This is a simple mbed client example demonstrating, registration of a device with mbed Device Connector and reading and writing values as well as deregistering on different Network Interfaces including Ethernet, WiFi, 6LoWPAN ND and Thread respectively.

Getting started with mbed Client on mbed OS

This is the mbed Client example for mbed OS. It demonstrates how to register a device with mbed Device Connector, how to read and write values, and how to deregister. If you are unfamiliar with mbed Device Connector, we recommend that you read the introduction to the data model first.

The application:

  • Connects to network with WiFi, Ethernet, 6LoWPAN ND or Thread connection.
  • Registers with mbed Device Connector.
  • Gives mbed Device Connector access to its resources (read and write).
  • Records the number of clicks on the device’s button and sends the number to mbed Device Connector.
  • Lets you control the blink pattern of the LED on the device (through mbed Device Connector).

Required hardware

  • K64F board.
  • 1-2 micro-USB cables.
  • mbed 6LoWPAN gateway router for 6LoWPAN ND and Thread.
  • mbed 6LoWPAN shield (AT86RF212B/AT86RF233 for 6LoWPAN ND and Thread.
  • Ethernet cable and connection to the internet.

Requirements for non K64F board

This example application is primarily designed for FRDM-K64F board but you can also use other mbed OS supported boards to run this example application , with some minor modifications for setup.

  • To get the application registering successfully on non K64F boards , you need Edit the mbed_app.json file to add NULL_ENTROPY feature for mbedTLS:

""macros": ["MBEDTLS_USER_CONFIG_FILE=\"mbedtls_mbed_client_config.h\"",
            "MBEDTLS_NO_DEFAULT_ENTROPY_SOURCES",
            "MBEDTLS_TEST_NULL_ENTROPY"],
  • On non K64F boards, there is no unregistration functionality and button press is simulated through timer ticks incrementing every 15 seconds.

Application setup

To configure the example application, please check following:

Connection type

The application uses Ethernet as the default connection type. To change the connection type, set one of them in mbed_app.json. For example, to enable 6LoWPAN ND mode:

    "network-interface": {
        "help": "options are ETHERNET,WIFI,MESH_LOWPAN_ND,MESH_THREAD.",
        "value": "MESH_LOWPAN_ND"
    }

Client credentials

To register the application to the Connector service, you need to create and set the client side certificate.

  • Go to mbed Device Connector and log in with your mbed account.
  • On mbed Device Connector, go to My Devices > Security credentials and click the Get my device security credentials button to get new credentials for your device.
  • Replace the contents in `security.h` of this project's directory with content copied above.

6LoWPAN ND and Thread settings

First you need to select the RF driver to be used by 6LoWPAN/Thread stack.

For example Atmel AT86RF233/212B driver is located in https://github.com/ARMmbed/atmel-rf-driver

To add that driver to you application , import library from following URL:

https://github.com/ARMmbed/atmel-rf-driver

Then you need to enable the IPV6 functionality as the 6LoWPAN and Thread are part of IPv6 stack. Edit the mbed_app.json file to add IPV6 feature:

"target.features_add": ["CLIENT", "IPV6", "COMMON_PAL"],

6LoWPAN ND and Thread use IPv6 for connectivity. Therefore, you need to verify first that you have a working IPv6 connection. To do that, ping the Connector IPv6 address 2607:f0d0:2601:52::20 from your network.

mbed gateway

To connect the example application in 6LoWPAN ND or Thread mode to Connector, you need to set up an mbed 6LoWPAN gateway router as follows:

  • Use an Ethernet cable to connect the mbed 6LoWPAN gateway router to the internet.
  • Use a micro-USB cable to connect the mbed 6LoWPAN gateway router to your computer. The computer will list the router as removable storage.
  • The firmware for the gateway is located in the `GW_Binary` folder in the root of this example. Select the binary matching your application bootstrap mode:
  • For the 6LoWPAN ND bootstrap, use `gateway6LoWPANDynamic.bin`.
  • For the Thread bootstrap, use `gatewayThreadDynamic.bin`.

The dynamic binaries use IPv6 autoconfiguration and enable the client to connect to the Connector service. The static binaries create a site-local IPv6 network and packets cannot be routed outside.

  • Copy the gateway binary file to the mbed 6LoWPAN gateway router to flash the device. The device reboots automatically after flashing. If that does not happen, press the Reset button on the board.

You can view debug traces from the gateway with a serial port monitor. The gateway uses baud rate 460800. The gateway IPv6 address is correctly configured when the following trace is visible: `Eth bootstrap ready, IP=XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX`.

Channel settings

The default 2.4GHz channel settings are already defined by the mbed-mesh-api to match the mbed gateway settings. The application can override these settings by adding them to the mbed_app.json file in the main project directory. For example:

    "target_overrides": {
        "*": {
            "mbed-mesh-api.6lowpan-nd-channel-page": 0,
            "mbed-mesh-api.6lowpan-nd-channel": 12,
            "mbed-mesh-api.thread-config-channel-page": 0,
            "mbed-mesh-api.thread-config-channel": 12
        }
    }

For sub-GHz shields (AT86RF212B) use the following overrides, 6LoWPAN ND only:

"mbed-mesh-api.6lowpan-nd-channel-page": 2,
"mbed-mesh-api.6lowpan-nd-channel": 1

For more information about the radio shields, see [the related documentation](docs/radio_module_identify.md). All the configurable settings can be found in the mbed-os-example-client/mbed-os/features/FEATURE_IPV6/mbed-mesh-api/mbed_lib.json file.

Thread-specific settings

With Thread, you can change the operating mode of the client from the default router mode to a sleepy end device by adding the following override to the `mbed_app.json` file:

    "mbed-mesh-api.thread-device-type": "MESH_DEVICE_TYPE_THREAD_SLEEPY_END_DEVICE"

Ethernet settings

For running the example application using Ethernet, you need:

  • An Ethernet cable.
  • An Ethernet connection to the internet.

Wi-Fi settings

The example application uses ESP8266 WiFi Interface for managing the wireless connectivity. To run this application using WiFi, you need:

    "network-interface": {
        "help": "options are ETHERNET,WIFI,MESH_LOWPAN_ND,MESH_THREAD.",
        "value": "WIFI"
    }

Provide your WiFi SSID and password here and leave `\"` in the beginning and end of your SSID and password (as shown in the example below). Otherwise, the example cannot pick up the SSID and password in correct format.

    "wifi-ssid": {
        "help": "WiFi SSID",
        "value": "\"SSID\""
    },
    "wifi-password": {
        "help": "WiFi Password",
        "value": "\"Password\""
    }

IP address setup

This example uses IPv4 to communicate with the mbed Device Connector Server except for 6LoWPAN ND and Thread. The example program should automatically get an IPv4 address from the router when connected over Ethernet.

If your network does not have DHCP enabled, you have to manually assign a static IP address to the board. We recommend having DHCP enabled to make everything run smoothly.

Changing socket type

Your device can connect to mbed Device Connector via UDP or TCP binding mode. The default is UDP. The binding mode cannot be changed in 6LoWPAN ND or Thread mode.

To change the binding mode:

  • In the `simpleclient.h` file, find the parameter `SOCKET_MODE`. The default is `M2MInterface::UDP`.
  • To switch to TCP, change it to `M2MInterface::TCP`.
  • Rebuild and flash the application.

Tip: The instructions in this document remain the same, irrespective of the socket mode you select.

Monitoring the application

The application prints debug messages over the serial port, so you can monitor its activity with a serial port monitor. The application uses baud rate 115200.

SerialPC

After connecting, you should see messages about connecting to mbed Device Connector:

In app_start()
IP address 10.2.15.222
Device name 6868df22-d353-4150-b90a-a878130859d9

When you click the `SW2` button on your board you should see messages about the value changes:

handle_button_click, new value of counter is 1

Testing the application

  • Flash the application.
  • Verify that the registration succeeded. You should see `Registered object successfully!` printed to the serial port.
  • On mbed Device Connector, go to My devices > Connected devices. Your device should be listed here.
  • Press the `SW2` button on the device a number of times (make a note of how many times you did that).
  • Go to Device Connector > API Console.
  • Enter https://api.connector.mbed.com/endpoints/DEVICE_NAME/3200/0/5501 in the URI field and click TEST API. Replace DEVICE_NAME with your actual endpoint name. The device name can be found in the security.h file, see variable MBED_ENDPOINT_NAME or it can be found from the traces.
  • The number of times you pressed SW2 is shown.
  • Press the SW3 button to unregister from mbed Device Connector. You should see Unregistered Object Successfully printed to the serial port and the LED starts blinking. This will also stop your application. Press the `RESET` button to run the program again.

For more methods check the mbed Device Connector Quick Start.

Application resources

The application exposes three resources:

  • 3200/0/5501. Number of presses of SW2 (GET).
  • 3201/0/5850. Blink function, blinks LED1 when executed (POST).
  • 3201/0/5853. Blink pattern, used by the blink function to determine how to blink. In the format of 1000:500:1000:500:1000:500 (PUT).

For information on how to get notifications when resource 1 changes, or how to use resources 2 and 3, take a look at the mbed Device Connector Quick Start.

Building this example

Building with mbed CLI

If you'd like to use mbed CLI to build this, then you should follow the instructions in the Handbook TODO - new link. The instructions here relate to using the developer.mbed.org Online Compiler

If you'd like to use the online Compiler, then you can Import this code into your compiler, select your platform from the top right, compile the code using the compile button, load it onto your board, press the reset button on the board and you code will run. See the client go online!

More instructions for using the mbed Online Compiler can be found at TODO - update this

Committer:
mbed_official
Date:
Wed Feb 15 08:00:11 2017 +0000
Revision:
63:c73f78fd7982
Parent:
49:10f84adec19e
Child:
65:ea64e559b7d3
Integrate easy-connect, fix serial, fix warning (#176)

Integrate easy-connect
- we can remove all the external RF-drivers from main folder
- get easy-connect into use
- remove all the complicated network stuff

Fix serial - we don't need raw serial and we don't need to initialize it
if we set the right stuff to mbed_app.json (added). Plain printf() works
and it even does type checking now. (Points to Kevin Bracey on this).

Start the thread in a non-deprecated way using callback to remove one compiler
warning (again, points to Kevin Bracey).

Easy-connect ESP8266 TX/RX pins in different defines.
mbed-os-example-client has NEVER used 2 sets of WiFi pins, so need
to add a define to hack them into one set - otherwise it will not compile.

The cp command would not have worked if one would have changed
the compiler. Add UBLOX ODIN ETH config to be built as well,
now that we have figured out how to make the the ethernet work
on it.

Change also the WIFI to work with easy-connect. Easy-connect has 2 separate WIFIs,
so you have to choose between ESP8266 vs. ODIN. Thus, 2 config files are also needed,
one for ESP8266 and one for ODIN.

.
Commit copied from https://github.com/ARMmbed/mbed-os-example-client

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mbed_official 21:b88cdeb5b302 1 /*
mbed_official 44:2b472e66a942 2 * Copyright (c) 2015, 2016 ARM Limited. All rights reserved.
mbed_official 21:b88cdeb5b302 3 * SPDX-License-Identifier: Apache-2.0
mbed_official 21:b88cdeb5b302 4 * Licensed under the Apache License, Version 2.0 (the License); you may
mbed_official 21:b88cdeb5b302 5 * not use this file except in compliance with the License.
mbed_official 21:b88cdeb5b302 6 * You may obtain a copy of the License at
mbed_official 21:b88cdeb5b302 7 *
mbed_official 21:b88cdeb5b302 8 * http://www.apache.org/licenses/LICENSE-2.0
mbed_official 21:b88cdeb5b302 9 *
mbed_official 21:b88cdeb5b302 10 * Unless required by applicable law or agreed to in writing, software
mbed_official 21:b88cdeb5b302 11 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
mbed_official 21:b88cdeb5b302 12 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
mbed_official 21:b88cdeb5b302 13 * See the License for the specific language governing permissions and
mbed_official 21:b88cdeb5b302 14 * limitations under the License.
mbed_official 21:b88cdeb5b302 15 */
mbed_official 63:c73f78fd7982 16 #define __STDC_FORMAT_MACROS
mbed_official 63:c73f78fd7982 17 #include <inttypes.h>
mbed_official 21:b88cdeb5b302 18 #include "simpleclient.h"
mbed_official 21:b88cdeb5b302 19 #include <string>
mbed_official 21:b88cdeb5b302 20 #include <sstream>
mbed_official 21:b88cdeb5b302 21 #include <vector>
mbed_official 21:b88cdeb5b302 22 #include "mbed-trace/mbed_trace.h"
mbed_official 21:b88cdeb5b302 23 #include "mbedtls/entropy_poll.h"
mbed_official 21:b88cdeb5b302 24
mbed_official 21:b88cdeb5b302 25 #include "security.h"
mbed_official 21:b88cdeb5b302 26
mbed_official 21:b88cdeb5b302 27 #include "mbed.h"
mbed_official 21:b88cdeb5b302 28
mbed_official 63:c73f78fd7982 29 // easy-connect compliancy, it has 2 sets of wifi pins we have only one
mbed_official 63:c73f78fd7982 30 #define MBED_CONF_APP_ESP8266_TX MBED_CONF_APP_WIFI_TX
mbed_official 63:c73f78fd7982 31 #define MBED_CONF_APP_ESP8266_RX MBED_CONF_APP_WIFI_RX
mbed_official 63:c73f78fd7982 32 #include "easy-connect/easy-connect.h"
mbed_official 21:b88cdeb5b302 33
mbed_official 21:b88cdeb5b302 34 // Status indication
mbed_official 21:b88cdeb5b302 35 DigitalOut red_led(LED1);
mbed_official 21:b88cdeb5b302 36 DigitalOut green_led(LED2);
mbed_official 21:b88cdeb5b302 37 DigitalOut blue_led(LED3);
mbed_official 21:b88cdeb5b302 38 Ticker status_ticker;
mbed_official 21:b88cdeb5b302 39 void blinky() {
mbed_official 21:b88cdeb5b302 40 green_led = !green_led;
mbed_official 21:b88cdeb5b302 41
mbed_official 21:b88cdeb5b302 42 }
mbed_official 21:b88cdeb5b302 43
mbed_official 21:b88cdeb5b302 44 // These are example resource values for the Device Object
mbed_official 21:b88cdeb5b302 45 struct MbedClientDevice device = {
mbed_official 21:b88cdeb5b302 46 "Manufacturer_String", // Manufacturer
mbed_official 21:b88cdeb5b302 47 "Type_String", // Type
mbed_official 21:b88cdeb5b302 48 "ModelNumber_String", // ModelNumber
mbed_official 21:b88cdeb5b302 49 "SerialNumber_String" // SerialNumber
mbed_official 21:b88cdeb5b302 50 };
mbed_official 21:b88cdeb5b302 51
mbed_official 21:b88cdeb5b302 52 // Instantiate the class which implements LWM2M Client API (from simpleclient.h)
mbed_official 21:b88cdeb5b302 53 MbedClient mbed_client(device);
mbed_official 21:b88cdeb5b302 54
mbed_official 21:b88cdeb5b302 55
mbed_official 21:b88cdeb5b302 56 // In case of K64F board , there is button resource available
mbed_official 21:b88cdeb5b302 57 // to change resource value and unregister
mbed_official 21:b88cdeb5b302 58 #ifdef TARGET_K64F
mbed_official 21:b88cdeb5b302 59 // Set up Hardware interrupt button.
mbed_official 21:b88cdeb5b302 60 InterruptIn obs_button(SW2);
mbed_official 21:b88cdeb5b302 61 InterruptIn unreg_button(SW3);
mbed_official 21:b88cdeb5b302 62 #else
mbed_official 21:b88cdeb5b302 63 //In non K64F boards , set up a timer to simulate updating resource,
mbed_official 21:b88cdeb5b302 64 // there is no functionality to unregister.
mbed_official 21:b88cdeb5b302 65 Ticker timer;
mbed_official 21:b88cdeb5b302 66 #endif
mbed_official 21:b88cdeb5b302 67
mbed_official 21:b88cdeb5b302 68 /*
mbed_official 21:b88cdeb5b302 69 * Arguments for running "blink" in it's own thread.
mbed_official 21:b88cdeb5b302 70 */
mbed_official 21:b88cdeb5b302 71 class BlinkArgs {
mbed_official 21:b88cdeb5b302 72 public:
mbed_official 21:b88cdeb5b302 73 BlinkArgs() {
mbed_official 21:b88cdeb5b302 74 clear();
mbed_official 21:b88cdeb5b302 75 }
mbed_official 21:b88cdeb5b302 76 void clear() {
mbed_official 21:b88cdeb5b302 77 position = 0;
mbed_official 21:b88cdeb5b302 78 blink_pattern.clear();
mbed_official 21:b88cdeb5b302 79 }
mbed_official 21:b88cdeb5b302 80 uint16_t position;
mbed_official 21:b88cdeb5b302 81 std::vector<uint32_t> blink_pattern;
mbed_official 21:b88cdeb5b302 82 };
mbed_official 21:b88cdeb5b302 83
mbed_official 21:b88cdeb5b302 84 /*
mbed_official 21:b88cdeb5b302 85 * The Led contains one property (pattern) and a function (blink).
mbed_official 21:b88cdeb5b302 86 * When the function blink is executed, the pattern is read, and the LED
mbed_official 21:b88cdeb5b302 87 * will blink based on the pattern.
mbed_official 21:b88cdeb5b302 88 */
mbed_official 21:b88cdeb5b302 89 class LedResource {
mbed_official 21:b88cdeb5b302 90 public:
mbed_official 21:b88cdeb5b302 91 LedResource() {
mbed_official 21:b88cdeb5b302 92 // create ObjectID with metadata tag of '3201', which is 'digital output'
mbed_official 21:b88cdeb5b302 93 led_object = M2MInterfaceFactory::create_object("3201");
mbed_official 21:b88cdeb5b302 94 M2MObjectInstance* led_inst = led_object->create_object_instance();
mbed_official 21:b88cdeb5b302 95
mbed_official 21:b88cdeb5b302 96 // 5853 = Multi-state output
mbed_official 21:b88cdeb5b302 97 M2MResource* pattern_res = led_inst->create_dynamic_resource("5853", "Pattern",
mbed_official 21:b88cdeb5b302 98 M2MResourceInstance::STRING, false);
mbed_official 21:b88cdeb5b302 99 // read and write
mbed_official 21:b88cdeb5b302 100 pattern_res->set_operation(M2MBase::GET_PUT_ALLOWED);
mbed_official 21:b88cdeb5b302 101 // set initial pattern (toggle every 200ms. 7 toggles in total)
mbed_official 21:b88cdeb5b302 102 pattern_res->set_value((const uint8_t*)"500:500:500:500:500:500:500", 27);
mbed_official 21:b88cdeb5b302 103
mbed_official 21:b88cdeb5b302 104 // there's not really an execute LWM2M ID that matches... hmm...
mbed_official 21:b88cdeb5b302 105 M2MResource* led_res = led_inst->create_dynamic_resource("5850", "Blink",
mbed_official 21:b88cdeb5b302 106 M2MResourceInstance::OPAQUE, false);
mbed_official 21:b88cdeb5b302 107 // we allow executing a function here...
mbed_official 21:b88cdeb5b302 108 led_res->set_operation(M2MBase::POST_ALLOWED);
mbed_official 21:b88cdeb5b302 109 // when a POST comes in, we want to execute the led_execute_callback
mbed_official 21:b88cdeb5b302 110 led_res->set_execute_function(execute_callback(this, &LedResource::blink));
mbed_official 21:b88cdeb5b302 111 // Completion of execute function can take a time, that's why delayed response is used
mbed_official 21:b88cdeb5b302 112 led_res->set_delayed_response(true);
mbed_official 21:b88cdeb5b302 113 blink_args = new BlinkArgs();
mbed_official 21:b88cdeb5b302 114 }
mbed_official 21:b88cdeb5b302 115
mbed_official 21:b88cdeb5b302 116 ~LedResource() {
mbed_official 21:b88cdeb5b302 117 delete blink_args;
mbed_official 21:b88cdeb5b302 118 }
mbed_official 21:b88cdeb5b302 119
mbed_official 21:b88cdeb5b302 120 M2MObject* get_object() {
mbed_official 21:b88cdeb5b302 121 return led_object;
mbed_official 21:b88cdeb5b302 122 }
mbed_official 21:b88cdeb5b302 123
mbed_official 21:b88cdeb5b302 124 void blink(void *argument) {
mbed_official 21:b88cdeb5b302 125 // read the value of 'Pattern'
mbed_official 21:b88cdeb5b302 126 status_ticker.detach();
mbed_official 21:b88cdeb5b302 127 green_led = 1;
mbed_official 21:b88cdeb5b302 128
mbed_official 21:b88cdeb5b302 129 M2MObjectInstance* inst = led_object->object_instance();
mbed_official 21:b88cdeb5b302 130 M2MResource* res = inst->resource("5853");
mbed_official 21:b88cdeb5b302 131 // Clear previous blink data
mbed_official 21:b88cdeb5b302 132 blink_args->clear();
mbed_official 21:b88cdeb5b302 133
mbed_official 21:b88cdeb5b302 134 // values in mbed Client are all buffers, and we need a vector of int's
mbed_official 21:b88cdeb5b302 135 uint8_t* buffIn = NULL;
mbed_official 21:b88cdeb5b302 136 uint32_t sizeIn;
mbed_official 21:b88cdeb5b302 137 res->get_value(buffIn, sizeIn);
mbed_official 21:b88cdeb5b302 138
mbed_official 21:b88cdeb5b302 139 // turn the buffer into a string, and initialize a vector<int> on the heap
mbed_official 21:b88cdeb5b302 140 std::string s((char*)buffIn, sizeIn);
mbed_official 21:b88cdeb5b302 141 free(buffIn);
mbed_official 63:c73f78fd7982 142 printf("led_execute_callback pattern=%s\n", s.c_str());
mbed_official 21:b88cdeb5b302 143
mbed_official 21:b88cdeb5b302 144 // our pattern is something like 500:200:500, so parse that
mbed_official 21:b88cdeb5b302 145 std::size_t found = s.find_first_of(":");
mbed_official 21:b88cdeb5b302 146 while (found!=std::string::npos) {
mbed_official 21:b88cdeb5b302 147 blink_args->blink_pattern.push_back(atoi((const char*)s.substr(0,found).c_str()));
mbed_official 21:b88cdeb5b302 148 s = s.substr(found+1);
mbed_official 21:b88cdeb5b302 149 found=s.find_first_of(":");
mbed_official 21:b88cdeb5b302 150 if(found == std::string::npos) {
mbed_official 21:b88cdeb5b302 151 blink_args->blink_pattern.push_back(atoi((const char*)s.c_str()));
mbed_official 21:b88cdeb5b302 152 }
mbed_official 21:b88cdeb5b302 153 }
mbed_official 21:b88cdeb5b302 154 // check if POST contains payload
mbed_official 21:b88cdeb5b302 155 if (argument) {
mbed_official 21:b88cdeb5b302 156 M2MResource::M2MExecuteParameter* param = (M2MResource::M2MExecuteParameter*)argument;
mbed_official 21:b88cdeb5b302 157 String object_name = param->get_argument_object_name();
mbed_official 21:b88cdeb5b302 158 uint16_t object_instance_id = param->get_argument_object_instance_id();
mbed_official 21:b88cdeb5b302 159 String resource_name = param->get_argument_resource_name();
mbed_official 21:b88cdeb5b302 160 int payload_length = param->get_argument_value_length();
mbed_official 21:b88cdeb5b302 161 uint8_t* payload = param->get_argument_value();
mbed_official 63:c73f78fd7982 162 printf("Resource: %s/%d/%s executed\n", object_name.c_str(), object_instance_id, resource_name.c_str());
mbed_official 63:c73f78fd7982 163 printf("Payload: %.*s\n", payload_length, payload);
mbed_official 21:b88cdeb5b302 164 }
mbed_official 21:b88cdeb5b302 165 // do_blink is called with the vector, and starting at -1
mbed_official 63:c73f78fd7982 166 blinky_thread.start(callback(this, &LedResource::do_blink));
mbed_official 21:b88cdeb5b302 167 }
mbed_official 21:b88cdeb5b302 168
mbed_official 21:b88cdeb5b302 169 private:
mbed_official 21:b88cdeb5b302 170 M2MObject* led_object;
mbed_official 21:b88cdeb5b302 171 Thread blinky_thread;
mbed_official 21:b88cdeb5b302 172 BlinkArgs *blink_args;
mbed_official 21:b88cdeb5b302 173 void do_blink() {
mbed_official 49:10f84adec19e 174 for (;;) {
mbed_official 49:10f84adec19e 175 // blink the LED
mbed_official 49:10f84adec19e 176 red_led = !red_led;
mbed_official 49:10f84adec19e 177 // up the position, if we reached the end of the vector
mbed_official 49:10f84adec19e 178 if (blink_args->position >= blink_args->blink_pattern.size()) {
mbed_official 49:10f84adec19e 179 // send delayed response after blink is done
mbed_official 49:10f84adec19e 180 M2MObjectInstance* inst = led_object->object_instance();
mbed_official 49:10f84adec19e 181 M2MResource* led_res = inst->resource("5850");
mbed_official 49:10f84adec19e 182 led_res->send_delayed_post_response();
mbed_official 49:10f84adec19e 183 red_led = 1;
mbed_official 49:10f84adec19e 184 status_ticker.attach_us(blinky, 250000);
mbed_official 49:10f84adec19e 185 return;
mbed_official 49:10f84adec19e 186 }
mbed_official 49:10f84adec19e 187 // Wait requested time, then continue prosessing the blink pattern from next position.
mbed_official 49:10f84adec19e 188 Thread::wait(blink_args->blink_pattern.at(blink_args->position));
mbed_official 49:10f84adec19e 189 blink_args->position++;
mbed_official 21:b88cdeb5b302 190 }
mbed_official 21:b88cdeb5b302 191 }
mbed_official 21:b88cdeb5b302 192 };
mbed_official 21:b88cdeb5b302 193
mbed_official 21:b88cdeb5b302 194 /*
mbed_official 21:b88cdeb5b302 195 * The button contains one property (click count).
mbed_official 21:b88cdeb5b302 196 * When `handle_button_click` is executed, the counter updates.
mbed_official 21:b88cdeb5b302 197 */
mbed_official 21:b88cdeb5b302 198 class ButtonResource {
mbed_official 21:b88cdeb5b302 199 public:
mbed_official 21:b88cdeb5b302 200 ButtonResource(): counter(0) {
mbed_official 21:b88cdeb5b302 201 // create ObjectID with metadata tag of '3200', which is 'digital input'
mbed_official 21:b88cdeb5b302 202 btn_object = M2MInterfaceFactory::create_object("3200");
mbed_official 21:b88cdeb5b302 203 M2MObjectInstance* btn_inst = btn_object->create_object_instance();
mbed_official 21:b88cdeb5b302 204 // create resource with ID '5501', which is digital input counter
mbed_official 21:b88cdeb5b302 205 M2MResource* btn_res = btn_inst->create_dynamic_resource("5501", "Button",
mbed_official 21:b88cdeb5b302 206 M2MResourceInstance::INTEGER, true /* observable */);
mbed_official 21:b88cdeb5b302 207 // we can read this value
mbed_official 21:b88cdeb5b302 208 btn_res->set_operation(M2MBase::GET_ALLOWED);
mbed_official 21:b88cdeb5b302 209 // set initial value (all values in mbed Client are buffers)
mbed_official 21:b88cdeb5b302 210 // to be able to read this data easily in the Connector console, we'll use a string
mbed_official 21:b88cdeb5b302 211 btn_res->set_value((uint8_t*)"0", 1);
mbed_official 21:b88cdeb5b302 212 }
mbed_official 21:b88cdeb5b302 213
mbed_official 21:b88cdeb5b302 214 ~ButtonResource() {
mbed_official 21:b88cdeb5b302 215 }
mbed_official 21:b88cdeb5b302 216
mbed_official 21:b88cdeb5b302 217 M2MObject* get_object() {
mbed_official 21:b88cdeb5b302 218 return btn_object;
mbed_official 21:b88cdeb5b302 219 }
mbed_official 21:b88cdeb5b302 220
mbed_official 21:b88cdeb5b302 221 /*
mbed_official 21:b88cdeb5b302 222 * When you press the button, we read the current value of the click counter
mbed_official 21:b88cdeb5b302 223 * from mbed Device Connector, then up the value with one.
mbed_official 21:b88cdeb5b302 224 */
mbed_official 21:b88cdeb5b302 225 void handle_button_click() {
mbed_official 21:b88cdeb5b302 226 M2MObjectInstance* inst = btn_object->object_instance();
mbed_official 21:b88cdeb5b302 227 M2MResource* res = inst->resource("5501");
mbed_official 21:b88cdeb5b302 228
mbed_official 21:b88cdeb5b302 229 // up counter
mbed_official 21:b88cdeb5b302 230 counter++;
mbed_official 21:b88cdeb5b302 231 #ifdef TARGET_K64F
mbed_official 63:c73f78fd7982 232 printf("handle_button_click, new value of counter is %d\n", counter);
mbed_official 21:b88cdeb5b302 233 #else
mbed_official 63:c73f78fd7982 234 printf("simulate button_click, new value of counter is %d\n", counter);
mbed_official 21:b88cdeb5b302 235 #endif
mbed_official 21:b88cdeb5b302 236 // serialize the value of counter as a string, and tell connector
mbed_official 21:b88cdeb5b302 237 char buffer[20];
mbed_official 21:b88cdeb5b302 238 int size = sprintf(buffer,"%d",counter);
mbed_official 21:b88cdeb5b302 239 res->set_value((uint8_t*)buffer, size);
mbed_official 21:b88cdeb5b302 240 }
mbed_official 21:b88cdeb5b302 241
mbed_official 21:b88cdeb5b302 242 private:
mbed_official 21:b88cdeb5b302 243 M2MObject* btn_object;
mbed_official 21:b88cdeb5b302 244 uint16_t counter;
mbed_official 21:b88cdeb5b302 245 };
mbed_official 21:b88cdeb5b302 246
mbed_official 21:b88cdeb5b302 247 class BigPayloadResource {
mbed_official 21:b88cdeb5b302 248 public:
mbed_official 21:b88cdeb5b302 249 BigPayloadResource() {
mbed_official 21:b88cdeb5b302 250 big_payload = M2MInterfaceFactory::create_object("1000");
mbed_official 21:b88cdeb5b302 251 M2MObjectInstance* payload_inst = big_payload->create_object_instance();
mbed_official 21:b88cdeb5b302 252 M2MResource* payload_res = payload_inst->create_dynamic_resource("1", "BigData",
mbed_official 21:b88cdeb5b302 253 M2MResourceInstance::STRING, true /* observable */);
mbed_official 21:b88cdeb5b302 254 payload_res->set_operation(M2MBase::GET_PUT_ALLOWED);
mbed_official 21:b88cdeb5b302 255 payload_res->set_value((uint8_t*)"0", 1);
mbed_official 21:b88cdeb5b302 256 payload_res->set_incoming_block_message_callback(
mbed_official 21:b88cdeb5b302 257 incoming_block_message_callback(this, &BigPayloadResource::block_message_received));
mbed_official 21:b88cdeb5b302 258 payload_res->set_outgoing_block_message_callback(
mbed_official 21:b88cdeb5b302 259 outgoing_block_message_callback(this, &BigPayloadResource::block_message_requested));
mbed_official 21:b88cdeb5b302 260 }
mbed_official 21:b88cdeb5b302 261
mbed_official 21:b88cdeb5b302 262 M2MObject* get_object() {
mbed_official 21:b88cdeb5b302 263 return big_payload;
mbed_official 21:b88cdeb5b302 264 }
mbed_official 21:b88cdeb5b302 265
mbed_official 21:b88cdeb5b302 266 void block_message_received(M2MBlockMessage *argument) {
mbed_official 21:b88cdeb5b302 267 if (argument) {
mbed_official 21:b88cdeb5b302 268 if (M2MBlockMessage::ErrorNone == argument->error_code()) {
mbed_official 21:b88cdeb5b302 269 if (argument->is_last_block()) {
mbed_official 63:c73f78fd7982 270 printf("Last block received\n");
mbed_official 21:b88cdeb5b302 271 }
mbed_official 63:c73f78fd7982 272 printf("Block number: %d\n", argument->block_number());
mbed_official 21:b88cdeb5b302 273 // First block received
mbed_official 21:b88cdeb5b302 274 if (argument->block_number() == 0) {
mbed_official 21:b88cdeb5b302 275 // Store block
mbed_official 21:b88cdeb5b302 276 // More blocks coming
mbed_official 21:b88cdeb5b302 277 } else {
mbed_official 21:b88cdeb5b302 278 // Store blocks
mbed_official 21:b88cdeb5b302 279 }
mbed_official 21:b88cdeb5b302 280 } else {
mbed_official 63:c73f78fd7982 281 printf("Error when receiving block message! - EntityTooLarge\n");
mbed_official 21:b88cdeb5b302 282 }
mbed_official 63:c73f78fd7982 283 printf("Total message size: %" PRIu32 "\n", argument->total_message_size());
mbed_official 21:b88cdeb5b302 284 }
mbed_official 21:b88cdeb5b302 285 }
mbed_official 21:b88cdeb5b302 286
mbed_official 21:b88cdeb5b302 287 void block_message_requested(const String& resource, uint8_t *&/*data*/, uint32_t &/*len*/) {
mbed_official 63:c73f78fd7982 288 printf("GET request received for resource: %s\n", resource.c_str());
mbed_official 21:b88cdeb5b302 289 // Copy data and length to coap response
mbed_official 21:b88cdeb5b302 290 }
mbed_official 21:b88cdeb5b302 291
mbed_official 21:b88cdeb5b302 292 private:
mbed_official 21:b88cdeb5b302 293 M2MObject* big_payload;
mbed_official 21:b88cdeb5b302 294 };
mbed_official 21:b88cdeb5b302 295
mbed_official 21:b88cdeb5b302 296 // Network interaction must be performed outside of interrupt context
mbed_official 21:b88cdeb5b302 297 Semaphore updates(0);
mbed_official 21:b88cdeb5b302 298 volatile bool registered = false;
mbed_official 21:b88cdeb5b302 299 volatile bool clicked = false;
mbed_official 21:b88cdeb5b302 300 osThreadId mainThread;
mbed_official 21:b88cdeb5b302 301
mbed_official 21:b88cdeb5b302 302 void unregister() {
mbed_official 21:b88cdeb5b302 303 registered = false;
mbed_official 21:b88cdeb5b302 304 updates.release();
mbed_official 21:b88cdeb5b302 305 }
mbed_official 21:b88cdeb5b302 306
mbed_official 21:b88cdeb5b302 307 void button_clicked() {
mbed_official 21:b88cdeb5b302 308 clicked = true;
mbed_official 21:b88cdeb5b302 309 updates.release();
mbed_official 21:b88cdeb5b302 310 }
mbed_official 21:b88cdeb5b302 311
mbed_official 21:b88cdeb5b302 312 // Entry point to the program
mbed_official 21:b88cdeb5b302 313 int main() {
mbed_official 21:b88cdeb5b302 314
mbed_official 21:b88cdeb5b302 315 unsigned int seed;
mbed_official 21:b88cdeb5b302 316 size_t len;
mbed_official 21:b88cdeb5b302 317
mbed_official 21:b88cdeb5b302 318 #ifdef MBEDTLS_ENTROPY_HARDWARE_ALT
mbed_official 21:b88cdeb5b302 319 // Used to randomize source port
mbed_official 21:b88cdeb5b302 320 mbedtls_hardware_poll(NULL, (unsigned char *) &seed, sizeof seed, &len);
mbed_official 21:b88cdeb5b302 321
mbed_official 21:b88cdeb5b302 322 #elif defined MBEDTLS_TEST_NULL_ENTROPY
mbed_official 21:b88cdeb5b302 323
mbed_official 21:b88cdeb5b302 324 #warning "mbedTLS security feature is disabled. Connection will not be secure !! Implement proper hardware entropy for your selected hardware."
mbed_official 21:b88cdeb5b302 325 // Used to randomize source port
mbed_official 21:b88cdeb5b302 326 mbedtls_null_entropy_poll( NULL,(unsigned char *) &seed, sizeof seed, &len);
mbed_official 21:b88cdeb5b302 327
mbed_official 21:b88cdeb5b302 328 #else
mbed_official 21:b88cdeb5b302 329
mbed_official 21:b88cdeb5b302 330 #error "This hardware does not have entropy, endpoint will not register to Connector.\
mbed_official 21:b88cdeb5b302 331 You need to enable NULL ENTROPY for your application, but if this configuration change is made then no security is offered by mbed TLS.\
mbed_official 21:b88cdeb5b302 332 Add MBEDTLS_NO_DEFAULT_ENTROPY_SOURCES and MBEDTLS_TEST_NULL_ENTROPY in mbed_app.json macros to register your endpoint."
mbed_official 21:b88cdeb5b302 333
mbed_official 21:b88cdeb5b302 334 #endif
mbed_official 21:b88cdeb5b302 335
mbed_official 21:b88cdeb5b302 336 srand(seed);
mbed_official 21:b88cdeb5b302 337 red_led = 1;
mbed_official 21:b88cdeb5b302 338 blue_led = 1;
mbed_official 63:c73f78fd7982 339
mbed_official 21:b88cdeb5b302 340 status_ticker.attach_us(blinky, 250000);
mbed_official 21:b88cdeb5b302 341 // Keep track of the main thread
mbed_official 21:b88cdeb5b302 342 mainThread = osThreadGetId();
mbed_official 21:b88cdeb5b302 343
mbed_official 63:c73f78fd7982 344 printf("\nStarting mbed Client example in ");
mbed_official 44:2b472e66a942 345 #if defined (MESH) || (MBED_CONF_LWIP_IPV6_ENABLED==true)
mbed_official 63:c73f78fd7982 346 printf("IPv6 mode\n");
mbed_official 44:2b472e66a942 347 #else
mbed_official 63:c73f78fd7982 348 printf("IPv4 mode\n");
mbed_official 44:2b472e66a942 349 #endif
mbed_official 21:b88cdeb5b302 350
mbed_official 21:b88cdeb5b302 351 mbed_trace_init();
mbed_official 44:2b472e66a942 352
mbed_official 63:c73f78fd7982 353 NetworkInterface* network = easy_connect(true);
mbed_official 63:c73f78fd7982 354 if(network == NULL) {
mbed_official 63:c73f78fd7982 355 printf("\nConnection to Network Failed - exiting application...\n");
mbed_official 63:c73f78fd7982 356 return -1;
mbed_official 21:b88cdeb5b302 357 }
mbed_official 21:b88cdeb5b302 358
mbed_official 21:b88cdeb5b302 359 // we create our button and LED resources
mbed_official 21:b88cdeb5b302 360 ButtonResource button_resource;
mbed_official 21:b88cdeb5b302 361 LedResource led_resource;
mbed_official 21:b88cdeb5b302 362 BigPayloadResource big_payload_resource;
mbed_official 21:b88cdeb5b302 363
mbed_official 21:b88cdeb5b302 364 #ifdef TARGET_K64F
mbed_official 21:b88cdeb5b302 365 // On press of SW3 button on K64F board, example application
mbed_official 21:b88cdeb5b302 366 // will call unregister API towards mbed Device Connector
mbed_official 21:b88cdeb5b302 367 //unreg_button.fall(&mbed_client,&MbedClient::test_unregister);
mbed_official 21:b88cdeb5b302 368 unreg_button.fall(&unregister);
mbed_official 21:b88cdeb5b302 369
mbed_official 21:b88cdeb5b302 370 // Observation Button (SW2) press will send update of endpoint resource values to connector
mbed_official 21:b88cdeb5b302 371 obs_button.fall(&button_clicked);
mbed_official 21:b88cdeb5b302 372 #else
mbed_official 21:b88cdeb5b302 373 // Send update of endpoint resource values to connector every 15 seconds periodically
mbed_official 21:b88cdeb5b302 374 timer.attach(&button_clicked, 15.0);
mbed_official 21:b88cdeb5b302 375 #endif
mbed_official 21:b88cdeb5b302 376
mbed_official 21:b88cdeb5b302 377 // Create endpoint interface to manage register and unregister
mbed_official 63:c73f78fd7982 378 mbed_client.create_interface(MBED_SERVER_ADDRESS, network);
mbed_official 21:b88cdeb5b302 379
mbed_official 21:b88cdeb5b302 380 // Create Objects of varying types, see simpleclient.h for more details on implementation.
mbed_official 21:b88cdeb5b302 381 M2MSecurity* register_object = mbed_client.create_register_object(); // server object specifying connector info
mbed_official 21:b88cdeb5b302 382 M2MDevice* device_object = mbed_client.create_device_object(); // device resources object
mbed_official 21:b88cdeb5b302 383
mbed_official 21:b88cdeb5b302 384 // Create list of Objects to register
mbed_official 21:b88cdeb5b302 385 M2MObjectList object_list;
mbed_official 21:b88cdeb5b302 386
mbed_official 21:b88cdeb5b302 387 // Add objects to list
mbed_official 21:b88cdeb5b302 388 object_list.push_back(device_object);
mbed_official 21:b88cdeb5b302 389 object_list.push_back(button_resource.get_object());
mbed_official 21:b88cdeb5b302 390 object_list.push_back(led_resource.get_object());
mbed_official 21:b88cdeb5b302 391 object_list.push_back(big_payload_resource.get_object());
mbed_official 21:b88cdeb5b302 392
mbed_official 21:b88cdeb5b302 393 // Set endpoint registration object
mbed_official 21:b88cdeb5b302 394 mbed_client.set_register_object(register_object);
mbed_official 21:b88cdeb5b302 395
mbed_official 21:b88cdeb5b302 396 // Register with mbed Device Connector
mbed_official 21:b88cdeb5b302 397 mbed_client.test_register(register_object, object_list);
mbed_official 21:b88cdeb5b302 398 registered = true;
mbed_official 21:b88cdeb5b302 399
mbed_official 21:b88cdeb5b302 400 while (true) {
mbed_official 21:b88cdeb5b302 401 updates.wait(25000);
mbed_official 21:b88cdeb5b302 402 if(registered) {
mbed_official 21:b88cdeb5b302 403 if(!clicked) {
mbed_official 21:b88cdeb5b302 404 mbed_client.test_update_register();
mbed_official 21:b88cdeb5b302 405 }
mbed_official 21:b88cdeb5b302 406 }else {
mbed_official 21:b88cdeb5b302 407 break;
mbed_official 21:b88cdeb5b302 408 }
mbed_official 21:b88cdeb5b302 409 if(clicked) {
mbed_official 21:b88cdeb5b302 410 clicked = false;
mbed_official 21:b88cdeb5b302 411 button_resource.handle_button_click();
mbed_official 21:b88cdeb5b302 412 }
mbed_official 21:b88cdeb5b302 413 }
mbed_official 21:b88cdeb5b302 414
mbed_official 21:b88cdeb5b302 415 mbed_client.test_unregister();
mbed_official 21:b88cdeb5b302 416 status_ticker.detach();
mbed_official 21:b88cdeb5b302 417 }