maedalab / Mbed 2 deprecated MPU9250_AHRS

Dependencies:   MPU9250_SPI mbed

Committer:
mfurukawa
Date:
Fri Jun 17 14:41:55 2016 +0000
Revision:
11:3f0b35a0855c
Parent:
10:28fa811afbfb
Child:
12:5638ddcd8477
stable pre 2ch test (actual not 2ch) 512Hz keeps

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mfurukawa 3:07aa20aa678d 1 /**
mfurukawa 3:07aa20aa678d 2 * Masahiro FURUKAWA - m.furukawa@ist.osaka-u.ac.jp
mfurukawa 8:03f9b5289083 3 *
mfurukawa 6:ea0804dc7cae 4 * June 17, 2016
mfurukawa 3:07aa20aa678d 5 *
mfurukawa 6:ea0804dc7cae 6 * MPU9250 9DoF Sensor (Extended to Ch1 ~ Ch2)
mfurukawa 3:07aa20aa678d 7 *
mfurukawa 3:07aa20aa678d 8 **/
mfurukawa 3:07aa20aa678d 9
adisuciu 0:83fda1bfaffe 10 #include "mbed.h"
mfurukawa 6:ea0804dc7cae 11 #include "MPU9250.h"
mfurukawa 10:28fa811afbfb 12 #include "KalmanFilter.h"
mfurukawa 1:f1e4ee4fc335 13 /*
mfurukawa 1:f1e4ee4fc335 14 MOSI (Master Out Slave In) p5
mfurukawa 1:f1e4ee4fc335 15 MISO (Master In Slave Out p6
mfurukawa 1:f1e4ee4fc335 16 SCK (Serial Clock) p7
mfurukawa 6:ea0804dc7cae 17 ~CS (Chip Select) p8
mfurukawa 1:f1e4ee4fc335 18 */
adisuciu 0:83fda1bfaffe 19
mfurukawa 6:ea0804dc7cae 20 // https://developer.mbed.org/users/kylongmu/code/MPU9250_SPI_Test/file/5839d1b118bc/main.cpp
mfurukawa 4:5a9aa5ae928a 21
mfurukawa 10:28fa811afbfb 22
mfurukawa 10:28fa811afbfb 23 void MadgwickAHRSupdate(float gx, float gy, float gz, float ax, float ay, float az, float mx, float my, float mz);
mfurukawa 10:28fa811afbfb 24 void MadgwickAHRSupdateIMU(float gx, float gy, float gz, float ax, float ay, float az);
mfurukawa 10:28fa811afbfb 25
mfurukawa 10:28fa811afbfb 26
mfurukawa 10:28fa811afbfb 27 //---------------------------------------------------------------------------------------------------
mfurukawa 10:28fa811afbfb 28 // Definitions
mfurukawa 10:28fa811afbfb 29
mfurukawa 10:28fa811afbfb 30 #define sampleFreq 500.0f // sample frequency in Hz
mfurukawa 10:28fa811afbfb 31 #define betaDef 1.0f // 2 * proportional gain
mfurukawa 10:28fa811afbfb 32 #define PI 3.14159265358979f
mfurukawa 10:28fa811afbfb 33 #define DEGREE2RAD PI/180.0f
mfurukawa 10:28fa811afbfb 34 //---------------------------------------------------------------------------------------------------
mfurukawa 10:28fa811afbfb 35 // Variable definitions
mfurukawa 10:28fa811afbfb 36
mfurukawa 10:28fa811afbfb 37 volatile float beta = betaDef; // 2 * proportional gain (Kp)
mfurukawa 10:28fa811afbfb 38 volatile float q0 = 1.0f, q1 = 0.0f, q2 = 0.0f, q3 = 0.0f; // quaternion of sensor frame relative to auxiliary frame
mfurukawa 10:28fa811afbfb 39
mfurukawa 10:28fa811afbfb 40 //---------------------------------------------------------------------------------------------------
mfurukawa 10:28fa811afbfb 41 // Function declarations
mfurukawa 10:28fa811afbfb 42
mfurukawa 10:28fa811afbfb 43 float invSqrt(float x);
mfurukawa 10:28fa811afbfb 44
mfurukawa 10:28fa811afbfb 45 //====================================================================================================
mfurukawa 10:28fa811afbfb 46 // Functions
mfurukawa 10:28fa811afbfb 47
mfurukawa 10:28fa811afbfb 48 //---------------------------------------------------------------------------------------------------
mfurukawa 10:28fa811afbfb 49 // AHRS algorithm update
mfurukawa 10:28fa811afbfb 50
mfurukawa 11:3f0b35a0855c 51 void MadgwickAHRSupdate(float gx, float gy, float gz, float ax, float ay, float az, float mx, float my, float mz)
mfurukawa 11:3f0b35a0855c 52 {
mfurukawa 10:28fa811afbfb 53 float recipNorm;
mfurukawa 10:28fa811afbfb 54 float s0, s1, s2, s3;
mfurukawa 10:28fa811afbfb 55 float qDot1, qDot2, qDot3, qDot4;
mfurukawa 10:28fa811afbfb 56 float hx, hy;
mfurukawa 10:28fa811afbfb 57 float _2q0mx, _2q0my, _2q0mz, _2q1mx, _2bx, _2bz, _4bx, _4bz, _2q0, _2q1, _2q2, _2q3, _2q0q2, _2q2q3, q0q0, q0q1, q0q2, q0q3, q1q1, q1q2, q1q3, q2q2, q2q3, q3q3;
mfurukawa 10:28fa811afbfb 58
mfurukawa 10:28fa811afbfb 59 // Use IMU algorithm if magnetometer measurement invalid (avoids NaN in magnetometer normalisation)
mfurukawa 10:28fa811afbfb 60 if((mx == 0.0f) && (my == 0.0f) && (mz == 0.0f)) {
mfurukawa 10:28fa811afbfb 61 MadgwickAHRSupdateIMU(gx, gy, gz, ax, ay, az);
mfurukawa 10:28fa811afbfb 62 return;
mfurukawa 10:28fa811afbfb 63 }
mfurukawa 10:28fa811afbfb 64
mfurukawa 10:28fa811afbfb 65 // Rate of change of quaternion from gyroscope
mfurukawa 10:28fa811afbfb 66 qDot1 = 0.5f * (-q1 * gx - q2 * gy - q3 * gz);
mfurukawa 10:28fa811afbfb 67 qDot2 = 0.5f * (q0 * gx + q2 * gz - q3 * gy);
mfurukawa 10:28fa811afbfb 68 qDot3 = 0.5f * (q0 * gy - q1 * gz + q3 * gx);
mfurukawa 10:28fa811afbfb 69 qDot4 = 0.5f * (q0 * gz + q1 * gy - q2 * gx);
mfurukawa 10:28fa811afbfb 70
mfurukawa 10:28fa811afbfb 71 // Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation)
mfurukawa 10:28fa811afbfb 72 if(!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) {
mfurukawa 6:ea0804dc7cae 73
mfurukawa 10:28fa811afbfb 74 // Normalise accelerometer measurement
mfurukawa 10:28fa811afbfb 75 recipNorm = invSqrt(ax * ax + ay * ay + az * az);
mfurukawa 10:28fa811afbfb 76 ax *= recipNorm;
mfurukawa 10:28fa811afbfb 77 ay *= recipNorm;
mfurukawa 11:3f0b35a0855c 78 az *= recipNorm;
mfurukawa 10:28fa811afbfb 79
mfurukawa 10:28fa811afbfb 80 // Normalise magnetometer measurement
mfurukawa 10:28fa811afbfb 81 recipNorm = invSqrt(mx * mx + my * my + mz * mz);
mfurukawa 10:28fa811afbfb 82 mx *= recipNorm;
mfurukawa 10:28fa811afbfb 83 my *= recipNorm;
mfurukawa 10:28fa811afbfb 84 mz *= recipNorm;
mfurukawa 10:28fa811afbfb 85
mfurukawa 10:28fa811afbfb 86 // Auxiliary variables to avoid repeated arithmetic
mfurukawa 10:28fa811afbfb 87 _2q0mx = 2.0f * q0 * mx;
mfurukawa 10:28fa811afbfb 88 _2q0my = 2.0f * q0 * my;
mfurukawa 10:28fa811afbfb 89 _2q0mz = 2.0f * q0 * mz;
mfurukawa 10:28fa811afbfb 90 _2q1mx = 2.0f * q1 * mx;
mfurukawa 10:28fa811afbfb 91 _2q0 = 2.0f * q0;
mfurukawa 10:28fa811afbfb 92 _2q1 = 2.0f * q1;
mfurukawa 10:28fa811afbfb 93 _2q2 = 2.0f * q2;
mfurukawa 10:28fa811afbfb 94 _2q3 = 2.0f * q3;
mfurukawa 10:28fa811afbfb 95 _2q0q2 = 2.0f * q0 * q2;
mfurukawa 10:28fa811afbfb 96 _2q2q3 = 2.0f * q2 * q3;
mfurukawa 10:28fa811afbfb 97 q0q0 = q0 * q0;
mfurukawa 10:28fa811afbfb 98 q0q1 = q0 * q1;
mfurukawa 10:28fa811afbfb 99 q0q2 = q0 * q2;
mfurukawa 10:28fa811afbfb 100 q0q3 = q0 * q3;
mfurukawa 10:28fa811afbfb 101 q1q1 = q1 * q1;
mfurukawa 10:28fa811afbfb 102 q1q2 = q1 * q2;
mfurukawa 10:28fa811afbfb 103 q1q3 = q1 * q3;
mfurukawa 10:28fa811afbfb 104 q2q2 = q2 * q2;
mfurukawa 10:28fa811afbfb 105 q2q3 = q2 * q3;
mfurukawa 10:28fa811afbfb 106 q3q3 = q3 * q3;
mfurukawa 10:28fa811afbfb 107
mfurukawa 10:28fa811afbfb 108 // Reference direction of Earth's magnetic field
mfurukawa 10:28fa811afbfb 109 hx = mx * q0q0 - _2q0my * q3 + _2q0mz * q2 + mx * q1q1 + _2q1 * my * q2 + _2q1 * mz * q3 - mx * q2q2 - mx * q3q3;
mfurukawa 10:28fa811afbfb 110 hy = _2q0mx * q3 + my * q0q0 - _2q0mz * q1 + _2q1mx * q2 - my * q1q1 + my * q2q2 + _2q2 * mz * q3 - my * q3q3;
mfurukawa 10:28fa811afbfb 111 _2bx = sqrt(hx * hx + hy * hy);
mfurukawa 10:28fa811afbfb 112 _2bz = -_2q0mx * q2 + _2q0my * q1 + mz * q0q0 + _2q1mx * q3 - mz * q1q1 + _2q2 * my * q3 - mz * q2q2 + mz * q3q3;
mfurukawa 10:28fa811afbfb 113 _4bx = 2.0f * _2bx;
mfurukawa 10:28fa811afbfb 114 _4bz = 2.0f * _2bz;
mfurukawa 10:28fa811afbfb 115
mfurukawa 10:28fa811afbfb 116 // Gradient decent algorithm corrective step
mfurukawa 10:28fa811afbfb 117 s0 = -_2q2 * (2.0f * q1q3 - _2q0q2 - ax) + _2q1 * (2.0f * q0q1 + _2q2q3 - ay) - _2bz * q2 * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (-_2bx * q3 + _2bz * q1) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + _2bx * q2 * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
mfurukawa 10:28fa811afbfb 118 s1 = _2q3 * (2.0f * q1q3 - _2q0q2 - ax) + _2q0 * (2.0f * q0q1 + _2q2q3 - ay) - 4.0f * q1 * (1 - 2.0f * q1q1 - 2.0f * q2q2 - az) + _2bz * q3 * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (_2bx * q2 + _2bz * q0) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + (_2bx * q3 - _4bz * q1) * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
mfurukawa 10:28fa811afbfb 119 s2 = -_2q0 * (2.0f * q1q3 - _2q0q2 - ax) + _2q3 * (2.0f * q0q1 + _2q2q3 - ay) - 4.0f * q2 * (1 - 2.0f * q1q1 - 2.0f * q2q2 - az) + (-_4bx * q2 - _2bz * q0) * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (_2bx * q1 + _2bz * q3) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + (_2bx * q0 - _4bz * q2) * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
mfurukawa 10:28fa811afbfb 120 s3 = _2q1 * (2.0f * q1q3 - _2q0q2 - ax) + _2q2 * (2.0f * q0q1 + _2q2q3 - ay) + (-_4bx * q3 + _2bz * q1) * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (-_2bx * q0 + _2bz * q2) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + _2bx * q1 * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
mfurukawa 10:28fa811afbfb 121 recipNorm = invSqrt(s0 * s0 + s1 * s1 + s2 * s2 + s3 * s3); // normalise step magnitude
mfurukawa 10:28fa811afbfb 122 s0 *= recipNorm;
mfurukawa 10:28fa811afbfb 123 s1 *= recipNorm;
mfurukawa 10:28fa811afbfb 124 s2 *= recipNorm;
mfurukawa 10:28fa811afbfb 125 s3 *= recipNorm;
mfurukawa 10:28fa811afbfb 126
mfurukawa 10:28fa811afbfb 127 // Apply feedback step
mfurukawa 10:28fa811afbfb 128 qDot1 -= beta * s0;
mfurukawa 10:28fa811afbfb 129 qDot2 -= beta * s1;
mfurukawa 10:28fa811afbfb 130 qDot3 -= beta * s2;
mfurukawa 10:28fa811afbfb 131 qDot4 -= beta * s3;
mfurukawa 10:28fa811afbfb 132 }
mfurukawa 8:03f9b5289083 133
mfurukawa 10:28fa811afbfb 134 // Integrate rate of change of quaternion to yield quaternion
mfurukawa 10:28fa811afbfb 135 q0 += qDot1 * (1.0f / sampleFreq);
mfurukawa 10:28fa811afbfb 136 q1 += qDot2 * (1.0f / sampleFreq);
mfurukawa 10:28fa811afbfb 137 q2 += qDot3 * (1.0f / sampleFreq);
mfurukawa 10:28fa811afbfb 138 q3 += qDot4 * (1.0f / sampleFreq);
mfurukawa 10:28fa811afbfb 139
mfurukawa 10:28fa811afbfb 140 // Normalise quaternion
mfurukawa 10:28fa811afbfb 141 recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
mfurukawa 10:28fa811afbfb 142 q0 *= recipNorm;
mfurukawa 10:28fa811afbfb 143 q1 *= recipNorm;
mfurukawa 10:28fa811afbfb 144 q2 *= recipNorm;
mfurukawa 10:28fa811afbfb 145 q3 *= recipNorm;
mfurukawa 10:28fa811afbfb 146 }
mfurukawa 10:28fa811afbfb 147
mfurukawa 10:28fa811afbfb 148 //---------------------------------------------------------------------------------------------------
mfurukawa 10:28fa811afbfb 149 // IMU algorithm update
mfurukawa 10:28fa811afbfb 150
mfurukawa 11:3f0b35a0855c 151 void MadgwickAHRSupdateIMU(float gx, float gy, float gz, float ax, float ay, float az)
mfurukawa 11:3f0b35a0855c 152 {
mfurukawa 10:28fa811afbfb 153 float recipNorm;
mfurukawa 10:28fa811afbfb 154 float s0, s1, s2, s3;
mfurukawa 10:28fa811afbfb 155 float qDot1, qDot2, qDot3, qDot4;
mfurukawa 10:28fa811afbfb 156 float _2q0, _2q1, _2q2, _2q3, _4q0, _4q1, _4q2 ,_8q1, _8q2, q0q0, q1q1, q2q2, q3q3;
mfurukawa 10:28fa811afbfb 157
mfurukawa 10:28fa811afbfb 158 // Rate of change of quaternion from gyroscope
mfurukawa 10:28fa811afbfb 159 qDot1 = 0.5f * (-q1 * gx - q2 * gy - q3 * gz);
mfurukawa 10:28fa811afbfb 160 qDot2 = 0.5f * (q0 * gx + q2 * gz - q3 * gy);
mfurukawa 10:28fa811afbfb 161 qDot3 = 0.5f * (q0 * gy - q1 * gz + q3 * gx);
mfurukawa 10:28fa811afbfb 162 qDot4 = 0.5f * (q0 * gz + q1 * gy - q2 * gx);
mfurukawa 10:28fa811afbfb 163
mfurukawa 10:28fa811afbfb 164 // Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation)
mfurukawa 10:28fa811afbfb 165 if(!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) {
mfurukawa 10:28fa811afbfb 166
mfurukawa 10:28fa811afbfb 167 // Normalise accelerometer measurement
mfurukawa 10:28fa811afbfb 168 recipNorm = invSqrt(ax * ax + ay * ay + az * az);
mfurukawa 10:28fa811afbfb 169 ax *= recipNorm;
mfurukawa 10:28fa811afbfb 170 ay *= recipNorm;
mfurukawa 11:3f0b35a0855c 171 az *= recipNorm;
mfurukawa 10:28fa811afbfb 172
mfurukawa 10:28fa811afbfb 173 // Auxiliary variables to avoid repeated arithmetic
mfurukawa 10:28fa811afbfb 174 _2q0 = 2.0f * q0;
mfurukawa 10:28fa811afbfb 175 _2q1 = 2.0f * q1;
mfurukawa 10:28fa811afbfb 176 _2q2 = 2.0f * q2;
mfurukawa 10:28fa811afbfb 177 _2q3 = 2.0f * q3;
mfurukawa 10:28fa811afbfb 178 _4q0 = 4.0f * q0;
mfurukawa 10:28fa811afbfb 179 _4q1 = 4.0f * q1;
mfurukawa 10:28fa811afbfb 180 _4q2 = 4.0f * q2;
mfurukawa 10:28fa811afbfb 181 _8q1 = 8.0f * q1;
mfurukawa 10:28fa811afbfb 182 _8q2 = 8.0f * q2;
mfurukawa 10:28fa811afbfb 183 q0q0 = q0 * q0;
mfurukawa 10:28fa811afbfb 184 q1q1 = q1 * q1;
mfurukawa 10:28fa811afbfb 185 q2q2 = q2 * q2;
mfurukawa 10:28fa811afbfb 186 q3q3 = q3 * q3;
mfurukawa 6:ea0804dc7cae 187
mfurukawa 10:28fa811afbfb 188 // Gradient decent algorithm corrective step
mfurukawa 10:28fa811afbfb 189 s0 = _4q0 * q2q2 + _2q2 * ax + _4q0 * q1q1 - _2q1 * ay;
mfurukawa 10:28fa811afbfb 190 s1 = _4q1 * q3q3 - _2q3 * ax + 4.0f * q0q0 * q1 - _2q0 * ay - _4q1 + _8q1 * q1q1 + _8q1 * q2q2 + _4q1 * az;
mfurukawa 10:28fa811afbfb 191 s2 = 4.0f * q0q0 * q2 + _2q0 * ax + _4q2 * q3q3 - _2q3 * ay - _4q2 + _8q2 * q1q1 + _8q2 * q2q2 + _4q2 * az;
mfurukawa 10:28fa811afbfb 192 s3 = 4.0f * q1q1 * q3 - _2q1 * ax + 4.0f * q2q2 * q3 - _2q2 * ay;
mfurukawa 10:28fa811afbfb 193 recipNorm = invSqrt(s0 * s0 + s1 * s1 + s2 * s2 + s3 * s3); // normalise step magnitude
mfurukawa 10:28fa811afbfb 194 s0 *= recipNorm;
mfurukawa 10:28fa811afbfb 195 s1 *= recipNorm;
mfurukawa 10:28fa811afbfb 196 s2 *= recipNorm;
mfurukawa 10:28fa811afbfb 197 s3 *= recipNorm;
mfurukawa 10:28fa811afbfb 198
mfurukawa 10:28fa811afbfb 199 // Apply feedback step
mfurukawa 10:28fa811afbfb 200 qDot1 -= beta * s0;
mfurukawa 10:28fa811afbfb 201 qDot2 -= beta * s1;
mfurukawa 10:28fa811afbfb 202 qDot3 -= beta * s2;
mfurukawa 10:28fa811afbfb 203 qDot4 -= beta * s3;
mfurukawa 10:28fa811afbfb 204 }
mfurukawa 10:28fa811afbfb 205
mfurukawa 10:28fa811afbfb 206 // Integrate rate of change of quaternion to yield quaternion
mfurukawa 10:28fa811afbfb 207 q0 += qDot1 * (1.0f / sampleFreq);
mfurukawa 10:28fa811afbfb 208 q1 += qDot2 * (1.0f / sampleFreq);
mfurukawa 10:28fa811afbfb 209 q2 += qDot3 * (1.0f / sampleFreq);
mfurukawa 10:28fa811afbfb 210 q3 += qDot4 * (1.0f / sampleFreq);
mfurukawa 8:03f9b5289083 211
mfurukawa 10:28fa811afbfb 212 // Normalise quaternion
mfurukawa 10:28fa811afbfb 213 recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
mfurukawa 10:28fa811afbfb 214 q0 *= recipNorm;
mfurukawa 10:28fa811afbfb 215 q1 *= recipNorm;
mfurukawa 10:28fa811afbfb 216 q2 *= recipNorm;
mfurukawa 10:28fa811afbfb 217 q3 *= recipNorm;
mfurukawa 10:28fa811afbfb 218 }
mfurukawa 10:28fa811afbfb 219
mfurukawa 10:28fa811afbfb 220 //---------------------------------------------------------------------------------------------------
mfurukawa 10:28fa811afbfb 221 // Fast inverse square-root
mfurukawa 10:28fa811afbfb 222 // See: http://en.wikipedia.org/wiki/Fast_inverse_square_root
mfurukawa 10:28fa811afbfb 223
mfurukawa 11:3f0b35a0855c 224 float invSqrt(float x)
mfurukawa 11:3f0b35a0855c 225 {
mfurukawa 10:28fa811afbfb 226 float halfx = 0.5f * x;
mfurukawa 10:28fa811afbfb 227 float y = x;
mfurukawa 10:28fa811afbfb 228 long i = *(long*)&y;
mfurukawa 10:28fa811afbfb 229 i = 0x5f3759df - (i>>1);
mfurukawa 10:28fa811afbfb 230 y = *(float*)&i;
mfurukawa 10:28fa811afbfb 231 y = y * (1.5f - (halfx * y * y));
mfurukawa 10:28fa811afbfb 232 return y;
mfurukawa 10:28fa811afbfb 233 }
mfurukawa 10:28fa811afbfb 234
mfurukawa 10:28fa811afbfb 235
mfurukawa 10:28fa811afbfb 236
mfurukawa 10:28fa811afbfb 237 //define the mpu9250 object
mfurukawa 10:28fa811afbfb 238 mpu9250_spi *imu[2];
mfurukawa 10:28fa811afbfb 239 Serial pc(USBTX, USBRX);
mfurukawa 10:28fa811afbfb 240 SPI spi(p5, p6, p7);
mfurukawa 10:28fa811afbfb 241 KalmanFilter *kf[12];
mfurukawa 10:28fa811afbfb 242 Ticker ticker;
mfurukawa 10:28fa811afbfb 243
mfurukawa 10:28fa811afbfb 244 float x,y,z,gxOfs,gyOfs,gzOfs;
mfurukawa 10:28fa811afbfb 245 // Calibration wait
mfurukawa 10:28fa811afbfb 246
mfurukawa 11:3f0b35a0855c 247 void resetRot(void)
mfurukawa 11:3f0b35a0855c 248 {
mfurukawa 11:3f0b35a0855c 249
mfurukawa 11:3f0b35a0855c 250 gxOfs = 0;
mfurukawa 11:3f0b35a0855c 251 gyOfs = 0;
mfurukawa 11:3f0b35a0855c 252 gzOfs = 0;
mfurukawa 11:3f0b35a0855c 253
mfurukawa 11:3f0b35a0855c 254 imu[0]->deselect();
mfurukawa 11:3f0b35a0855c 255 imu[1]->deselect();
mfurukawa 11:3f0b35a0855c 256
mfurukawa 11:3f0b35a0855c 257 imu[0]->select();
mfurukawa 11:3f0b35a0855c 258
mfurukawa 11:3f0b35a0855c 259 for(int i=0; i<1000; i++) {
mfurukawa 11:3f0b35a0855c 260
mfurukawa 11:3f0b35a0855c 261 imu[0]->read_all();
mfurukawa 11:3f0b35a0855c 262
mfurukawa 11:3f0b35a0855c 263 gxOfs += imu[0]->gyroscope_data[0];
mfurukawa 11:3f0b35a0855c 264 gyOfs += imu[0]->gyroscope_data[1];
mfurukawa 11:3f0b35a0855c 265 gzOfs += imu[0]->gyroscope_data[2];
mfurukawa 11:3f0b35a0855c 266
mfurukawa 11:3f0b35a0855c 267 wait_us(1000000.0f/sampleFreq);
mfurukawa 11:3f0b35a0855c 268 }
mfurukawa 11:3f0b35a0855c 269
mfurukawa 11:3f0b35a0855c 270 gxOfs /= 1000;
mfurukawa 11:3f0b35a0855c 271 gyOfs /= 1000;
mfurukawa 11:3f0b35a0855c 272 gzOfs /= 1000;
mfurukawa 11:3f0b35a0855c 273
mfurukawa 11:3f0b35a0855c 274 q0 = 1.0f;
mfurukawa 11:3f0b35a0855c 275 q1 = 0.0f;
mfurukawa 11:3f0b35a0855c 276 q2 = 0.0f;
mfurukawa 11:3f0b35a0855c 277 q3 = 0.0f;
mfurukawa 11:3f0b35a0855c 278 }
mfurukawa 11:3f0b35a0855c 279
mfurukawa 11:3f0b35a0855c 280 void init(void)
mfurukawa 11:3f0b35a0855c 281 {
mfurukawa 11:3f0b35a0855c 282
mfurukawa 10:28fa811afbfb 283 pc.baud(921600);
mfurukawa 11:3f0b35a0855c 284
mfurukawa 6:ea0804dc7cae 285 imu[0] = new mpu9250_spi(spi, p8);
mfurukawa 6:ea0804dc7cae 286 imu[1] = new mpu9250_spi(spi, p9);
mfurukawa 11:3f0b35a0855c 287
mfurukawa 11:3f0b35a0855c 288 for(int i=0; i<12; i++)
mfurukawa 10:28fa811afbfb 289 kf[i] = new KalmanFilter(1e-3, 0.001);
mfurukawa 11:3f0b35a0855c 290
mfurukawa 8:03f9b5289083 291 for(int i=0; i<2; i++) {
mfurukawa 11:3f0b35a0855c 292
mfurukawa 7:758a94e02aa7 293 imu[0]->deselect();
mfurukawa 7:758a94e02aa7 294 imu[1]->deselect();
mfurukawa 7:758a94e02aa7 295 imu[i]->select();
mfurukawa 8:03f9b5289083 296
mfurukawa 8:03f9b5289083 297 if(imu[i]->init(1,BITS_DLPF_CFG_188HZ)) { //INIT the mpu9250
mfurukawa 6:ea0804dc7cae 298 printf("\nCouldn't initialize MPU9250 via SPI!");
mfurukawa 10:28fa811afbfb 299 wait(90);
mfurukawa 8:03f9b5289083 300 }
mfurukawa 6:ea0804dc7cae 301 printf("\nWHOAMI=0x%2x\n",imu[i]->whoami()); //output the I2C address to know if SPI is working, it should be 104
mfurukawa 10:28fa811afbfb 302 printf("Gyro_scale=%u\n",imu[i]->set_gyro_scale(BITS_FS_1000DPS)); //Set full scale range for gyros
mfurukawa 6:ea0804dc7cae 303 printf("Acc_scale=%u\n",imu[i]->set_acc_scale(BITS_FS_16G)); //Set full scale range for accs
mfurukawa 6:ea0804dc7cae 304 printf("AK8963 WHIAM=0x%2x\n",imu[i]->AK8963_whoami());
mfurukawa 6:ea0804dc7cae 305 imu[i]->AK8963_calib_Magnetometer();
mfurukawa 8:03f9b5289083 306 wait(0.1);
mfurukawa 7:758a94e02aa7 307 }
mfurukawa 11:3f0b35a0855c 308 resetRot();
mfurukawa 10:28fa811afbfb 309 }
mfurukawa 8:03f9b5289083 310
mfurukawa 10:28fa811afbfb 311 void eventFunc(void)
mfurukawa 10:28fa811afbfb 312 {
mfurukawa 10:28fa811afbfb 313 for(int i=0; i<1; i++) {
mfurukawa 11:3f0b35a0855c 314
mfurukawa 10:28fa811afbfb 315 imu[0]->deselect();
mfurukawa 10:28fa811afbfb 316 imu[1]->deselect();
mfurukawa 11:3f0b35a0855c 317
mfurukawa 10:28fa811afbfb 318 imu[i]->select();
mfurukawa 10:28fa811afbfb 319 imu[i]->read_all();
mfurukawa 10:28fa811afbfb 320
mfurukawa 10:28fa811afbfb 321 MadgwickAHRSupdate(
mfurukawa 10:28fa811afbfb 322 (imu[i]->gyroscope_data[0]-gxOfs)*DEGREE2RAD,
mfurukawa 10:28fa811afbfb 323 (imu[i]->gyroscope_data[1]-gyOfs)*DEGREE2RAD,
mfurukawa 10:28fa811afbfb 324 (imu[i]->gyroscope_data[2]-gzOfs)*DEGREE2RAD,
mfurukawa 10:28fa811afbfb 325 imu[i]->accelerometer_data[0],
mfurukawa 10:28fa811afbfb 326 imu[i]->accelerometer_data[1],
mfurukawa 10:28fa811afbfb 327 imu[i]->accelerometer_data[2],
mfurukawa 10:28fa811afbfb 328 imu[i]->Magnetometer[0],
mfurukawa 10:28fa811afbfb 329 imu[i]->Magnetometer[1],
mfurukawa 10:28fa811afbfb 330 imu[i]->Magnetometer[2]
mfurukawa 10:28fa811afbfb 331 );
mfurukawa 11:3f0b35a0855c 332
mfurukawa 11:3f0b35a0855c 333 printf("%+0.3f,%+0.3f,%+0.3f,%+0.3f,%+0.3f,%+0.3f,%+0.3f,%+0.3f,%+0.3f,%+0.3f,%+0.3f,%+0.3f,%+0.3f,%+0.3f,%+0.3f,%+0.3f\n",
mfurukawa 11:3f0b35a0855c 334 q0,q1,q2,q3,
mfurukawa 11:3f0b35a0855c 335 q0,q1,q2,q3,
mfurukawa 11:3f0b35a0855c 336 q0,q1,q2,q3,
mfurukawa 11:3f0b35a0855c 337 q0,q1,q2,q3 );
mfurukawa 11:3f0b35a0855c 338 }
mfurukawa 10:28fa811afbfb 339 }
mfurukawa 10:28fa811afbfb 340
mfurukawa 10:28fa811afbfb 341 int main()
mfurukawa 10:28fa811afbfb 342 {
mfurukawa 10:28fa811afbfb 343 init();
mfurukawa 11:3f0b35a0855c 344
mfurukawa 11:3f0b35a0855c 345 ticker.attach_us(eventFunc, 1000000.0f/sampleFreq);
mfurukawa 11:3f0b35a0855c 346
mfurukawa 10:28fa811afbfb 347 while(1) {
mfurukawa 11:3f0b35a0855c 348
mfurukawa 11:3f0b35a0855c 349 if(pc.readable())
mfurukawa 11:3f0b35a0855c 350 if(pc.getc() == 'r') {
mfurukawa 11:3f0b35a0855c 351 ticker.detach();
mfurukawa 11:3f0b35a0855c 352 resetRot();
mfurukawa 11:3f0b35a0855c 353 ticker.attach_us(eventFunc, 1000000.0f/sampleFreq);
mfurukawa 11:3f0b35a0855c 354 }
mfurukawa 11:3f0b35a0855c 355 /*
mfurukawa 11:3f0b35a0855c 356 imu[i]->read_all();
mfurukawa 11:3f0b35a0855c 357 printf("%10.3f,%10.3f,%10.3f,%10.3f,%10.3f,%10.3f,%10.3f,%10.3f,%10.3f,%10.3f ",
mfurukawa 11:3f0b35a0855c 358 imu[i]->Temperature,
mfurukawa 11:3f0b35a0855c 359 imu[i]->gyroscope_data[0],
mfurukawa 11:3f0b35a0855c 360 imu[i]->gyroscope_data[1],
mfurukawa 11:3f0b35a0855c 361 imu[i]->gyroscope_data[2],
mfurukawa 11:3f0b35a0855c 362 imu[i]->accelerometer_data[0],
mfurukawa 11:3f0b35a0855c 363 imu[i]->accelerometer_data[1],
mfurukawa 11:3f0b35a0855c 364 imu[i]->accelerometer_data[2],
mfurukawa 11:3f0b35a0855c 365 imu[i]->Magnetometer[0],
mfurukawa 11:3f0b35a0855c 366 imu[i]->Magnetometer[1],
mfurukawa 11:3f0b35a0855c 367 imu[i]->Magnetometer[2]
mfurukawa 11:3f0b35a0855c 368 );*/
mfurukawa 11:3f0b35a0855c 369 //myled = 0;
mfurukawa 11:3f0b35a0855c 370 //wait(0.5);
adisuciu 0:83fda1bfaffe 371 }
adisuciu 0:83fda1bfaffe 372 }