Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: MPU9250_SPI mbed
main.cpp
- Committer:
- mfurukawa
- Date:
- 2016-06-17
- Revision:
- 10:28fa811afbfb
- Parent:
- 9:e700b2d586d6
- Child:
- 11:3f0b35a0855c
File content as of revision 10:28fa811afbfb:
/** * Masahiro FURUKAWA - m.furukawa@ist.osaka-u.ac.jp * * June 17, 2016 * * MPU9250 9DoF Sensor (Extended to Ch1 ~ Ch2) * **/ #include "mbed.h" #include "MPU9250.h" #include "KalmanFilter.h" /* MOSI (Master Out Slave In) p5 MISO (Master In Slave Out p6 SCK (Serial Clock) p7 ~CS (Chip Select) p8 */ // https://developer.mbed.org/users/kylongmu/code/MPU9250_SPI_Test/file/5839d1b118bc/main.cpp void MadgwickAHRSupdate(float gx, float gy, float gz, float ax, float ay, float az, float mx, float my, float mz); void MadgwickAHRSupdateIMU(float gx, float gy, float gz, float ax, float ay, float az); //--------------------------------------------------------------------------------------------------- // Definitions #define sampleFreq 500.0f // sample frequency in Hz #define betaDef 1.0f // 2 * proportional gain #define PI 3.14159265358979f #define DEGREE2RAD PI/180.0f //--------------------------------------------------------------------------------------------------- // Variable definitions volatile float beta = betaDef; // 2 * proportional gain (Kp) volatile float q0 = 1.0f, q1 = 0.0f, q2 = 0.0f, q3 = 0.0f; // quaternion of sensor frame relative to auxiliary frame //--------------------------------------------------------------------------------------------------- // Function declarations float invSqrt(float x); //==================================================================================================== // Functions //--------------------------------------------------------------------------------------------------- // AHRS algorithm update void MadgwickAHRSupdate(float gx, float gy, float gz, float ax, float ay, float az, float mx, float my, float mz) { float recipNorm; float s0, s1, s2, s3; float qDot1, qDot2, qDot3, qDot4; float hx, hy; float _2q0mx, _2q0my, _2q0mz, _2q1mx, _2bx, _2bz, _4bx, _4bz, _2q0, _2q1, _2q2, _2q3, _2q0q2, _2q2q3, q0q0, q0q1, q0q2, q0q3, q1q1, q1q2, q1q3, q2q2, q2q3, q3q3; // Use IMU algorithm if magnetometer measurement invalid (avoids NaN in magnetometer normalisation) if((mx == 0.0f) && (my == 0.0f) && (mz == 0.0f)) { MadgwickAHRSupdateIMU(gx, gy, gz, ax, ay, az); return; } // Rate of change of quaternion from gyroscope qDot1 = 0.5f * (-q1 * gx - q2 * gy - q3 * gz); qDot2 = 0.5f * (q0 * gx + q2 * gz - q3 * gy); qDot3 = 0.5f * (q0 * gy - q1 * gz + q3 * gx); qDot4 = 0.5f * (q0 * gz + q1 * gy - q2 * gx); // Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation) if(!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) { // Normalise accelerometer measurement recipNorm = invSqrt(ax * ax + ay * ay + az * az); ax *= recipNorm; ay *= recipNorm; az *= recipNorm; // Normalise magnetometer measurement recipNorm = invSqrt(mx * mx + my * my + mz * mz); mx *= recipNorm; my *= recipNorm; mz *= recipNorm; // Auxiliary variables to avoid repeated arithmetic _2q0mx = 2.0f * q0 * mx; _2q0my = 2.0f * q0 * my; _2q0mz = 2.0f * q0 * mz; _2q1mx = 2.0f * q1 * mx; _2q0 = 2.0f * q0; _2q1 = 2.0f * q1; _2q2 = 2.0f * q2; _2q3 = 2.0f * q3; _2q0q2 = 2.0f * q0 * q2; _2q2q3 = 2.0f * q2 * q3; q0q0 = q0 * q0; q0q1 = q0 * q1; q0q2 = q0 * q2; q0q3 = q0 * q3; q1q1 = q1 * q1; q1q2 = q1 * q2; q1q3 = q1 * q3; q2q2 = q2 * q2; q2q3 = q2 * q3; q3q3 = q3 * q3; // Reference direction of Earth's magnetic field hx = mx * q0q0 - _2q0my * q3 + _2q0mz * q2 + mx * q1q1 + _2q1 * my * q2 + _2q1 * mz * q3 - mx * q2q2 - mx * q3q3; hy = _2q0mx * q3 + my * q0q0 - _2q0mz * q1 + _2q1mx * q2 - my * q1q1 + my * q2q2 + _2q2 * mz * q3 - my * q3q3; _2bx = sqrt(hx * hx + hy * hy); _2bz = -_2q0mx * q2 + _2q0my * q1 + mz * q0q0 + _2q1mx * q3 - mz * q1q1 + _2q2 * my * q3 - mz * q2q2 + mz * q3q3; _4bx = 2.0f * _2bx; _4bz = 2.0f * _2bz; // Gradient decent algorithm corrective step s0 = -_2q2 * (2.0f * q1q3 - _2q0q2 - ax) + _2q1 * (2.0f * q0q1 + _2q2q3 - ay) - _2bz * q2 * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (-_2bx * q3 + _2bz * q1) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + _2bx * q2 * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz); s1 = _2q3 * (2.0f * q1q3 - _2q0q2 - ax) + _2q0 * (2.0f * q0q1 + _2q2q3 - ay) - 4.0f * q1 * (1 - 2.0f * q1q1 - 2.0f * q2q2 - az) + _2bz * q3 * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (_2bx * q2 + _2bz * q0) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + (_2bx * q3 - _4bz * q1) * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz); s2 = -_2q0 * (2.0f * q1q3 - _2q0q2 - ax) + _2q3 * (2.0f * q0q1 + _2q2q3 - ay) - 4.0f * q2 * (1 - 2.0f * q1q1 - 2.0f * q2q2 - az) + (-_4bx * q2 - _2bz * q0) * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (_2bx * q1 + _2bz * q3) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + (_2bx * q0 - _4bz * q2) * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz); s3 = _2q1 * (2.0f * q1q3 - _2q0q2 - ax) + _2q2 * (2.0f * q0q1 + _2q2q3 - ay) + (-_4bx * q3 + _2bz * q1) * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (-_2bx * q0 + _2bz * q2) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + _2bx * q1 * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz); recipNorm = invSqrt(s0 * s0 + s1 * s1 + s2 * s2 + s3 * s3); // normalise step magnitude s0 *= recipNorm; s1 *= recipNorm; s2 *= recipNorm; s3 *= recipNorm; // Apply feedback step qDot1 -= beta * s0; qDot2 -= beta * s1; qDot3 -= beta * s2; qDot4 -= beta * s3; } // Integrate rate of change of quaternion to yield quaternion q0 += qDot1 * (1.0f / sampleFreq); q1 += qDot2 * (1.0f / sampleFreq); q2 += qDot3 * (1.0f / sampleFreq); q3 += qDot4 * (1.0f / sampleFreq); // Normalise quaternion recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3); q0 *= recipNorm; q1 *= recipNorm; q2 *= recipNorm; q3 *= recipNorm; } //--------------------------------------------------------------------------------------------------- // IMU algorithm update void MadgwickAHRSupdateIMU(float gx, float gy, float gz, float ax, float ay, float az) { float recipNorm; float s0, s1, s2, s3; float qDot1, qDot2, qDot3, qDot4; float _2q0, _2q1, _2q2, _2q3, _4q0, _4q1, _4q2 ,_8q1, _8q2, q0q0, q1q1, q2q2, q3q3; // Rate of change of quaternion from gyroscope qDot1 = 0.5f * (-q1 * gx - q2 * gy - q3 * gz); qDot2 = 0.5f * (q0 * gx + q2 * gz - q3 * gy); qDot3 = 0.5f * (q0 * gy - q1 * gz + q3 * gx); qDot4 = 0.5f * (q0 * gz + q1 * gy - q2 * gx); // Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation) if(!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) { // Normalise accelerometer measurement recipNorm = invSqrt(ax * ax + ay * ay + az * az); ax *= recipNorm; ay *= recipNorm; az *= recipNorm; // Auxiliary variables to avoid repeated arithmetic _2q0 = 2.0f * q0; _2q1 = 2.0f * q1; _2q2 = 2.0f * q2; _2q3 = 2.0f * q3; _4q0 = 4.0f * q0; _4q1 = 4.0f * q1; _4q2 = 4.0f * q2; _8q1 = 8.0f * q1; _8q2 = 8.0f * q2; q0q0 = q0 * q0; q1q1 = q1 * q1; q2q2 = q2 * q2; q3q3 = q3 * q3; // Gradient decent algorithm corrective step s0 = _4q0 * q2q2 + _2q2 * ax + _4q0 * q1q1 - _2q1 * ay; s1 = _4q1 * q3q3 - _2q3 * ax + 4.0f * q0q0 * q1 - _2q0 * ay - _4q1 + _8q1 * q1q1 + _8q1 * q2q2 + _4q1 * az; s2 = 4.0f * q0q0 * q2 + _2q0 * ax + _4q2 * q3q3 - _2q3 * ay - _4q2 + _8q2 * q1q1 + _8q2 * q2q2 + _4q2 * az; s3 = 4.0f * q1q1 * q3 - _2q1 * ax + 4.0f * q2q2 * q3 - _2q2 * ay; recipNorm = invSqrt(s0 * s0 + s1 * s1 + s2 * s2 + s3 * s3); // normalise step magnitude s0 *= recipNorm; s1 *= recipNorm; s2 *= recipNorm; s3 *= recipNorm; // Apply feedback step qDot1 -= beta * s0; qDot2 -= beta * s1; qDot3 -= beta * s2; qDot4 -= beta * s3; } // Integrate rate of change of quaternion to yield quaternion q0 += qDot1 * (1.0f / sampleFreq); q1 += qDot2 * (1.0f / sampleFreq); q2 += qDot3 * (1.0f / sampleFreq); q3 += qDot4 * (1.0f / sampleFreq); // Normalise quaternion recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3); q0 *= recipNorm; q1 *= recipNorm; q2 *= recipNorm; q3 *= recipNorm; } //--------------------------------------------------------------------------------------------------- // Fast inverse square-root // See: http://en.wikipedia.org/wiki/Fast_inverse_square_root float invSqrt(float x) { float halfx = 0.5f * x; float y = x; long i = *(long*)&y; i = 0x5f3759df - (i>>1); y = *(float*)&i; y = y * (1.5f - (halfx * y * y)); return y; } //define the mpu9250 object mpu9250_spi *imu[2]; Serial pc(USBTX, USBRX); SPI spi(p5, p6, p7); KalmanFilter *kf[12]; Ticker ticker; float x,y,z,gxOfs,gyOfs,gzOfs; // Calibration wait void init(void){ pc.baud(921600); imu[0] = new mpu9250_spi(spi, p8); imu[1] = new mpu9250_spi(spi, p9); for(int i=0; i<12; i++) kf[i] = new KalmanFilter(1e-3, 0.001); for(int i=0; i<2; i++) { imu[0]->deselect(); imu[1]->deselect(); imu[i]->select(); if(imu[i]->init(1,BITS_DLPF_CFG_188HZ)) { //INIT the mpu9250 printf("\nCouldn't initialize MPU9250 via SPI!"); wait(90); } printf("\nWHOAMI=0x%2x\n",imu[i]->whoami()); //output the I2C address to know if SPI is working, it should be 104 printf("Gyro_scale=%u\n",imu[i]->set_gyro_scale(BITS_FS_1000DPS)); //Set full scale range for gyros printf("Acc_scale=%u\n",imu[i]->set_acc_scale(BITS_FS_16G)); //Set full scale range for accs printf("AK8963 WHIAM=0x%2x\n",imu[i]->AK8963_whoami()); imu[i]->AK8963_calib_Magnetometer(); wait(0.1); } gxOfs = 0; gyOfs = 0; gzOfs = 0; imu[0]->deselect(); imu[1]->deselect(); imu[0]->select(); for(int i=0; i<1000; i++) { imu[0]->read_all(); gxOfs += imu[0]->gyroscope_data[0]; gyOfs += imu[0]->gyroscope_data[1]; gzOfs += imu[0]->gyroscope_data[2]; wait_us(1000000.0f/sampleFreq); } gxOfs /= 1000; gyOfs /= 1000; gzOfs /= 1000; } void eventFunc(void) { for(int i=0; i<1; i++) { imu[0]->deselect(); imu[1]->deselect(); imu[i]->select(); imu[i]->read_all(); MadgwickAHRSupdate( (imu[i]->gyroscope_data[0]-gxOfs)*DEGREE2RAD, (imu[i]->gyroscope_data[1]-gyOfs)*DEGREE2RAD, (imu[i]->gyroscope_data[2]-gzOfs)*DEGREE2RAD, imu[i]->accelerometer_data[0], imu[i]->accelerometer_data[1], imu[i]->accelerometer_data[2], imu[i]->Magnetometer[0], imu[i]->Magnetometer[1], imu[i]->Magnetometer[2] ); printf("%+0.3f,%+0.3f,%+0.3f,%+0.3f,%+0.3f,%+0.3f,%+0.3f,%+0.3f,%+0.3f,%+0.3f,%+0.3f,%+0.3f,%+0.3f,%+0.3f,%+0.3f,%+0.3f\n", q0,q1,q2,q3, q0,q1,q2,q3, q0,q1,q2,q3, q0,q1,q2,q3 ); } } int main() { init(); ticker.attach_us(eventFunc, 1000000.0f/sampleFreq); // 512Hz while(1) { //name.readable(); /* imu[i]->read_all(); printf("%10.3f,%10.3f,%10.3f,%10.3f,%10.3f,%10.3f,%10.3f,%10.3f,%10.3f,%10.3f ", imu[i]->Temperature, imu[i]->gyroscope_data[0], imu[i]->gyroscope_data[1], imu[i]->gyroscope_data[2], imu[i]->accelerometer_data[0], imu[i]->accelerometer_data[1], imu[i]->accelerometer_data[2], imu[i]->Magnetometer[0], imu[i]->Magnetometer[1], imu[i]->Magnetometer[2] );*/ //myled = 0; //wait(0.5); } }