maedalab / Mbed 2 deprecated MPU9250_AHRS

Dependencies:   MPU9250_SPI mbed

Committer:
mfurukawa
Date:
Fri Jun 17 14:30:55 2016 +0000
Revision:
10:28fa811afbfb
Parent:
9:e700b2d586d6
Child:
11:3f0b35a0855c
Stable 912kbps

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mfurukawa 3:07aa20aa678d 1 /**
mfurukawa 3:07aa20aa678d 2 * Masahiro FURUKAWA - m.furukawa@ist.osaka-u.ac.jp
mfurukawa 8:03f9b5289083 3 *
mfurukawa 6:ea0804dc7cae 4 * June 17, 2016
mfurukawa 3:07aa20aa678d 5 *
mfurukawa 6:ea0804dc7cae 6 * MPU9250 9DoF Sensor (Extended to Ch1 ~ Ch2)
mfurukawa 3:07aa20aa678d 7 *
mfurukawa 3:07aa20aa678d 8 **/
mfurukawa 3:07aa20aa678d 9
adisuciu 0:83fda1bfaffe 10 #include "mbed.h"
mfurukawa 6:ea0804dc7cae 11 #include "MPU9250.h"
mfurukawa 10:28fa811afbfb 12 #include "KalmanFilter.h"
mfurukawa 1:f1e4ee4fc335 13 /*
mfurukawa 1:f1e4ee4fc335 14 MOSI (Master Out Slave In) p5
mfurukawa 1:f1e4ee4fc335 15 MISO (Master In Slave Out p6
mfurukawa 1:f1e4ee4fc335 16 SCK (Serial Clock) p7
mfurukawa 6:ea0804dc7cae 17 ~CS (Chip Select) p8
mfurukawa 1:f1e4ee4fc335 18 */
adisuciu 0:83fda1bfaffe 19
mfurukawa 6:ea0804dc7cae 20 // https://developer.mbed.org/users/kylongmu/code/MPU9250_SPI_Test/file/5839d1b118bc/main.cpp
mfurukawa 4:5a9aa5ae928a 21
mfurukawa 10:28fa811afbfb 22
mfurukawa 10:28fa811afbfb 23 void MadgwickAHRSupdate(float gx, float gy, float gz, float ax, float ay, float az, float mx, float my, float mz);
mfurukawa 10:28fa811afbfb 24 void MadgwickAHRSupdateIMU(float gx, float gy, float gz, float ax, float ay, float az);
mfurukawa 10:28fa811afbfb 25
mfurukawa 10:28fa811afbfb 26
mfurukawa 10:28fa811afbfb 27 //---------------------------------------------------------------------------------------------------
mfurukawa 10:28fa811afbfb 28 // Definitions
mfurukawa 10:28fa811afbfb 29
mfurukawa 10:28fa811afbfb 30 #define sampleFreq 500.0f // sample frequency in Hz
mfurukawa 10:28fa811afbfb 31 #define betaDef 1.0f // 2 * proportional gain
mfurukawa 10:28fa811afbfb 32 #define PI 3.14159265358979f
mfurukawa 10:28fa811afbfb 33 #define DEGREE2RAD PI/180.0f
mfurukawa 10:28fa811afbfb 34 //---------------------------------------------------------------------------------------------------
mfurukawa 10:28fa811afbfb 35 // Variable definitions
mfurukawa 10:28fa811afbfb 36
mfurukawa 10:28fa811afbfb 37 volatile float beta = betaDef; // 2 * proportional gain (Kp)
mfurukawa 10:28fa811afbfb 38 volatile float q0 = 1.0f, q1 = 0.0f, q2 = 0.0f, q3 = 0.0f; // quaternion of sensor frame relative to auxiliary frame
mfurukawa 10:28fa811afbfb 39
mfurukawa 10:28fa811afbfb 40 //---------------------------------------------------------------------------------------------------
mfurukawa 10:28fa811afbfb 41 // Function declarations
mfurukawa 10:28fa811afbfb 42
mfurukawa 10:28fa811afbfb 43 float invSqrt(float x);
mfurukawa 10:28fa811afbfb 44
mfurukawa 10:28fa811afbfb 45 //====================================================================================================
mfurukawa 10:28fa811afbfb 46 // Functions
mfurukawa 10:28fa811afbfb 47
mfurukawa 10:28fa811afbfb 48 //---------------------------------------------------------------------------------------------------
mfurukawa 10:28fa811afbfb 49 // AHRS algorithm update
mfurukawa 10:28fa811afbfb 50
mfurukawa 10:28fa811afbfb 51 void MadgwickAHRSupdate(float gx, float gy, float gz, float ax, float ay, float az, float mx, float my, float mz) {
mfurukawa 10:28fa811afbfb 52 float recipNorm;
mfurukawa 10:28fa811afbfb 53 float s0, s1, s2, s3;
mfurukawa 10:28fa811afbfb 54 float qDot1, qDot2, qDot3, qDot4;
mfurukawa 10:28fa811afbfb 55 float hx, hy;
mfurukawa 10:28fa811afbfb 56 float _2q0mx, _2q0my, _2q0mz, _2q1mx, _2bx, _2bz, _4bx, _4bz, _2q0, _2q1, _2q2, _2q3, _2q0q2, _2q2q3, q0q0, q0q1, q0q2, q0q3, q1q1, q1q2, q1q3, q2q2, q2q3, q3q3;
mfurukawa 10:28fa811afbfb 57
mfurukawa 10:28fa811afbfb 58 // Use IMU algorithm if magnetometer measurement invalid (avoids NaN in magnetometer normalisation)
mfurukawa 10:28fa811afbfb 59 if((mx == 0.0f) && (my == 0.0f) && (mz == 0.0f)) {
mfurukawa 10:28fa811afbfb 60 MadgwickAHRSupdateIMU(gx, gy, gz, ax, ay, az);
mfurukawa 10:28fa811afbfb 61 return;
mfurukawa 10:28fa811afbfb 62 }
mfurukawa 10:28fa811afbfb 63
mfurukawa 10:28fa811afbfb 64 // Rate of change of quaternion from gyroscope
mfurukawa 10:28fa811afbfb 65 qDot1 = 0.5f * (-q1 * gx - q2 * gy - q3 * gz);
mfurukawa 10:28fa811afbfb 66 qDot2 = 0.5f * (q0 * gx + q2 * gz - q3 * gy);
mfurukawa 10:28fa811afbfb 67 qDot3 = 0.5f * (q0 * gy - q1 * gz + q3 * gx);
mfurukawa 10:28fa811afbfb 68 qDot4 = 0.5f * (q0 * gz + q1 * gy - q2 * gx);
mfurukawa 10:28fa811afbfb 69
mfurukawa 10:28fa811afbfb 70 // Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation)
mfurukawa 10:28fa811afbfb 71 if(!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) {
mfurukawa 6:ea0804dc7cae 72
mfurukawa 10:28fa811afbfb 73 // Normalise accelerometer measurement
mfurukawa 10:28fa811afbfb 74 recipNorm = invSqrt(ax * ax + ay * ay + az * az);
mfurukawa 10:28fa811afbfb 75 ax *= recipNorm;
mfurukawa 10:28fa811afbfb 76 ay *= recipNorm;
mfurukawa 10:28fa811afbfb 77 az *= recipNorm;
mfurukawa 10:28fa811afbfb 78
mfurukawa 10:28fa811afbfb 79 // Normalise magnetometer measurement
mfurukawa 10:28fa811afbfb 80 recipNorm = invSqrt(mx * mx + my * my + mz * mz);
mfurukawa 10:28fa811afbfb 81 mx *= recipNorm;
mfurukawa 10:28fa811afbfb 82 my *= recipNorm;
mfurukawa 10:28fa811afbfb 83 mz *= recipNorm;
mfurukawa 10:28fa811afbfb 84
mfurukawa 10:28fa811afbfb 85 // Auxiliary variables to avoid repeated arithmetic
mfurukawa 10:28fa811afbfb 86 _2q0mx = 2.0f * q0 * mx;
mfurukawa 10:28fa811afbfb 87 _2q0my = 2.0f * q0 * my;
mfurukawa 10:28fa811afbfb 88 _2q0mz = 2.0f * q0 * mz;
mfurukawa 10:28fa811afbfb 89 _2q1mx = 2.0f * q1 * mx;
mfurukawa 10:28fa811afbfb 90 _2q0 = 2.0f * q0;
mfurukawa 10:28fa811afbfb 91 _2q1 = 2.0f * q1;
mfurukawa 10:28fa811afbfb 92 _2q2 = 2.0f * q2;
mfurukawa 10:28fa811afbfb 93 _2q3 = 2.0f * q3;
mfurukawa 10:28fa811afbfb 94 _2q0q2 = 2.0f * q0 * q2;
mfurukawa 10:28fa811afbfb 95 _2q2q3 = 2.0f * q2 * q3;
mfurukawa 10:28fa811afbfb 96 q0q0 = q0 * q0;
mfurukawa 10:28fa811afbfb 97 q0q1 = q0 * q1;
mfurukawa 10:28fa811afbfb 98 q0q2 = q0 * q2;
mfurukawa 10:28fa811afbfb 99 q0q3 = q0 * q3;
mfurukawa 10:28fa811afbfb 100 q1q1 = q1 * q1;
mfurukawa 10:28fa811afbfb 101 q1q2 = q1 * q2;
mfurukawa 10:28fa811afbfb 102 q1q3 = q1 * q3;
mfurukawa 10:28fa811afbfb 103 q2q2 = q2 * q2;
mfurukawa 10:28fa811afbfb 104 q2q3 = q2 * q3;
mfurukawa 10:28fa811afbfb 105 q3q3 = q3 * q3;
mfurukawa 10:28fa811afbfb 106
mfurukawa 10:28fa811afbfb 107 // Reference direction of Earth's magnetic field
mfurukawa 10:28fa811afbfb 108 hx = mx * q0q0 - _2q0my * q3 + _2q0mz * q2 + mx * q1q1 + _2q1 * my * q2 + _2q1 * mz * q3 - mx * q2q2 - mx * q3q3;
mfurukawa 10:28fa811afbfb 109 hy = _2q0mx * q3 + my * q0q0 - _2q0mz * q1 + _2q1mx * q2 - my * q1q1 + my * q2q2 + _2q2 * mz * q3 - my * q3q3;
mfurukawa 10:28fa811afbfb 110 _2bx = sqrt(hx * hx + hy * hy);
mfurukawa 10:28fa811afbfb 111 _2bz = -_2q0mx * q2 + _2q0my * q1 + mz * q0q0 + _2q1mx * q3 - mz * q1q1 + _2q2 * my * q3 - mz * q2q2 + mz * q3q3;
mfurukawa 10:28fa811afbfb 112 _4bx = 2.0f * _2bx;
mfurukawa 10:28fa811afbfb 113 _4bz = 2.0f * _2bz;
mfurukawa 10:28fa811afbfb 114
mfurukawa 10:28fa811afbfb 115 // Gradient decent algorithm corrective step
mfurukawa 10:28fa811afbfb 116 s0 = -_2q2 * (2.0f * q1q3 - _2q0q2 - ax) + _2q1 * (2.0f * q0q1 + _2q2q3 - ay) - _2bz * q2 * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (-_2bx * q3 + _2bz * q1) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + _2bx * q2 * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
mfurukawa 10:28fa811afbfb 117 s1 = _2q3 * (2.0f * q1q3 - _2q0q2 - ax) + _2q0 * (2.0f * q0q1 + _2q2q3 - ay) - 4.0f * q1 * (1 - 2.0f * q1q1 - 2.0f * q2q2 - az) + _2bz * q3 * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (_2bx * q2 + _2bz * q0) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + (_2bx * q3 - _4bz * q1) * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
mfurukawa 10:28fa811afbfb 118 s2 = -_2q0 * (2.0f * q1q3 - _2q0q2 - ax) + _2q3 * (2.0f * q0q1 + _2q2q3 - ay) - 4.0f * q2 * (1 - 2.0f * q1q1 - 2.0f * q2q2 - az) + (-_4bx * q2 - _2bz * q0) * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (_2bx * q1 + _2bz * q3) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + (_2bx * q0 - _4bz * q2) * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
mfurukawa 10:28fa811afbfb 119 s3 = _2q1 * (2.0f * q1q3 - _2q0q2 - ax) + _2q2 * (2.0f * q0q1 + _2q2q3 - ay) + (-_4bx * q3 + _2bz * q1) * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (-_2bx * q0 + _2bz * q2) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + _2bx * q1 * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
mfurukawa 10:28fa811afbfb 120 recipNorm = invSqrt(s0 * s0 + s1 * s1 + s2 * s2 + s3 * s3); // normalise step magnitude
mfurukawa 10:28fa811afbfb 121 s0 *= recipNorm;
mfurukawa 10:28fa811afbfb 122 s1 *= recipNorm;
mfurukawa 10:28fa811afbfb 123 s2 *= recipNorm;
mfurukawa 10:28fa811afbfb 124 s3 *= recipNorm;
mfurukawa 10:28fa811afbfb 125
mfurukawa 10:28fa811afbfb 126 // Apply feedback step
mfurukawa 10:28fa811afbfb 127 qDot1 -= beta * s0;
mfurukawa 10:28fa811afbfb 128 qDot2 -= beta * s1;
mfurukawa 10:28fa811afbfb 129 qDot3 -= beta * s2;
mfurukawa 10:28fa811afbfb 130 qDot4 -= beta * s3;
mfurukawa 10:28fa811afbfb 131 }
mfurukawa 8:03f9b5289083 132
mfurukawa 10:28fa811afbfb 133 // Integrate rate of change of quaternion to yield quaternion
mfurukawa 10:28fa811afbfb 134 q0 += qDot1 * (1.0f / sampleFreq);
mfurukawa 10:28fa811afbfb 135 q1 += qDot2 * (1.0f / sampleFreq);
mfurukawa 10:28fa811afbfb 136 q2 += qDot3 * (1.0f / sampleFreq);
mfurukawa 10:28fa811afbfb 137 q3 += qDot4 * (1.0f / sampleFreq);
mfurukawa 10:28fa811afbfb 138
mfurukawa 10:28fa811afbfb 139 // Normalise quaternion
mfurukawa 10:28fa811afbfb 140 recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
mfurukawa 10:28fa811afbfb 141 q0 *= recipNorm;
mfurukawa 10:28fa811afbfb 142 q1 *= recipNorm;
mfurukawa 10:28fa811afbfb 143 q2 *= recipNorm;
mfurukawa 10:28fa811afbfb 144 q3 *= recipNorm;
mfurukawa 10:28fa811afbfb 145 }
mfurukawa 10:28fa811afbfb 146
mfurukawa 10:28fa811afbfb 147 //---------------------------------------------------------------------------------------------------
mfurukawa 10:28fa811afbfb 148 // IMU algorithm update
mfurukawa 10:28fa811afbfb 149
mfurukawa 10:28fa811afbfb 150 void MadgwickAHRSupdateIMU(float gx, float gy, float gz, float ax, float ay, float az) {
mfurukawa 10:28fa811afbfb 151 float recipNorm;
mfurukawa 10:28fa811afbfb 152 float s0, s1, s2, s3;
mfurukawa 10:28fa811afbfb 153 float qDot1, qDot2, qDot3, qDot4;
mfurukawa 10:28fa811afbfb 154 float _2q0, _2q1, _2q2, _2q3, _4q0, _4q1, _4q2 ,_8q1, _8q2, q0q0, q1q1, q2q2, q3q3;
mfurukawa 10:28fa811afbfb 155
mfurukawa 10:28fa811afbfb 156 // Rate of change of quaternion from gyroscope
mfurukawa 10:28fa811afbfb 157 qDot1 = 0.5f * (-q1 * gx - q2 * gy - q3 * gz);
mfurukawa 10:28fa811afbfb 158 qDot2 = 0.5f * (q0 * gx + q2 * gz - q3 * gy);
mfurukawa 10:28fa811afbfb 159 qDot3 = 0.5f * (q0 * gy - q1 * gz + q3 * gx);
mfurukawa 10:28fa811afbfb 160 qDot4 = 0.5f * (q0 * gz + q1 * gy - q2 * gx);
mfurukawa 10:28fa811afbfb 161
mfurukawa 10:28fa811afbfb 162 // Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation)
mfurukawa 10:28fa811afbfb 163 if(!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) {
mfurukawa 10:28fa811afbfb 164
mfurukawa 10:28fa811afbfb 165 // Normalise accelerometer measurement
mfurukawa 10:28fa811afbfb 166 recipNorm = invSqrt(ax * ax + ay * ay + az * az);
mfurukawa 10:28fa811afbfb 167 ax *= recipNorm;
mfurukawa 10:28fa811afbfb 168 ay *= recipNorm;
mfurukawa 10:28fa811afbfb 169 az *= recipNorm;
mfurukawa 10:28fa811afbfb 170
mfurukawa 10:28fa811afbfb 171 // Auxiliary variables to avoid repeated arithmetic
mfurukawa 10:28fa811afbfb 172 _2q0 = 2.0f * q0;
mfurukawa 10:28fa811afbfb 173 _2q1 = 2.0f * q1;
mfurukawa 10:28fa811afbfb 174 _2q2 = 2.0f * q2;
mfurukawa 10:28fa811afbfb 175 _2q3 = 2.0f * q3;
mfurukawa 10:28fa811afbfb 176 _4q0 = 4.0f * q0;
mfurukawa 10:28fa811afbfb 177 _4q1 = 4.0f * q1;
mfurukawa 10:28fa811afbfb 178 _4q2 = 4.0f * q2;
mfurukawa 10:28fa811afbfb 179 _8q1 = 8.0f * q1;
mfurukawa 10:28fa811afbfb 180 _8q2 = 8.0f * q2;
mfurukawa 10:28fa811afbfb 181 q0q0 = q0 * q0;
mfurukawa 10:28fa811afbfb 182 q1q1 = q1 * q1;
mfurukawa 10:28fa811afbfb 183 q2q2 = q2 * q2;
mfurukawa 10:28fa811afbfb 184 q3q3 = q3 * q3;
mfurukawa 6:ea0804dc7cae 185
mfurukawa 10:28fa811afbfb 186 // Gradient decent algorithm corrective step
mfurukawa 10:28fa811afbfb 187 s0 = _4q0 * q2q2 + _2q2 * ax + _4q0 * q1q1 - _2q1 * ay;
mfurukawa 10:28fa811afbfb 188 s1 = _4q1 * q3q3 - _2q3 * ax + 4.0f * q0q0 * q1 - _2q0 * ay - _4q1 + _8q1 * q1q1 + _8q1 * q2q2 + _4q1 * az;
mfurukawa 10:28fa811afbfb 189 s2 = 4.0f * q0q0 * q2 + _2q0 * ax + _4q2 * q3q3 - _2q3 * ay - _4q2 + _8q2 * q1q1 + _8q2 * q2q2 + _4q2 * az;
mfurukawa 10:28fa811afbfb 190 s3 = 4.0f * q1q1 * q3 - _2q1 * ax + 4.0f * q2q2 * q3 - _2q2 * ay;
mfurukawa 10:28fa811afbfb 191 recipNorm = invSqrt(s0 * s0 + s1 * s1 + s2 * s2 + s3 * s3); // normalise step magnitude
mfurukawa 10:28fa811afbfb 192 s0 *= recipNorm;
mfurukawa 10:28fa811afbfb 193 s1 *= recipNorm;
mfurukawa 10:28fa811afbfb 194 s2 *= recipNorm;
mfurukawa 10:28fa811afbfb 195 s3 *= recipNorm;
mfurukawa 10:28fa811afbfb 196
mfurukawa 10:28fa811afbfb 197 // Apply feedback step
mfurukawa 10:28fa811afbfb 198 qDot1 -= beta * s0;
mfurukawa 10:28fa811afbfb 199 qDot2 -= beta * s1;
mfurukawa 10:28fa811afbfb 200 qDot3 -= beta * s2;
mfurukawa 10:28fa811afbfb 201 qDot4 -= beta * s3;
mfurukawa 10:28fa811afbfb 202 }
mfurukawa 10:28fa811afbfb 203
mfurukawa 10:28fa811afbfb 204 // Integrate rate of change of quaternion to yield quaternion
mfurukawa 10:28fa811afbfb 205 q0 += qDot1 * (1.0f / sampleFreq);
mfurukawa 10:28fa811afbfb 206 q1 += qDot2 * (1.0f / sampleFreq);
mfurukawa 10:28fa811afbfb 207 q2 += qDot3 * (1.0f / sampleFreq);
mfurukawa 10:28fa811afbfb 208 q3 += qDot4 * (1.0f / sampleFreq);
mfurukawa 8:03f9b5289083 209
mfurukawa 10:28fa811afbfb 210 // Normalise quaternion
mfurukawa 10:28fa811afbfb 211 recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
mfurukawa 10:28fa811afbfb 212 q0 *= recipNorm;
mfurukawa 10:28fa811afbfb 213 q1 *= recipNorm;
mfurukawa 10:28fa811afbfb 214 q2 *= recipNorm;
mfurukawa 10:28fa811afbfb 215 q3 *= recipNorm;
mfurukawa 10:28fa811afbfb 216 }
mfurukawa 10:28fa811afbfb 217
mfurukawa 10:28fa811afbfb 218 //---------------------------------------------------------------------------------------------------
mfurukawa 10:28fa811afbfb 219 // Fast inverse square-root
mfurukawa 10:28fa811afbfb 220 // See: http://en.wikipedia.org/wiki/Fast_inverse_square_root
mfurukawa 10:28fa811afbfb 221
mfurukawa 10:28fa811afbfb 222 float invSqrt(float x) {
mfurukawa 10:28fa811afbfb 223 float halfx = 0.5f * x;
mfurukawa 10:28fa811afbfb 224 float y = x;
mfurukawa 10:28fa811afbfb 225 long i = *(long*)&y;
mfurukawa 10:28fa811afbfb 226 i = 0x5f3759df - (i>>1);
mfurukawa 10:28fa811afbfb 227 y = *(float*)&i;
mfurukawa 10:28fa811afbfb 228 y = y * (1.5f - (halfx * y * y));
mfurukawa 10:28fa811afbfb 229 return y;
mfurukawa 10:28fa811afbfb 230 }
mfurukawa 10:28fa811afbfb 231
mfurukawa 10:28fa811afbfb 232
mfurukawa 10:28fa811afbfb 233
mfurukawa 10:28fa811afbfb 234 //define the mpu9250 object
mfurukawa 10:28fa811afbfb 235 mpu9250_spi *imu[2];
mfurukawa 10:28fa811afbfb 236 Serial pc(USBTX, USBRX);
mfurukawa 10:28fa811afbfb 237 SPI spi(p5, p6, p7);
mfurukawa 10:28fa811afbfb 238 KalmanFilter *kf[12];
mfurukawa 10:28fa811afbfb 239 Ticker ticker;
mfurukawa 10:28fa811afbfb 240
mfurukawa 10:28fa811afbfb 241 float x,y,z,gxOfs,gyOfs,gzOfs;
mfurukawa 10:28fa811afbfb 242 // Calibration wait
mfurukawa 10:28fa811afbfb 243
mfurukawa 10:28fa811afbfb 244 void init(void){
mfurukawa 10:28fa811afbfb 245
mfurukawa 10:28fa811afbfb 246 pc.baud(921600);
mfurukawa 10:28fa811afbfb 247
mfurukawa 6:ea0804dc7cae 248 imu[0] = new mpu9250_spi(spi, p8);
mfurukawa 6:ea0804dc7cae 249 imu[1] = new mpu9250_spi(spi, p9);
mfurukawa 10:28fa811afbfb 250
mfurukawa 10:28fa811afbfb 251 for(int i=0; i<12; i++)
mfurukawa 10:28fa811afbfb 252 kf[i] = new KalmanFilter(1e-3, 0.001);
mfurukawa 10:28fa811afbfb 253
mfurukawa 8:03f9b5289083 254 for(int i=0; i<2; i++) {
mfurukawa 10:28fa811afbfb 255
mfurukawa 7:758a94e02aa7 256 imu[0]->deselect();
mfurukawa 7:758a94e02aa7 257 imu[1]->deselect();
mfurukawa 7:758a94e02aa7 258 imu[i]->select();
mfurukawa 8:03f9b5289083 259
mfurukawa 8:03f9b5289083 260 if(imu[i]->init(1,BITS_DLPF_CFG_188HZ)) { //INIT the mpu9250
mfurukawa 6:ea0804dc7cae 261 printf("\nCouldn't initialize MPU9250 via SPI!");
mfurukawa 10:28fa811afbfb 262 wait(90);
mfurukawa 8:03f9b5289083 263 }
mfurukawa 6:ea0804dc7cae 264 printf("\nWHOAMI=0x%2x\n",imu[i]->whoami()); //output the I2C address to know if SPI is working, it should be 104
mfurukawa 10:28fa811afbfb 265 printf("Gyro_scale=%u\n",imu[i]->set_gyro_scale(BITS_FS_1000DPS)); //Set full scale range for gyros
mfurukawa 6:ea0804dc7cae 266 printf("Acc_scale=%u\n",imu[i]->set_acc_scale(BITS_FS_16G)); //Set full scale range for accs
mfurukawa 6:ea0804dc7cae 267 printf("AK8963 WHIAM=0x%2x\n",imu[i]->AK8963_whoami());
mfurukawa 6:ea0804dc7cae 268 imu[i]->AK8963_calib_Magnetometer();
mfurukawa 8:03f9b5289083 269 wait(0.1);
mfurukawa 7:758a94e02aa7 270 }
mfurukawa 10:28fa811afbfb 271
mfurukawa 10:28fa811afbfb 272 gxOfs = 0;
mfurukawa 10:28fa811afbfb 273 gyOfs = 0;
mfurukawa 10:28fa811afbfb 274 gzOfs = 0;
mfurukawa 10:28fa811afbfb 275
mfurukawa 10:28fa811afbfb 276 imu[0]->deselect();
mfurukawa 7:758a94e02aa7 277 imu[1]->deselect();
mfurukawa 10:28fa811afbfb 278
mfurukawa 10:28fa811afbfb 279 imu[0]->select();
mfurukawa 10:28fa811afbfb 280
mfurukawa 10:28fa811afbfb 281 for(int i=0; i<1000; i++) {
mfurukawa 10:28fa811afbfb 282
mfurukawa 10:28fa811afbfb 283 imu[0]->read_all();
mfurukawa 10:28fa811afbfb 284
mfurukawa 10:28fa811afbfb 285 gxOfs += imu[0]->gyroscope_data[0];
mfurukawa 10:28fa811afbfb 286 gyOfs += imu[0]->gyroscope_data[1];
mfurukawa 10:28fa811afbfb 287 gzOfs += imu[0]->gyroscope_data[2];
mfurukawa 10:28fa811afbfb 288
mfurukawa 10:28fa811afbfb 289 wait_us(1000000.0f/sampleFreq);
mfurukawa 10:28fa811afbfb 290 }
mfurukawa 10:28fa811afbfb 291
mfurukawa 10:28fa811afbfb 292 gxOfs /= 1000;
mfurukawa 10:28fa811afbfb 293 gyOfs /= 1000;
mfurukawa 10:28fa811afbfb 294 gzOfs /= 1000;
mfurukawa 10:28fa811afbfb 295
mfurukawa 10:28fa811afbfb 296 }
mfurukawa 8:03f9b5289083 297
mfurukawa 10:28fa811afbfb 298 void eventFunc(void)
mfurukawa 10:28fa811afbfb 299 {
mfurukawa 10:28fa811afbfb 300 for(int i=0; i<1; i++) {
mfurukawa 8:03f9b5289083 301
mfurukawa 10:28fa811afbfb 302 imu[0]->deselect();
mfurukawa 10:28fa811afbfb 303 imu[1]->deselect();
mfurukawa 10:28fa811afbfb 304
mfurukawa 10:28fa811afbfb 305 imu[i]->select();
mfurukawa 10:28fa811afbfb 306 imu[i]->read_all();
mfurukawa 10:28fa811afbfb 307
mfurukawa 10:28fa811afbfb 308 MadgwickAHRSupdate(
mfurukawa 10:28fa811afbfb 309 (imu[i]->gyroscope_data[0]-gxOfs)*DEGREE2RAD,
mfurukawa 10:28fa811afbfb 310 (imu[i]->gyroscope_data[1]-gyOfs)*DEGREE2RAD,
mfurukawa 10:28fa811afbfb 311 (imu[i]->gyroscope_data[2]-gzOfs)*DEGREE2RAD,
mfurukawa 10:28fa811afbfb 312 imu[i]->accelerometer_data[0],
mfurukawa 10:28fa811afbfb 313 imu[i]->accelerometer_data[1],
mfurukawa 10:28fa811afbfb 314 imu[i]->accelerometer_data[2],
mfurukawa 10:28fa811afbfb 315 imu[i]->Magnetometer[0],
mfurukawa 10:28fa811afbfb 316 imu[i]->Magnetometer[1],
mfurukawa 10:28fa811afbfb 317 imu[i]->Magnetometer[2]
mfurukawa 10:28fa811afbfb 318 );
mfurukawa 10:28fa811afbfb 319
mfurukawa 10:28fa811afbfb 320 printf("%+0.3f,%+0.3f,%+0.3f,%+0.3f,%+0.3f,%+0.3f,%+0.3f,%+0.3f,%+0.3f,%+0.3f,%+0.3f,%+0.3f,%+0.3f,%+0.3f,%+0.3f,%+0.3f\n", q0,q1,q2,q3, q0,q1,q2,q3, q0,q1,q2,q3, q0,q1,q2,q3 );
mfurukawa 10:28fa811afbfb 321 }
mfurukawa 10:28fa811afbfb 322 }
mfurukawa 10:28fa811afbfb 323
mfurukawa 10:28fa811afbfb 324 int main()
mfurukawa 10:28fa811afbfb 325 {
mfurukawa 10:28fa811afbfb 326 init();
mfurukawa 10:28fa811afbfb 327
mfurukawa 10:28fa811afbfb 328 ticker.attach_us(eventFunc, 1000000.0f/sampleFreq); // 512Hz
mfurukawa 10:28fa811afbfb 329
mfurukawa 10:28fa811afbfb 330 while(1) {
mfurukawa 10:28fa811afbfb 331
mfurukawa 10:28fa811afbfb 332 //name.readable();
mfurukawa 9:e700b2d586d6 333 /*
mfurukawa 6:ea0804dc7cae 334 imu[i]->read_all();
mfurukawa 8:03f9b5289083 335 printf("%10.3f,%10.3f,%10.3f,%10.3f,%10.3f,%10.3f,%10.3f,%10.3f,%10.3f,%10.3f ",
mfurukawa 8:03f9b5289083 336 imu[i]->Temperature,
mfurukawa 8:03f9b5289083 337 imu[i]->gyroscope_data[0],
mfurukawa 8:03f9b5289083 338 imu[i]->gyroscope_data[1],
mfurukawa 8:03f9b5289083 339 imu[i]->gyroscope_data[2],
mfurukawa 8:03f9b5289083 340 imu[i]->accelerometer_data[0],
mfurukawa 8:03f9b5289083 341 imu[i]->accelerometer_data[1],
mfurukawa 8:03f9b5289083 342 imu[i]->accelerometer_data[2],
mfurukawa 8:03f9b5289083 343 imu[i]->Magnetometer[0],
mfurukawa 8:03f9b5289083 344 imu[i]->Magnetometer[1],
mfurukawa 8:03f9b5289083 345 imu[i]->Magnetometer[2]
mfurukawa 9:e700b2d586d6 346 );*/
mfurukawa 8:03f9b5289083 347 //myled = 0;
mfurukawa 8:03f9b5289083 348 //wait(0.5);
adisuciu 0:83fda1bfaffe 349 }
adisuciu 0:83fda1bfaffe 350 }