 350
mbed_official 21:b88cdeb5b302 351 #endif
mbed_official 21:b88cdeb5b302 352
mbed_official 21:b88cdeb5b302 353 srand(seed);
mbed_official 71:ec259c9b02ea 354 red_led = LED_OFF;
mbed_official 71:ec259c9b02ea 355 blue_led = LED_OFF;
mbed_official 63:c73f78fd7982 356
mbed_official 21:b88cdeb5b302 357 status_ticker.attach_us(blinky, 250000);
mbed_official 21:b88cdeb5b302 358 // Keep track of the main thread
mbed_official 21:b88cdeb5b302 359 mainThread = osThreadGetId();
mbed_official 21:b88cdeb5b302 360
mbed_official 87:5092f48bb68c 361 printf("\nStarting mbed Client example\n");
mbed_official 21:b88cdeb5b302 362
mbed_official 21:b88cdeb5b302 363 mbed_trace_init();
mbed_official 44:2b472e66a942 364
mbed_official 63:c73f78fd7982 365 NetworkInterface* network = easy_connect(true);
mbed_official 63:c73f78fd7982 366 if(network == NULL) {
mbed_official 63:c73f78fd7982 367 printf("\nConnection to Network Failed - exiting application...\n");
mbed_official 63:c73f78fd7982 368 return -1;
mbed_official 21:b88cdeb5b302 369 }
mbed_official 21:b88cdeb5b302 370
mbed_official 21:b88cdeb5b302 371 // we create our button and LED resources
mbed_official 21:b88cdeb5b302 372 ButtonResource button_resource;
mbed_official 21:b88cdeb5b302 373 LedResource led_resource;
mbed_official 21:b88cdeb5b302 374 BigPayloadResource big_payload_resource;
mbed_official 21:b88cdeb5b302 375
mbed_official 21:b88cdeb5b302 376 #ifdef TARGET_K64F
mbed_official 21:b88cdeb5b302 377 // On press of SW3 button on K64F board, example application
mbed_official 21:b88cdeb5b302 378 // will call unregister API towards mbed Device Connector
mbed_official 21:b88cdeb5b302 379 //unreg_button.fall(&mbed_client,&MbedClient::test_unregister);
mbed_official 21:b88cdeb5b302 380 unreg_button.fall(&unregister);
mbed_official 21:b88cdeb5b302 381
mbed_official 21:b88cdeb5b302 382 // Observation Button (SW2) press will send update of endpoint resource values to connector
mbed_official 21:b88cdeb5b302 383 obs_button.fall(&button_clicked);
mbed_official 21:b88cdeb5b302 384 #else
mbed_official 21:b88cdeb5b302 385 // Send update of endpoint resource values to connector every 15 seconds periodically
mbed_official 21:b88cdeb5b302 386 timer.attach(&button_clicked, 15.0);
mbed_official 21:b88cdeb5b302 387 #endif
mbed_official 21:b88cdeb5b302 388
mbed_official 21:b88cdeb5b302 389 // Create endpoint interface to manage register and unregister
mbed_official 63:c73f78fd7982 390 mbed_client.create_interface(MBED_SERVER_ADDRESS, network);
mbed_official 21:b88cdeb5b302 391
mbed_official 21:b88cdeb5b302 392 // Create Objects of varying types, see simpleclient.h for more details on implementation.
mbed_official 21:b88cdeb5b302 393 M2MSecurity* register_object = mbed_client.create_register_object(); // server object specifying connector info
mbed_official 21:b88cdeb5b302 394 M2MDevice* device_object = mbed_client.create_device_object(); // device resources object
mbed_official 21:b88cdeb5b302 395
mbed_official 21:b88cdeb5b302 396 // Create list of Objects to register
mbed_official 21:b88cdeb5b302 397 M2MObjectList object_list;
mbed_official 21:b88cdeb5b302 398
mbed_official 21:b88cdeb5b302 399 // Add objects to list
mbed_official 21:b88cdeb5b302 400 object_list.push_back(device_object);
mbed_official 21:b88cdeb5b302 401 object_list.push_back(button_resource.get_object());
mbed_official 21:b88cdeb5b302 402 object_list.push_back(led_resource.get_object());
mbed_official 21:b88cdeb5b302 403 object_list.push_back(big_payload_resource.get_object());
mbed_official 21:b88cdeb5b302 404
mbed_official 21:b88cdeb5b302 405 // Set endpoint registration object
mbed_official 21:b88cdeb5b302 406 mbed_client.set_register_object(register_object);
mbed_official 21:b88cdeb5b302 407
mbed_official 21:b88cdeb5b302 408 // Register with mbed Device Connector
mbed_official 21:b88cdeb5b302 409 mbed_client.test_register(register_object, object_list);
mbed_official 21:b88cdeb5b302 410 registered = true;
mbed_official 21:b88cdeb5b302 411
mbed_official 21:b88cdeb5b302 412 while (true) {
mbed_official 21:b88cdeb5b302 413 updates.wait(25000);
mbed_official 21:b88cdeb5b302 414 if(registered) {
mbed_official 21:b88cdeb5b302 415 if(!clicked) {
mbed_official 21:b88cdeb5b302 416 mbed_client.test_update_register();
mbed_official 21:b88cdeb5b302 417 }
mbed_official 21:b88cdeb5b302 418 }else {
mbed_official 21:b88cdeb5b302 419 break;
mbed_official 21:b88cdeb5b302 420 }
mbed_official 21:b88cdeb5b302 421 if(clicked) {
mbed_official 65:ea64e559b7d3 422 clicked = false;
mbed_official 21:b88cdeb5b302 423 button_resource.handle_button_click();
mbed_official 21:b88cdeb5b302 424 }
mbed_official 21:b88cdeb5b302 425 }
mbed_official 21:b88cdeb5b302 426
mbed_official 21:b88cdeb5b302 427 mbed_client.test_unregister();
mbed_official 21:b88cdeb5b302 428 status_ticker.detach();
mbed_official 21:b88cdeb5b302 429 }