groep 16 / Mbed 2 deprecated Project_BioRobotics_12

Dependencies:   mbed QEI HIDScope BiQuad4th_order biquadFilter MODSERIAL FastPWM

Committer:
Mirjam
Date:
Wed Oct 31 14:44:13 2018 +0000
Revision:
17:e5d9a543157b
Parent:
9:8b2d6ec577e3
Child:
18:f36ac3ee081a
Started with importing use phase

Who changed what in which revision?

UserRevisionLine numberNew contents of line
Mirjam 0:46dbc9b620d8 1 #include "mbed.h"
arnouddomhof 3:dca57056e5cb 2 #include "MODSERIAL.h"
AppelSab 6:a02ad75f0333 3 #include "QEI.h"
AppelSab 6:a02ad75f0333 4 #include "FastPWM.h"
AppelSab 6:a02ad75f0333 5 #include "math.h"
arnouddomhof 8:2afb66572fc4 6 //#include "HIDScope.h"
Mirjam 7:d4090f334ce2 7 #include "BiQuad.h"
Mirjam 7:d4090f334ce2 8 #include "BiQuad4.h"
Mirjam 7:d4090f334ce2 9 #include "FilterDesign.h"
Mirjam 7:d4090f334ce2 10 #include "FilterDesign2.h"
Mirjam 7:d4090f334ce2 11
Mirjam 17:e5d9a543157b 12 const double pi = 3.14159265359;
AppelSab 6:a02ad75f0333 13 // LED's
arnouddomhof 3:dca57056e5cb 14 DigitalOut led_red(LED_RED);
arnouddomhof 3:dca57056e5cb 15 DigitalOut led_green(LED_GREEN);
arnouddomhof 3:dca57056e5cb 16 DigitalOut led_blue(LED_BLUE);
AppelSab 6:a02ad75f0333 17 // Buttons
arnouddomhof 9:8b2d6ec577e3 18 DigitalIn button_clbrt_home(SW2);
arnouddomhof 9:8b2d6ec577e3 19 DigitalIn button_Demo(D5);
arnouddomhof 9:8b2d6ec577e3 20 DigitalIn button_Emg(D6);
AppelSab 6:a02ad75f0333 21 DigitalIn Fail_button(SW3);
AppelSab 6:a02ad75f0333 22 // Modserial
arnouddomhof 3:dca57056e5cb 23 MODSERIAL pc(USBTX, USBRX);
AppelSab 6:a02ad75f0333 24 // Encoders
AppelSab 6:a02ad75f0333 25 QEI Encoder1(D11, D10, NC, 4200) ; // Encoder motor 1, (pin 1A, pin 1B, index pin(not used), counts/rev)
AppelSab 6:a02ad75f0333 26 QEI Encoder2(D9, D8, NC, 4200) ; // Encoder motor 2, (pin 2A, pin 2B, index pin (not used), counts/rev)
AppelSab 6:a02ad75f0333 27 // Motors (direction and PWM)
AppelSab 6:a02ad75f0333 28 DigitalOut directionM1(D4);
AppelSab 6:a02ad75f0333 29 DigitalOut directionM2(D7);
AppelSab 6:a02ad75f0333 30 FastPWM motor1_pwm(D5);
AppelSab 6:a02ad75f0333 31 FastPWM motor2_pwm(D6);
Mirjam 17:e5d9a543157b 32 // Inverse Kinematics
Mirjam 17:e5d9a543157b 33 volatile double q1_diff;
Mirjam 17:e5d9a543157b 34 volatile double q2_diff;
Mirjam 17:e5d9a543157b 35 double sq = 2.0; //to square numbers
Mirjam 17:e5d9a543157b 36 const double L1 = 250.0; //length of the first link
Mirjam 17:e5d9a543157b 37 const double L3 = 350.0; //length of the second link
Mirjam 17:e5d9a543157b 38 int track;
Mirjam 17:e5d9a543157b 39 const double x0 = 80.0; //zero x position after homing
Mirjam 17:e5d9a543157b 40 const double y0 = 141.0; //zero y position after homing
Mirjam 17:e5d9a543157b 41 volatile double setpointx = x0;
Mirjam 17:e5d9a543157b 42 volatile double setpointy = y0;
Mirjam 17:e5d9a543157b 43 volatile double U1;
Mirjam 17:e5d9a543157b 44 volatile double U2;
Mirjam 17:e5d9a543157b 45 // Reference angles of the starting position
Mirjam 17:e5d9a543157b 46 double q2_0 = pi + acos((pow(x0,sq)+pow(y0,sq)-pow(L1,sq)-pow(L3,sq))/(2.0*L1*L3));
Mirjam 17:e5d9a543157b 47 double q1_0 = atan(y0/x0)+acos((-pow(L3,sq)+pow(L1,sq)+pow(x0,sq)+pow(y0,sq))/(2.0*L1*sqrt(pow(x0,sq)+pow(y0,sq))));
Mirjam 17:e5d9a543157b 48 double q2_0_enc = q2_0 + q1_0;
Mirjam 7:d4090f334ce2 49 // EMG input en start value of filtered EMG
Mirjam 7:d4090f334ce2 50 AnalogIn emg1_raw( A0 );
Mirjam 7:d4090f334ce2 51 AnalogIn emg2_raw( A1 );
Mirjam 7:d4090f334ce2 52 double emg1_filtered = 0.00;
Mirjam 7:d4090f334ce2 53 double emg2_filtered = 0.00;
Mirjam 7:d4090f334ce2 54 float threshold_EMG = 0.25; // Threshold on 25 percent of the maximum EMG
Mirjam 7:d4090f334ce2 55
AppelSab 6:a02ad75f0333 56 // Declare timers and Tickers
Mirjam 7:d4090f334ce2 57 Timer timer; // Timer for counting time in this state
Mirjam 7:d4090f334ce2 58 Ticker WriteValues; // Ticker to show values of velocity to screen
Mirjam 7:d4090f334ce2 59 Ticker StateMachine;
arnouddomhof 8:2afb66572fc4 60 //Ticker sample_EMGtoHIDscope; // Ticker to send the EMG signals to screen
arnouddomhof 8:2afb66572fc4 61 //HIDScope scope(4); //Number of channels which needs to be send to the HIDScope
arnouddomhof 3:dca57056e5cb 62
AppelSab 6:a02ad75f0333 63 // Set up ProcessStateMachine
arnouddomhof 5:07e401cb251d 64 enum states {WAITING, MOTOR_ANGLE_CLBRT, EMG_CLBRT, HOMING, WAITING4SIGNAL, MOVE_W_EMG, MOVE_W_DEMO, FAILURE_MODE};
arnouddomhof 3:dca57056e5cb 65 states currentState = WAITING;
AppelSab 6:a02ad75f0333 66 bool stateChanged = true;
AppelSab 6:a02ad75f0333 67 volatile bool writeVelocityFlag = false;
AppelSab 6:a02ad75f0333 68
AppelSab 6:a02ad75f0333 69 // Global variables
arnouddomhof 3:dca57056e5cb 70 char c;
AppelSab 6:a02ad75f0333 71 int counts1;
AppelSab 6:a02ad75f0333 72 int counts2;
AppelSab 6:a02ad75f0333 73 float theta1;
AppelSab 6:a02ad75f0333 74 float theta2;
AppelSab 6:a02ad75f0333 75 float vel_1;
AppelSab 6:a02ad75f0333 76 float vel_2;
AppelSab 6:a02ad75f0333 77 float theta1_prev = 0.0;
AppelSab 6:a02ad75f0333 78 float theta2_prev = 0.0;
AppelSab 6:a02ad75f0333 79 float tijd = 0.005;
AppelSab 6:a02ad75f0333 80 float time_in_state;
AppelSab 6:a02ad75f0333 81
Mirjam 7:d4090f334ce2 82 int need_to_move_1; // Does the robot needs to move in the first direction?
Mirjam 7:d4090f334ce2 83 int need_to_move_2; // Does the robot needs to move in the second direction?
Mirjam 7:d4090f334ce2 84 double EMG_calibrated_max_1 = 2.00000; // Maximum value of the first EMG signal found in the calibration state.
Mirjam 7:d4090f334ce2 85 double EMG_calibrated_max_2 = 2.00000; // Maximum value of the second EMG signal found in the calibration state.
Mirjam 7:d4090f334ce2 86
AppelSab 6:a02ad75f0333 87 // ----------------------------------------------
AppelSab 6:a02ad75f0333 88 // ------- FUNCTIONS ----------------------------
AppelSab 6:a02ad75f0333 89 // ----------------------------------------------
AppelSab 6:a02ad75f0333 90
AppelSab 6:a02ad75f0333 91 float ReadEncoder1() // Read Encoder of motor 1.
AppelSab 6:a02ad75f0333 92 {
AppelSab 6:a02ad75f0333 93 counts1 = Encoder1.getPulses(); // Counts of outputshaft of motor 1
AppelSab 6:a02ad75f0333 94 theta1 = (float(counts1)/4200) * 2*pi; // Angle of outputshaft of motor 1
AppelSab 6:a02ad75f0333 95 vel_1 = (theta1 - theta1_prev) / tijd; // Velocity, current angle - previous angle, devided by avarage time between encoder read-outs
AppelSab 6:a02ad75f0333 96 theta1_prev = theta1; // Define theta_prev
AppelSab 6:a02ad75f0333 97 return vel_1;
AppelSab 6:a02ad75f0333 98 }
AppelSab 6:a02ad75f0333 99 float ReadEncoder2() // Read encoder of motor 2.
AppelSab 6:a02ad75f0333 100 {
AppelSab 6:a02ad75f0333 101 counts2 = Encoder2.getPulses(); // Counts of outputshaft of motor 2
AppelSab 6:a02ad75f0333 102 theta2 = (float(counts2)/4200) * 2*pi; // Angle of outputshaft of motor 2
AppelSab 6:a02ad75f0333 103 vel_2 = (theta2 - theta2_prev) / tijd; // Velocity, current angle - previous angle, devided by avarage time between encoder read-outs
AppelSab 6:a02ad75f0333 104 theta2_prev = theta2; // Define theta_prev
AppelSab 6:a02ad75f0333 105 return vel_2;
AppelSab 6:a02ad75f0333 106 }
AppelSab 6:a02ad75f0333 107 void MotorAngleCalibrate() // Function that drives motor 1 and 2.
AppelSab 6:a02ad75f0333 108 {
AppelSab 6:a02ad75f0333 109 float U1 = -0.2; // Negative, so arm goes backwards.
AppelSab 6:a02ad75f0333 110 float U2 = -0.2; // Motor 2 is not taken into account yet.
AppelSab 6:a02ad75f0333 111
AppelSab 6:a02ad75f0333 112 motor1_pwm.write(fabs(U1)); // Send PWM values to motor
AppelSab 6:a02ad75f0333 113 motor2_pwm.write(fabs(U2));
AppelSab 6:a02ad75f0333 114
AppelSab 6:a02ad75f0333 115 directionM1 = U1 > 0.0f; // Either true or false, determines direction.
AppelSab 6:a02ad75f0333 116 directionM2 = U2 > 0.0f;
AppelSab 6:a02ad75f0333 117 }
Mirjam 7:d4090f334ce2 118 void sample()
Mirjam 7:d4090f334ce2 119 {
Mirjam 7:d4090f334ce2 120 emg1_filtered = FilterDesign(emg1_raw.read());
Mirjam 7:d4090f334ce2 121 emg2_filtered = FilterDesign2(emg2_raw.read());
Mirjam 7:d4090f334ce2 122
arnouddomhof 8:2afb66572fc4 123 /**
Mirjam 7:d4090f334ce2 124 scope.set(0, emg1_raw.read()); // Raw EMG 1 send to scope 0
Mirjam 7:d4090f334ce2 125 scope.set(1, emg1_filtered); // Filtered EMG 1 send to scope 1
Mirjam 7:d4090f334ce2 126 scope.set(2, emg2_raw.read()); // Raw EMG 2 send to scope 2
Mirjam 7:d4090f334ce2 127 scope.set(3, emg2_filtered); // Filtered EMG 2 send to scope 3
Mirjam 7:d4090f334ce2 128 scope.send(); // Send the data to the computer
arnouddomhof 8:2afb66572fc4 129 */
Mirjam 7:d4090f334ce2 130 }
Mirjam 17:e5d9a543157b 131
Mirjam 17:e5d9a543157b 132 // ---------------------------------------------------
Mirjam 17:e5d9a543157b 133 // --------INVERSE-KINEMATICS-------------------------
Mirjam 17:e5d9a543157b 134 // ---------------------------------------------------
Mirjam 17:e5d9a543157b 135 double makeAngleq1(double x, double y){
Mirjam 17:e5d9a543157b 136 double q1 = atan(y/x)+acos((-pow(L3,sq)+pow(L1,sq)+pow(x,sq)+pow(y,sq))/(2.0*L1*sqrt(pow(x,sq)+pow(y,sq)))); //angle of the first joint in the setpoint configuration
Mirjam 17:e5d9a543157b 137 q1_diff = -2.0*(q1-q1_0); //the actual amount of radians that the motor has to turn in total to reach the setpoint
Mirjam 17:e5d9a543157b 138 return q1_diff;
Mirjam 17:e5d9a543157b 139 }
Mirjam 17:e5d9a543157b 140
Mirjam 17:e5d9a543157b 141 double makeAngleq2(double x, double y){
Mirjam 17:e5d9a543157b 142 double q2 = -acos((pow(x,sq)+pow(y,sq)-pow(L1,sq)-pow(L3,sq))/(2.0*L1*L3)); //angle of the second joint in setpoint configuration
Mirjam 17:e5d9a543157b 143 double q1 = atan(y/x)+acos((-pow(L3,sq)+pow(L1,sq)+pow(x,sq)+pow(y,sq))/(2.0*L1*sqrt(pow(x,sq)+pow(y,sq)))); //angle of the first joint in the setpoint configuration
Mirjam 17:e5d9a543157b 144 double q2_motor = (pi - q2)+q1; //because q2 represents the angle at joint two and not at the motor a calculation has to be done
Mirjam 17:e5d9a543157b 145 q2_diff = (2.0*(q2_motor - q2_0_enc))/(2.0*pi); //the actual amount of radians that the motor has to turn in total to reach the setpoint
Mirjam 17:e5d9a543157b 146 return -q2_diff;
Mirjam 17:e5d9a543157b 147 }
Mirjam 17:e5d9a543157b 148
Mirjam 17:e5d9a543157b 149 // --------------------------------------------------------------------
Mirjam 17:e5d9a543157b 150 // ---------------READ-OUT ENCODERS------------------------------------
Mirjam 17:e5d9a543157b 151 // --------------------------------------------------------------------
Mirjam 17:e5d9a543157b 152 double counts2angle1()
Mirjam 17:e5d9a543157b 153 {
Mirjam 17:e5d9a543157b 154 counts1 = Encoder1.getPulses(); // Counts of outputshaft of motor 1
Mirjam 17:e5d9a543157b 155 theta1 = -(double(counts1)/4200) * 2*pi; // Angle of outputshaft of motor 1
Mirjam 17:e5d9a543157b 156 return theta1;
Mirjam 17:e5d9a543157b 157 }
Mirjam 17:e5d9a543157b 158
Mirjam 17:e5d9a543157b 159 double counts2angle2()
Mirjam 17:e5d9a543157b 160 {
Mirjam 17:e5d9a543157b 161 counts2 = Encoder2.getPulses(); // Counts of outputshaft of motor 2
Mirjam 17:e5d9a543157b 162 theta2 = (double(counts2)/4200) * 2*pi; // Angle of outputshaft of motor 2
Mirjam 17:e5d9a543157b 163 return theta2;
Mirjam 17:e5d9a543157b 164 }
Mirjam 17:e5d9a543157b 165
Mirjam 17:e5d9a543157b 166 // -----------------------------------------------------------------
Mirjam 17:e5d9a543157b 167 // --------------------------- PI controllers ----------------------
Mirjam 17:e5d9a543157b 168 // -----------------------------------------------------------------
Mirjam 17:e5d9a543157b 169 double PI_controller1(double error1)
Mirjam 17:e5d9a543157b 170 {
Mirjam 17:e5d9a543157b 171 static double error_integral1 = 0;
Mirjam 17:e5d9a543157b 172
Mirjam 17:e5d9a543157b 173 // Proportional part
Mirjam 17:e5d9a543157b 174 double Kp1 = 3.95; // Kp (proportionele controller, nu nog een random waarde)
Mirjam 17:e5d9a543157b 175 double u_p1 = Kp1*error1; // Voltage dat naar de motor gestuurd wordt (volgt uit error en Kp)
Mirjam 17:e5d9a543157b 176
Mirjam 17:e5d9a543157b 177 // Integral part
Mirjam 17:e5d9a543157b 178 double Ki1 = 6.0; // Ki (Integrale deel vd controller, nu nog een random waarde)
Mirjam 17:e5d9a543157b 179 double Ts1 = 0.005; // Sample tijd, net zo vaak als de controller wordt aangeroepen (200 Hz, statemachine)
Mirjam 17:e5d9a543157b 180 error_integral1 = error_integral1 + error1 * Ts1;
Mirjam 17:e5d9a543157b 181 double u_i1 = Ki1 * error_integral1;
Mirjam 17:e5d9a543157b 182
Mirjam 17:e5d9a543157b 183 // Sum
Mirjam 17:e5d9a543157b 184 U1 = u_p1 + u_i1;
Mirjam 17:e5d9a543157b 185
Mirjam 17:e5d9a543157b 186 // Return
Mirjam 17:e5d9a543157b 187 return U1;
Mirjam 17:e5d9a543157b 188 }
Mirjam 17:e5d9a543157b 189 double PI_controller2(double error2)
Mirjam 17:e5d9a543157b 190 {
Mirjam 17:e5d9a543157b 191 static double error_integral2 = 0;
Mirjam 17:e5d9a543157b 192
Mirjam 17:e5d9a543157b 193 // Proportional part
Mirjam 17:e5d9a543157b 194 double Kp2 = 3.95; // Kp (proportionele controller, nu nog een random waarde)
Mirjam 17:e5d9a543157b 195 double u_p2 = Kp2*error2; // Voltage dat naar de motor gestuurd wordt (volgt uit error en Kp)
Mirjam 17:e5d9a543157b 196
Mirjam 17:e5d9a543157b 197 // Integral part
Mirjam 17:e5d9a543157b 198 double Ki2 = 6.0; // Ki (Integrale deel vd controller, nu nog een random waarde)
Mirjam 17:e5d9a543157b 199 double Ts2 = 0.005; // Sample tijd, net zo vaak als de controller wordt aangeroepen (200 Hz, statemachine)
Mirjam 17:e5d9a543157b 200 error_integral2 = error_integral2 + error2 * Ts2;
Mirjam 17:e5d9a543157b 201 double u_i2 = Ki2 * error_integral2;
Mirjam 17:e5d9a543157b 202
Mirjam 17:e5d9a543157b 203 // Sum +
Mirjam 17:e5d9a543157b 204 U2 = u_p2 + u_i2;
Mirjam 17:e5d9a543157b 205
Mirjam 17:e5d9a543157b 206 // Return
Mirjam 17:e5d9a543157b 207 return U2;
Mirjam 17:e5d9a543157b 208 }
Mirjam 17:e5d9a543157b 209
Mirjam 17:e5d9a543157b 210 // -----------------------------------------------
Mirjam 17:e5d9a543157b 211 // ------------ RUN MOTORS -----------------------
Mirjam 17:e5d9a543157b 212 // -----------------------------------------------
Mirjam 17:e5d9a543157b 213 void motoraansturing()
Mirjam 17:e5d9a543157b 214 {
Mirjam 17:e5d9a543157b 215 determinedemoset();
Mirjam 17:e5d9a543157b 216 q1_diff = makeAngleq1(setpointx, setpointy);
Mirjam 17:e5d9a543157b 217 q2_diff = makeAngleq2(setpointx, setpointy);
Mirjam 17:e5d9a543157b 218
Mirjam 17:e5d9a543157b 219 theta2 = counts2angle2();
Mirjam 17:e5d9a543157b 220 error2 = q2_diff - theta2;
Mirjam 17:e5d9a543157b 221 theta1 = counts2angle1();
Mirjam 17:e5d9a543157b 222 error1 = q1_diff - theta1; // Setpoint error, te behalen setpoint minus de huidige positie van de as.
Mirjam 17:e5d9a543157b 223
Mirjam 17:e5d9a543157b 224 U1 = PI_controller1(error1); // Voltage dat naar de motor gestuurd wordt.
Mirjam 17:e5d9a543157b 225 U2 = PI_controller2(error2);
Mirjam 17:e5d9a543157b 226
Mirjam 17:e5d9a543157b 227 motor1_pwm.write(fabs(U1)); // Motor aansturen
Mirjam 17:e5d9a543157b 228 directionM1 = U1 > 0.0f; // Richting van de motor bepalen
Mirjam 17:e5d9a543157b 229 motor2_pwm.write(fabs(U2));
Mirjam 17:e5d9a543157b 230 directionM2 = U2 > 0.0f;
Mirjam 17:e5d9a543157b 231 }
Mirjam 17:e5d9a543157b 232
AppelSab 6:a02ad75f0333 233 // ---------------------------------------------------
AppelSab 6:a02ad75f0333 234 // --------STATEMACHINE-------------------------------
AppelSab 6:a02ad75f0333 235 // ---------------------------------------------------
AppelSab 6:a02ad75f0333 236 void ProcessStateMachine(void)
AppelSab 6:a02ad75f0333 237 {
AppelSab 6:a02ad75f0333 238 switch (currentState)
AppelSab 6:a02ad75f0333 239 {
AppelSab 6:a02ad75f0333 240 case WAITING:
Mirjam 17:e5d9a543157b 241 // Description:
Mirjam 17:e5d9a543157b 242 // In this state we do nothing, and wait for a command
Mirjam 17:e5d9a543157b 243
Mirjam 17:e5d9a543157b 244 // Actions
Mirjam 17:e5d9a543157b 245 led_red = 0; led_green = 0; led_blue = 0; // Colouring the led WHITE
Mirjam 17:e5d9a543157b 246
Mirjam 17:e5d9a543157b 247 // State transition logic
Mirjam 17:e5d9a543157b 248 if (button_clbrt_home == 0)
Mirjam 17:e5d9a543157b 249 {
Mirjam 17:e5d9a543157b 250 currentState = MOTOR_ANGLE_CLBRT;
Mirjam 17:e5d9a543157b 251 stateChanged = true;
Mirjam 17:e5d9a543157b 252 pc.printf("Starting Calibration\n\r");
Mirjam 17:e5d9a543157b 253 }
Mirjam 17:e5d9a543157b 254 else if (Fail_button == 0)
Mirjam 17:e5d9a543157b 255 {
Mirjam 17:e5d9a543157b 256 currentState = FAILURE_MODE;
Mirjam 17:e5d9a543157b 257 stateChanged = true;
Mirjam 17:e5d9a543157b 258 }
Mirjam 17:e5d9a543157b 259 break;
AppelSab 6:a02ad75f0333 260
AppelSab 6:a02ad75f0333 261 case MOTOR_ANGLE_CLBRT:
Mirjam 17:e5d9a543157b 262 // Description:
Mirjam 17:e5d9a543157b 263 // In this state the robot moves with low motor PWM to some
Mirjam 17:e5d9a543157b 264 // mechanical limit of motion, in order to calibrate the motors.
Mirjam 17:e5d9a543157b 265
Mirjam 17:e5d9a543157b 266 // Actions
Mirjam 17:e5d9a543157b 267 led_red = 1; led_green = 0; led_blue = 0; // Colouring the led TURQUOISE
Mirjam 17:e5d9a543157b 268 timer.start(); //Start timer to get time in the state "MOTOR_ANGLE_CLRBRT"
Mirjam 17:e5d9a543157b 269 if (stateChanged)
Mirjam 17:e5d9a543157b 270 {
Mirjam 17:e5d9a543157b 271 MotorAngleCalibrate(); // Actuate motor 1 and 2.
Mirjam 17:e5d9a543157b 272 vel_1 = ReadEncoder1(); // Get velocity of motor 1
Mirjam 17:e5d9a543157b 273 vel_2 = ReadEncoder2(); // Get velocity of motor 2
Mirjam 17:e5d9a543157b 274 stateChanged = true; // Keep this loop going, until the transition conditions are satisfied.
Mirjam 17:e5d9a543157b 275 }
Mirjam 17:e5d9a543157b 276
Mirjam 17:e5d9a543157b 277 // State transition logic
Mirjam 17:e5d9a543157b 278 time_in_state = timer.read(); // Determine if this state has run for long enough.
Mirjam 17:e5d9a543157b 279
Mirjam 17:e5d9a543157b 280 if(time_in_state > 2.0f && vel_1 < 1.1f && vel_2 < 1.1f)
Mirjam 17:e5d9a543157b 281 {
Mirjam 17:e5d9a543157b 282 //pc.printf( "Tijd in deze staat = %f \n\r", time_in_state);
Mirjam 17:e5d9a543157b 283 //pc.printf( "Tijd tijdens actions loop (Waarde voor bepalen van snelheid)") = %f \n\r", tijd);
Mirjam 17:e5d9a543157b 284 pc.printf("Motor calibration has ended. \n\r");
Mirjam 17:e5d9a543157b 285 timer.stop(); // Stop timer for this state
Mirjam 17:e5d9a543157b 286 timer.reset(); // Reset timer for this state
Mirjam 17:e5d9a543157b 287 motor1_pwm.write(fabs(0.0)); // Send PWM values to motor
Mirjam 17:e5d9a543157b 288 motor2_pwm.write(fabs(0.0));
Mirjam 17:e5d9a543157b 289 Encoder1.reset(); // Reset Encoders when arrived at zero-position
Mirjam 17:e5d9a543157b 290 Encoder2.reset();
Mirjam 17:e5d9a543157b 291
Mirjam 17:e5d9a543157b 292 currentState = EMG_CLBRT; // Switch to next state (EMG_CLRBRT).
Mirjam 17:e5d9a543157b 293 pc.printf("EMG calibration \r\n");
Mirjam 17:e5d9a543157b 294 stateChanged = true;
Mirjam 17:e5d9a543157b 295 }
Mirjam 17:e5d9a543157b 296 if (Fail_button == 0)
AppelSab 6:a02ad75f0333 297 {
Mirjam 17:e5d9a543157b 298 currentState = FAILURE_MODE;
Mirjam 17:e5d9a543157b 299 stateChanged = true;
Mirjam 17:e5d9a543157b 300 }
Mirjam 17:e5d9a543157b 301 break;
AppelSab 6:a02ad75f0333 302
AppelSab 6:a02ad75f0333 303 case EMG_CLBRT:
Mirjam 17:e5d9a543157b 304 // In this state the person whom is connected to the robot needs
Mirjam 17:e5d9a543157b 305 // to flex his/her muscles as hard as possible, in order to
Mirjam 17:e5d9a543157b 306 // measure the maximum EMG-signal, which can be used to scale
Mirjam 17:e5d9a543157b 307 // the EMG-filter.
Mirjam 17:e5d9a543157b 308
Mirjam 17:e5d9a543157b 309 led_red = 1; led_green = 1; led_blue = 0; // Colouring the led BLUE
AppelSab 6:a02ad75f0333 310
Mirjam 17:e5d9a543157b 311 // Requirements to move to the next state:
Mirjam 17:e5d9a543157b 312 // If enough time has passed (5 sec), and the EMG-signal drops below 10%
Mirjam 17:e5d9a543157b 313 // of the maximum measured value, we move to the Homing state.
Mirjam 17:e5d9a543157b 314
Mirjam 17:e5d9a543157b 315 wait(5.0f); // time_in_this_state > 5.0f
Mirjam 17:e5d9a543157b 316 // INSERT CALIBRATING
Mirjam 17:e5d9a543157b 317 currentState = HOMING;
Mirjam 17:e5d9a543157b 318 if (Fail_button == 0)
Mirjam 17:e5d9a543157b 319 {
Mirjam 17:e5d9a543157b 320 currentState = FAILURE_MODE;
Mirjam 17:e5d9a543157b 321 stateChanged = true;
Mirjam 17:e5d9a543157b 322 }
Mirjam 17:e5d9a543157b 323 break;
AppelSab 6:a02ad75f0333 324
AppelSab 6:a02ad75f0333 325 case HOMING:
Mirjam 17:e5d9a543157b 326 // Description:
Mirjam 17:e5d9a543157b 327 // Robot moves to the home starting configuration
Mirjam 17:e5d9a543157b 328 pc.printf("HOMING \r\n");
Mirjam 17:e5d9a543157b 329
Mirjam 17:e5d9a543157b 330 led_red = 0; led_green = 1; led_red = 0; // Colouring the led PURPLE
Mirjam 17:e5d9a543157b 331
Mirjam 17:e5d9a543157b 332 // Requirements to move to the next state:
Mirjam 17:e5d9a543157b 333 // If we are in the right location, within some margin, we move to the Waiting for
Mirjam 17:e5d9a543157b 334 // signal state.
AppelSab 6:a02ad75f0333 335
Mirjam 17:e5d9a543157b 336 wait(5.0f); // time_in_this_state > 5.0f
Mirjam 17:e5d9a543157b 337 // INSERT MOVEMENT
Mirjam 17:e5d9a543157b 338 currentState = WAITING4SIGNAL;
Mirjam 17:e5d9a543157b 339 if (Fail_button == 0)
Mirjam 17:e5d9a543157b 340 {
Mirjam 17:e5d9a543157b 341 currentState = FAILURE_MODE;
Mirjam 17:e5d9a543157b 342 stateChanged = true;
Mirjam 17:e5d9a543157b 343 }
Mirjam 17:e5d9a543157b 344 break;
AppelSab 6:a02ad75f0333 345
AppelSab 6:a02ad75f0333 346 case WAITING4SIGNAL:
Mirjam 17:e5d9a543157b 347 // Description:
Mirjam 17:e5d9a543157b 348 // In this state the robot waits for an action to occur.
Mirjam 17:e5d9a543157b 349
Mirjam 17:e5d9a543157b 350 led_red = 0; led_green = 0; led_blue = 0; // Colouring the led WHITE
Mirjam 17:e5d9a543157b 351
Mirjam 17:e5d9a543157b 352 // Requirements to move to the next state:
Mirjam 17:e5d9a543157b 353 // If a certain button is pressed we move to the corresponding
Mirjam 17:e5d9a543157b 354 // state (MOVE_W_DEMO, MOVE_W_EMG or SHUTDOWN)
Mirjam 17:e5d9a543157b 355
Mirjam 17:e5d9a543157b 356 if (button_clbrt_home == 0)
Mirjam 17:e5d9a543157b 357 {
Mirjam 17:e5d9a543157b 358 currentState = MOTOR_ANGLE_CLBRT;
Mirjam 17:e5d9a543157b 359 stateChanged = true;
Mirjam 17:e5d9a543157b 360 pc.printf("Starting Calibration \n\r");
Mirjam 17:e5d9a543157b 361 }
Mirjam 17:e5d9a543157b 362 else if (button_Demo == 1)
Mirjam 17:e5d9a543157b 363 {
Mirjam 17:e5d9a543157b 364 currentState = MOVE_W_DEMO;
Mirjam 17:e5d9a543157b 365 pc.printf("DEMO \r\n");
Mirjam 17:e5d9a543157b 366 wait(1.0f);
Mirjam 17:e5d9a543157b 367 }
Mirjam 17:e5d9a543157b 368 else if (button_Emg == 1)
Mirjam 17:e5d9a543157b 369 {
Mirjam 17:e5d9a543157b 370 currentState = MOVE_W_EMG;
Mirjam 17:e5d9a543157b 371 pc.printf("EMG \r\n");
Mirjam 17:e5d9a543157b 372 wait(1.0f);
Mirjam 17:e5d9a543157b 373 }
Mirjam 17:e5d9a543157b 374 else if (Fail_button == 0)
Mirjam 17:e5d9a543157b 375 {
Mirjam 17:e5d9a543157b 376 currentState = FAILURE_MODE;
Mirjam 17:e5d9a543157b 377 stateChanged = true;
Mirjam 17:e5d9a543157b 378 }
Mirjam 17:e5d9a543157b 379
Mirjam 17:e5d9a543157b 380 break;
AppelSab 6:a02ad75f0333 381
AppelSab 6:a02ad75f0333 382 case MOVE_W_DEMO:
AppelSab 6:a02ad75f0333 383 // Description:
AppelSab 6:a02ad75f0333 384 // In this state the robot follows a preprogrammed shape, e.g.
AppelSab 6:a02ad75f0333 385 // a square.
AppelSab 6:a02ad75f0333 386
AppelSab 6:a02ad75f0333 387 led_red = 1; led_green = 1; led_blue = 0; // Colouring the led GREEN
AppelSab 6:a02ad75f0333 388
AppelSab 6:a02ad75f0333 389 // Requirements to move to the next state:
AppelSab 6:a02ad75f0333 390 // When the home button or the failure button is pressed, we
AppelSab 6:a02ad75f0333 391 // will the move to the corresponding state.
AppelSab 6:a02ad75f0333 392
AppelSab 6:a02ad75f0333 393 // BUILD DEMO MODE
arnouddomhof 9:8b2d6ec577e3 394
arnouddomhof 9:8b2d6ec577e3 395 if (button_clbrt_home == 0)
AppelSab 6:a02ad75f0333 396 {
arnouddomhof 9:8b2d6ec577e3 397 currentState = HOMING;
arnouddomhof 9:8b2d6ec577e3 398 stateChanged = true;
arnouddomhof 9:8b2d6ec577e3 399 pc.printf("Moving home\n\r");
AppelSab 6:a02ad75f0333 400 }
arnouddomhof 9:8b2d6ec577e3 401 else if (Fail_button == 0)
AppelSab 6:a02ad75f0333 402 {
AppelSab 6:a02ad75f0333 403 currentState = FAILURE_MODE;
AppelSab 6:a02ad75f0333 404 stateChanged = true;
AppelSab 6:a02ad75f0333 405 }
AppelSab 6:a02ad75f0333 406 break;
AppelSab 6:a02ad75f0333 407
AppelSab 6:a02ad75f0333 408 case MOVE_W_EMG:
Mirjam 17:e5d9a543157b 409 // Description:
Mirjam 17:e5d9a543157b 410 // In this state the robot will be controlled by use of
Mirjam 17:e5d9a543157b 411 // EMG-signals.
Mirjam 17:e5d9a543157b 412
Mirjam 17:e5d9a543157b 413 led_red = 1; led_green = 0; led_blue = 1; // Colouring the led GREEN
Mirjam 17:e5d9a543157b 414
Mirjam 17:e5d9a543157b 415 if (emg1_filtered >= (threshold_EMG*EMG_calibrated_max_1)){
Mirjam 17:e5d9a543157b 416 need_to_move_1 = 1; // The robot does have to move
Mirjam 17:e5d9a543157b 417 }
Mirjam 17:e5d9a543157b 418 else {
Mirjam 17:e5d9a543157b 419 need_to_move_1 = 0; // If the robot does not have to move
Mirjam 17:e5d9a543157b 420 }
Mirjam 17:e5d9a543157b 421
Mirjam 17:e5d9a543157b 422 if(emg2_filtered >= threshold_EMG*EMG_calibrated_max_2){
Mirjam 17:e5d9a543157b 423 need_to_move_2 = 1;
Mirjam 17:e5d9a543157b 424 }
Mirjam 17:e5d9a543157b 425 else {
Mirjam 17:e5d9a543157b 426 need_to_move_2 = 0;
Mirjam 17:e5d9a543157b 427 }
Mirjam 17:e5d9a543157b 428
Mirjam 17:e5d9a543157b 429
Mirjam 17:e5d9a543157b 430 // Requirements to move to the next state:
Mirjam 17:e5d9a543157b 431 // When the home button or the failure button is pressed, we
Mirjam 17:e5d9a543157b 432 // will the move to the corresponding state.
Mirjam 17:e5d9a543157b 433
Mirjam 17:e5d9a543157b 434 if (button_clbrt_home == 0)
Mirjam 17:e5d9a543157b 435 {
Mirjam 17:e5d9a543157b 436 currentState = MOTOR_ANGLE_CLBRT;
Mirjam 17:e5d9a543157b 437 stateChanged = true;
Mirjam 17:e5d9a543157b 438 pc.printf("Starting Calibration \n\r");
Mirjam 17:e5d9a543157b 439 }
Mirjam 17:e5d9a543157b 440 else if (Fail_button == 0)
Mirjam 17:e5d9a543157b 441 {
Mirjam 17:e5d9a543157b 442 currentState = FAILURE_MODE;
Mirjam 17:e5d9a543157b 443 stateChanged = true;
Mirjam 7:d4090f334ce2 444 }
Mirjam 17:e5d9a543157b 445 break;
AppelSab 6:a02ad75f0333 446
AppelSab 6:a02ad75f0333 447 case FAILURE_MODE:
Mirjam 17:e5d9a543157b 448 // Description:
Mirjam 17:e5d9a543157b 449 // This state is reached when the failure button is reached.
Mirjam 17:e5d9a543157b 450 // In this state everything is turned off.
Mirjam 17:e5d9a543157b 451
Mirjam 17:e5d9a543157b 452 led_red = 0; led_green = 1; led_blue = 1; // Colouring the led RED
Mirjam 17:e5d9a543157b 453 // Actions
Mirjam 17:e5d9a543157b 454 if (stateChanged)
Mirjam 17:e5d9a543157b 455 {
Mirjam 17:e5d9a543157b 456 motor1_pwm.write(fabs(0.0)); // Stop all motors!
Mirjam 17:e5d9a543157b 457 motor2_pwm.write(fabs(0.0));
Mirjam 17:e5d9a543157b 458 pc.printf("FAILURE MODE \r\n PLEASE RESTART THE WHOLE ROBOT \r\n (and make sure this does not happen again) \r\n");
Mirjam 17:e5d9a543157b 459 stateChanged = false;
Mirjam 17:e5d9a543157b 460 }
Mirjam 17:e5d9a543157b 461 break;
AppelSab 6:a02ad75f0333 462
AppelSab 6:a02ad75f0333 463 // State transition logic
AppelSab 6:a02ad75f0333 464 // No state transition, you need to restart the robot.
AppelSab 6:a02ad75f0333 465
AppelSab 6:a02ad75f0333 466 default:
AppelSab 6:a02ad75f0333 467 // This state is a default state, this state is reached when
AppelSab 6:a02ad75f0333 468 // the program somehow defies all of the other states.
AppelSab 6:a02ad75f0333 469
AppelSab 6:a02ad75f0333 470 pc.printf("Unknown or unimplemented state reached!!! \n\r");
AppelSab 6:a02ad75f0333 471 led_red = 1; led_green = 1; led_blue = 1; // Colouring the led BLACK
AppelSab 6:a02ad75f0333 472 for (int n = 0; n < 50; n++) // Making an SOS signal with the RED led
AppelSab 6:a02ad75f0333 473 {
AppelSab 6:a02ad75f0333 474 for (int i = 0; i < 6; i++)
AppelSab 6:a02ad75f0333 475 {
AppelSab 6:a02ad75f0333 476 led_red = !led_red;
AppelSab 6:a02ad75f0333 477 wait(0.6f);
AppelSab 6:a02ad75f0333 478 }
AppelSab 6:a02ad75f0333 479 wait(0.4f);
AppelSab 6:a02ad75f0333 480 for (int i = 0 ; i < 6; i++)
AppelSab 6:a02ad75f0333 481 {
AppelSab 6:a02ad75f0333 482 led_red = !led_red;
AppelSab 6:a02ad75f0333 483 wait(0.2f);
AppelSab 6:a02ad75f0333 484 }
AppelSab 6:a02ad75f0333 485 wait(0.4f);
AppelSab 6:a02ad75f0333 486 }
arnouddomhof 3:dca57056e5cb 487 }
AppelSab 6:a02ad75f0333 488 }
AppelSab 6:a02ad75f0333 489
AppelSab 6:a02ad75f0333 490 // --------------------------------
AppelSab 6:a02ad75f0333 491 // ----- MAIN LOOP ----------------
AppelSab 6:a02ad75f0333 492 // --------------------------------
AppelSab 6:a02ad75f0333 493
Mirjam 0:46dbc9b620d8 494 int main()
Mirjam 0:46dbc9b620d8 495 {
Mirjam 4:a0c1c021026b 496 // Switch all LEDs off
arnouddomhof 3:dca57056e5cb 497 led_red = 1;
arnouddomhof 3:dca57056e5cb 498 led_green = 1;
arnouddomhof 3:dca57056e5cb 499 led_blue = 1;
AppelSab 6:a02ad75f0333 500
arnouddomhof 3:dca57056e5cb 501 pc.baud(115200);
arnouddomhof 8:2afb66572fc4 502
arnouddomhof 8:2afb66572fc4 503 pc.printf("\r\n _______________ INSERT ROBOT NAME HERE! _______________ \r\n");
arnouddomhof 8:2afb66572fc4 504 wait(0.5f);
arnouddomhof 8:2afb66572fc4 505 pc.printf("WAITING... \r\n");
arnouddomhof 8:2afb66572fc4 506
AppelSab 6:a02ad75f0333 507 StateMachine.attach(&ProcessStateMachine, 0.005f); // Run statemachine 200 times per second
Mirjam 7:d4090f334ce2 508 sample_EMGtoHIDscope.attach(&sample, 0.02f); // Display EMG values 50 times per second
Mirjam 17:e5d9a543157b 509
Mirjam 0:46dbc9b620d8 510 while (true) {
AppelSab 6:a02ad75f0333 511
AppelSab 6:a02ad75f0333 512 }
AppelSab 6:a02ad75f0333 513 }
AppelSab 6:a02ad75f0333 514
arnouddomhof 5:07e401cb251d 515