groep 16 / Mbed 2 deprecated Project_BioRobotics_12

Dependencies:   mbed QEI HIDScope BiQuad4th_order biquadFilter MODSERIAL FastPWM

Committer:
arnouddomhof
Date:
Wed Oct 31 09:12:59 2018 +0000
Revision:
8:2afb66572fc4
Parent:
7:d4090f334ce2
Child:
9:8b2d6ec577e3
Poging tot het werkend maken van de state machine, met EMG calibration

Who changed what in which revision?

UserRevisionLine numberNew contents of line
Mirjam 0:46dbc9b620d8 1 #include "mbed.h"
arnouddomhof 3:dca57056e5cb 2 #include "MODSERIAL.h"
AppelSab 6:a02ad75f0333 3 #include "QEI.h"
AppelSab 6:a02ad75f0333 4 #include "FastPWM.h"
AppelSab 6:a02ad75f0333 5 #include "math.h"
Mirjam 0:46dbc9b620d8 6
Mirjam 7:d4090f334ce2 7 #include "mbed.h"
arnouddomhof 8:2afb66572fc4 8 //#include "HIDScope.h"
Mirjam 7:d4090f334ce2 9 #include "BiQuad.h"
Mirjam 7:d4090f334ce2 10 #include "BiQuad4.h"
Mirjam 7:d4090f334ce2 11 #include "FilterDesign.h"
Mirjam 7:d4090f334ce2 12 #include "FilterDesign2.h"
Mirjam 7:d4090f334ce2 13
AppelSab 6:a02ad75f0333 14 // LED's
arnouddomhof 3:dca57056e5cb 15 DigitalOut led_red(LED_RED);
arnouddomhof 3:dca57056e5cb 16 DigitalOut led_green(LED_GREEN);
arnouddomhof 3:dca57056e5cb 17 DigitalOut led_blue(LED_BLUE);
AppelSab 6:a02ad75f0333 18 // Buttons
AppelSab 6:a02ad75f0333 19 DigitalIn button_clbrt(SW2);
AppelSab 6:a02ad75f0333 20 DigitalIn Fail_button(SW3);
AppelSab 6:a02ad75f0333 21 // Modserial
arnouddomhof 3:dca57056e5cb 22 MODSERIAL pc(USBTX, USBRX);
AppelSab 6:a02ad75f0333 23 // Encoders
AppelSab 6:a02ad75f0333 24 QEI Encoder1(D11, D10, NC, 4200) ; // Encoder motor 1, (pin 1A, pin 1B, index pin(not used), counts/rev)
AppelSab 6:a02ad75f0333 25 QEI Encoder2(D9, D8, NC, 4200) ; // Encoder motor 2, (pin 2A, pin 2B, index pin (not used), counts/rev)
AppelSab 6:a02ad75f0333 26 // Motors (direction and PWM)
AppelSab 6:a02ad75f0333 27 DigitalOut directionM1(D4);
AppelSab 6:a02ad75f0333 28 DigitalOut directionM2(D7);
AppelSab 6:a02ad75f0333 29 FastPWM motor1_pwm(D5);
AppelSab 6:a02ad75f0333 30 FastPWM motor2_pwm(D6);
Mirjam 7:d4090f334ce2 31 // EMG input en start value of filtered EMG
Mirjam 7:d4090f334ce2 32 AnalogIn emg1_raw( A0 );
Mirjam 7:d4090f334ce2 33 AnalogIn emg2_raw( A1 );
Mirjam 7:d4090f334ce2 34 double emg1_filtered = 0.00;
Mirjam 7:d4090f334ce2 35 double emg2_filtered = 0.00;
Mirjam 7:d4090f334ce2 36 float threshold_EMG = 0.25; // Threshold on 25 percent of the maximum EMG
Mirjam 7:d4090f334ce2 37
AppelSab 6:a02ad75f0333 38 // Declare timers and Tickers
Mirjam 7:d4090f334ce2 39 Timer timer; // Timer for counting time in this state
Mirjam 7:d4090f334ce2 40 Ticker WriteValues; // Ticker to show values of velocity to screen
Mirjam 7:d4090f334ce2 41 Ticker StateMachine;
arnouddomhof 8:2afb66572fc4 42 //Ticker sample_EMGtoHIDscope; // Ticker to send the EMG signals to screen
arnouddomhof 8:2afb66572fc4 43 //HIDScope scope(4); //Number of channels which needs to be send to the HIDScope
arnouddomhof 3:dca57056e5cb 44
AppelSab 6:a02ad75f0333 45 // Set up ProcessStateMachine
arnouddomhof 5:07e401cb251d 46 enum states {WAITING, MOTOR_ANGLE_CLBRT, EMG_CLBRT, HOMING, WAITING4SIGNAL, MOVE_W_EMG, MOVE_W_DEMO, FAILURE_MODE};
arnouddomhof 3:dca57056e5cb 47 states currentState = WAITING;
AppelSab 6:a02ad75f0333 48 bool stateChanged = true;
AppelSab 6:a02ad75f0333 49 volatile bool writeVelocityFlag = false;
AppelSab 6:a02ad75f0333 50
AppelSab 6:a02ad75f0333 51 // Global variables
arnouddomhof 3:dca57056e5cb 52 char c;
AppelSab 6:a02ad75f0333 53 int counts1;
AppelSab 6:a02ad75f0333 54 int counts2;
AppelSab 6:a02ad75f0333 55 float theta1;
AppelSab 6:a02ad75f0333 56 float theta2;
AppelSab 6:a02ad75f0333 57 float vel_1;
AppelSab 6:a02ad75f0333 58 float vel_2;
AppelSab 6:a02ad75f0333 59 float theta1_prev = 0.0;
AppelSab 6:a02ad75f0333 60 float theta2_prev = 0.0;
AppelSab 6:a02ad75f0333 61 const float pi = 3.14159265359;
AppelSab 6:a02ad75f0333 62 float tijd = 0.005;
AppelSab 6:a02ad75f0333 63 float time_in_state;
AppelSab 6:a02ad75f0333 64
Mirjam 7:d4090f334ce2 65 int need_to_move_1; // Does the robot needs to move in the first direction?
Mirjam 7:d4090f334ce2 66 int need_to_move_2; // Does the robot needs to move in the second direction?
Mirjam 7:d4090f334ce2 67 double EMG_calibrated_max_1 = 2.00000; // Maximum value of the first EMG signal found in the calibration state.
Mirjam 7:d4090f334ce2 68 double EMG_calibrated_max_2 = 2.00000; // Maximum value of the second EMG signal found in the calibration state.
Mirjam 7:d4090f334ce2 69
AppelSab 6:a02ad75f0333 70 // ----------------------------------------------
AppelSab 6:a02ad75f0333 71 // ------- FUNCTIONS ----------------------------
AppelSab 6:a02ad75f0333 72 // ----------------------------------------------
AppelSab 6:a02ad75f0333 73
AppelSab 6:a02ad75f0333 74 float ReadEncoder1() // Read Encoder of motor 1.
AppelSab 6:a02ad75f0333 75 {
AppelSab 6:a02ad75f0333 76 counts1 = Encoder1.getPulses(); // Counts of outputshaft of motor 1
AppelSab 6:a02ad75f0333 77 theta1 = (float(counts1)/4200) * 2*pi; // Angle of outputshaft of motor 1
AppelSab 6:a02ad75f0333 78 vel_1 = (theta1 - theta1_prev) / tijd; // Velocity, current angle - previous angle, devided by avarage time between encoder read-outs
AppelSab 6:a02ad75f0333 79 theta1_prev = theta1; // Define theta_prev
AppelSab 6:a02ad75f0333 80 return vel_1;
AppelSab 6:a02ad75f0333 81 }
AppelSab 6:a02ad75f0333 82 float ReadEncoder2() // Read encoder of motor 2.
AppelSab 6:a02ad75f0333 83 {
AppelSab 6:a02ad75f0333 84 counts2 = Encoder2.getPulses(); // Counts of outputshaft of motor 2
AppelSab 6:a02ad75f0333 85 theta2 = (float(counts2)/4200) * 2*pi; // Angle of outputshaft of motor 2
AppelSab 6:a02ad75f0333 86 vel_2 = (theta2 - theta2_prev) / tijd; // Velocity, current angle - previous angle, devided by avarage time between encoder read-outs
AppelSab 6:a02ad75f0333 87 theta2_prev = theta2; // Define theta_prev
AppelSab 6:a02ad75f0333 88 return vel_2;
AppelSab 6:a02ad75f0333 89 }
AppelSab 6:a02ad75f0333 90 void MotorAngleCalibrate() // Function that drives motor 1 and 2.
AppelSab 6:a02ad75f0333 91 {
AppelSab 6:a02ad75f0333 92 float U1 = -0.2; // Negative, so arm goes backwards.
AppelSab 6:a02ad75f0333 93 float U2 = -0.2; // Motor 2 is not taken into account yet.
AppelSab 6:a02ad75f0333 94
AppelSab 6:a02ad75f0333 95 motor1_pwm.write(fabs(U1)); // Send PWM values to motor
AppelSab 6:a02ad75f0333 96 motor2_pwm.write(fabs(U2));
AppelSab 6:a02ad75f0333 97
AppelSab 6:a02ad75f0333 98 directionM1 = U1 > 0.0f; // Either true or false, determines direction.
AppelSab 6:a02ad75f0333 99 directionM2 = U2 > 0.0f;
AppelSab 6:a02ad75f0333 100 }
Mirjam 7:d4090f334ce2 101 void sample()
Mirjam 7:d4090f334ce2 102 {
Mirjam 7:d4090f334ce2 103 emg1_filtered = FilterDesign(emg1_raw.read());
Mirjam 7:d4090f334ce2 104 emg2_filtered = FilterDesign2(emg2_raw.read());
Mirjam 7:d4090f334ce2 105
arnouddomhof 8:2afb66572fc4 106 /**
Mirjam 7:d4090f334ce2 107 scope.set(0, emg1_raw.read()); // Raw EMG 1 send to scope 0
Mirjam 7:d4090f334ce2 108 scope.set(1, emg1_filtered); // Filtered EMG 1 send to scope 1
Mirjam 7:d4090f334ce2 109 scope.set(2, emg2_raw.read()); // Raw EMG 2 send to scope 2
Mirjam 7:d4090f334ce2 110 scope.set(3, emg2_filtered); // Filtered EMG 2 send to scope 3
Mirjam 7:d4090f334ce2 111 scope.send(); // Send the data to the computer
arnouddomhof 8:2afb66572fc4 112 */
Mirjam 7:d4090f334ce2 113 }
AppelSab 6:a02ad75f0333 114 // ---------------------------------------------------
AppelSab 6:a02ad75f0333 115 // --------STATEMACHINE-------------------------------
AppelSab 6:a02ad75f0333 116 // ---------------------------------------------------
AppelSab 6:a02ad75f0333 117 void ProcessStateMachine(void)
AppelSab 6:a02ad75f0333 118 {
AppelSab 6:a02ad75f0333 119 switch (currentState)
AppelSab 6:a02ad75f0333 120 {
AppelSab 6:a02ad75f0333 121 case WAITING:
AppelSab 6:a02ad75f0333 122 // Description:
AppelSab 6:a02ad75f0333 123 // In this state we do nothing, and wait for a command
AppelSab 6:a02ad75f0333 124
AppelSab 6:a02ad75f0333 125 // Actions
AppelSab 6:a02ad75f0333 126 led_red = 0; led_green = 0; led_blue = 0; // Colouring the led WHITE
AppelSab 6:a02ad75f0333 127
AppelSab 6:a02ad75f0333 128 // State transition logic
AppelSab 6:a02ad75f0333 129 if (button_clbrt == 0)
AppelSab 6:a02ad75f0333 130 {
AppelSab 6:a02ad75f0333 131 currentState = MOTOR_ANGLE_CLBRT;
AppelSab 6:a02ad75f0333 132 stateChanged = true;
AppelSab 6:a02ad75f0333 133 pc.printf("Starting Calibration\n\r");
AppelSab 6:a02ad75f0333 134 }
AppelSab 6:a02ad75f0333 135 if (Fail_button == 0)
AppelSab 6:a02ad75f0333 136 {
AppelSab 6:a02ad75f0333 137 currentState = FAILURE_MODE;
AppelSab 6:a02ad75f0333 138 stateChanged = true;
AppelSab 6:a02ad75f0333 139 }
AppelSab 6:a02ad75f0333 140 break;
AppelSab 6:a02ad75f0333 141
AppelSab 6:a02ad75f0333 142 case MOTOR_ANGLE_CLBRT:
AppelSab 6:a02ad75f0333 143 // Description:
AppelSab 6:a02ad75f0333 144 // In this state the robot moves with low motor PWM to some
AppelSab 6:a02ad75f0333 145 // mechanical limit of motion, in order to calibrate the motors.
AppelSab 6:a02ad75f0333 146
AppelSab 6:a02ad75f0333 147 // Actions
AppelSab 6:a02ad75f0333 148 led_red = 1; led_green = 0; led_blue = 0; // Colouring the led TURQUOISE
AppelSab 6:a02ad75f0333 149 timer.start(); //Start timer to get time in the state "MOTOR_ANGLE_CLRBRT"
AppelSab 6:a02ad75f0333 150 if (stateChanged)
AppelSab 6:a02ad75f0333 151 {
AppelSab 6:a02ad75f0333 152 MotorAngleCalibrate(); // Actuate motor 1 and 2.
AppelSab 6:a02ad75f0333 153 vel_1 = ReadEncoder1(); // Get velocity of motor 1
AppelSab 6:a02ad75f0333 154 vel_2 = ReadEncoder2(); // Get velocity of motor 2
AppelSab 6:a02ad75f0333 155 stateChanged = true; // Keep this loop going, until the transition conditions are satisfied.
AppelSab 6:a02ad75f0333 156 }
AppelSab 6:a02ad75f0333 157
AppelSab 6:a02ad75f0333 158 // State transition logic
AppelSab 6:a02ad75f0333 159 time_in_state = timer.read(); // Determine if this state has run for long enough.
arnouddomhof 3:dca57056e5cb 160
AppelSab 6:a02ad75f0333 161 if(time_in_state > 2.0f && vel_1 < 1.1f && vel_2 < 1.1f)
AppelSab 6:a02ad75f0333 162 {
AppelSab 6:a02ad75f0333 163 //pc.printf( "Tijd in deze staat = %f \n\r", time_in_state);
AppelSab 6:a02ad75f0333 164 //pc.printf( "Tijd tijdens actions loop (Waarde voor bepalen van snelheid)") = %f \n\r", tijd);
arnouddomhof 8:2afb66572fc4 165 pc.printf("Motor calibration has ended. \n\r");
AppelSab 6:a02ad75f0333 166 timer.stop(); // Stop timer for this state
AppelSab 6:a02ad75f0333 167 timer.reset(); // Reset timer for this state
AppelSab 6:a02ad75f0333 168 motor1_pwm.write(fabs(0.0)); // Send PWM values to motor
AppelSab 6:a02ad75f0333 169 motor2_pwm.write(fabs(0.0));
AppelSab 6:a02ad75f0333 170 Encoder1.reset(); // Reset Encoders when arrived at zero-position
AppelSab 6:a02ad75f0333 171 Encoder2.reset();
AppelSab 6:a02ad75f0333 172
AppelSab 6:a02ad75f0333 173 currentState = EMG_CLBRT; // Switch to next state (EMG_CLRBRT).
arnouddomhof 8:2afb66572fc4 174 pc.printf("EMG calibration \r\n");
AppelSab 6:a02ad75f0333 175 stateChanged = true;
AppelSab 6:a02ad75f0333 176 }
AppelSab 6:a02ad75f0333 177 if (Fail_button == 0)
AppelSab 6:a02ad75f0333 178 {
AppelSab 6:a02ad75f0333 179 currentState = FAILURE_MODE;
AppelSab 6:a02ad75f0333 180 stateChanged = true;
AppelSab 6:a02ad75f0333 181 }
AppelSab 6:a02ad75f0333 182 break;
AppelSab 6:a02ad75f0333 183
AppelSab 6:a02ad75f0333 184 case EMG_CLBRT:
AppelSab 6:a02ad75f0333 185 // In this state the person whom is connected to the robot needs
AppelSab 6:a02ad75f0333 186 // to flex his/her muscles as hard as possible, in order to
AppelSab 6:a02ad75f0333 187 // measure the maximum EMG-signal, which can be used to scale
AppelSab 6:a02ad75f0333 188 // the EMG-filter.
AppelSab 6:a02ad75f0333 189
AppelSab 6:a02ad75f0333 190 led_red = 1; led_green = 1; led_blue = 0; // Colouring the led BLUE
AppelSab 6:a02ad75f0333 191
AppelSab 6:a02ad75f0333 192 // Requirements to move to the next state:
AppelSab 6:a02ad75f0333 193 // If enough time has passed (5 sec), and the EMG-signal drops below 10%
AppelSab 6:a02ad75f0333 194 // of the maximum measured value, we move to the Homing state.
AppelSab 6:a02ad75f0333 195
AppelSab 6:a02ad75f0333 196 wait(5.0f); // time_in_this_state > 5.0f
AppelSab 6:a02ad75f0333 197 // if moving_average(procd_emg) < 0.1*max_procd_emg_ever
AppelSab 6:a02ad75f0333 198 // INSERT CALIBRATING
AppelSab 6:a02ad75f0333 199 currentState = HOMING;
AppelSab 6:a02ad75f0333 200 if (Fail_button == 0)
AppelSab 6:a02ad75f0333 201 {
AppelSab 6:a02ad75f0333 202 currentState = FAILURE_MODE;
AppelSab 6:a02ad75f0333 203 stateChanged = true;
AppelSab 6:a02ad75f0333 204 }
AppelSab 6:a02ad75f0333 205 break;
AppelSab 6:a02ad75f0333 206
AppelSab 6:a02ad75f0333 207 case HOMING:
AppelSab 6:a02ad75f0333 208 // Description:
AppelSab 6:a02ad75f0333 209 // Robot moves to the home starting configuration
arnouddomhof 8:2afb66572fc4 210 pc.printf("HOMING, moving to the home starting configuration. \r\n");
AppelSab 6:a02ad75f0333 211
AppelSab 6:a02ad75f0333 212 led_red = 0; led_green = 1; led_red = 0; // Colouring the led PURPLE
AppelSab 6:a02ad75f0333 213
AppelSab 6:a02ad75f0333 214 // Requirements to move to the next state:
AppelSab 6:a02ad75f0333 215 // If we are in the right location, within some margin, we move to the Waiting for
AppelSab 6:a02ad75f0333 216 // signal state.
AppelSab 6:a02ad75f0333 217
AppelSab 6:a02ad75f0333 218 wait(5.0f); // time_in_this_state > 5.0f
AppelSab 6:a02ad75f0333 219 // if ((fabs(angle_error1) < 0.01f) && (fabs(angle_error2) < 0.01f)) {
AppelSab 6:a02ad75f0333 220 // INSERT MOVEMENT
AppelSab 6:a02ad75f0333 221 currentState = WAITING4SIGNAL;
AppelSab 6:a02ad75f0333 222 if (Fail_button == 0)
AppelSab 6:a02ad75f0333 223 {
AppelSab 6:a02ad75f0333 224 currentState = FAILURE_MODE;
AppelSab 6:a02ad75f0333 225 stateChanged = true;
AppelSab 6:a02ad75f0333 226 }
AppelSab 6:a02ad75f0333 227 break;
AppelSab 6:a02ad75f0333 228
AppelSab 6:a02ad75f0333 229 case WAITING4SIGNAL:
AppelSab 6:a02ad75f0333 230 // Description:
AppelSab 6:a02ad75f0333 231 // In this state the robot waits for an action to occur.
arnouddomhof 8:2afb66572fc4 232 pc.printf("Press d to run the demo, Press e to move with EMG, Press c to re-calibrate. \r\n");
AppelSab 6:a02ad75f0333 233 led_red = 0; led_green = 0; led_blue = 0; // Colouring the led WHITE
AppelSab 6:a02ad75f0333 234
AppelSab 6:a02ad75f0333 235 // Requirements to move to the next state:
AppelSab 6:a02ad75f0333 236 // If a certain button is pressed we move to the corresponding
AppelSab 6:a02ad75f0333 237 // state (MOVE_W_DEMO, MOVE_W_EMG or SHUTDOWN)
AppelSab 6:a02ad75f0333 238
AppelSab 6:a02ad75f0333 239 // CANNOT USE KEYBOARD. SO LOOK FOR ALTERNATIVE
AppelSab 6:a02ad75f0333 240 c = pc.getc();
AppelSab 6:a02ad75f0333 241 if (c == 'd')
AppelSab 6:a02ad75f0333 242 {
arnouddomhof 8:2afb66572fc4 243 pc.printf("MOVE_W_DEMO, Running the demo \r\n");
AppelSab 6:a02ad75f0333 244 currentState = MOVE_W_DEMO;
arnouddomhof 8:2afb66572fc4 245
AppelSab 6:a02ad75f0333 246 }
AppelSab 6:a02ad75f0333 247 else if (c == 'e')
AppelSab 6:a02ad75f0333 248 {
arnouddomhof 8:2afb66572fc4 249 pc.printf("MOVE_W_EMG, Moving with use of EMG \r\n");
AppelSab 6:a02ad75f0333 250 currentState = MOVE_W_EMG;
AppelSab 6:a02ad75f0333 251 }
AppelSab 6:a02ad75f0333 252 else if (c == 'c')
AppelSab 6:a02ad75f0333 253 {
arnouddomhof 8:2afb66572fc4 254 pc.printf("Starting Calibration\n\r");
arnouddomhof 8:2afb66572fc4 255 currentState = MOTOR_ANGLE_CLBRT;
AppelSab 6:a02ad75f0333 256 }
AppelSab 6:a02ad75f0333 257
AppelSab 6:a02ad75f0333 258 if (Fail_button == 0)
AppelSab 6:a02ad75f0333 259 {
AppelSab 6:a02ad75f0333 260 currentState = FAILURE_MODE;
AppelSab 6:a02ad75f0333 261 stateChanged = true;
AppelSab 6:a02ad75f0333 262 }
AppelSab 6:a02ad75f0333 263 break;
AppelSab 6:a02ad75f0333 264
AppelSab 6:a02ad75f0333 265 case MOVE_W_DEMO:
AppelSab 6:a02ad75f0333 266 // Description:
AppelSab 6:a02ad75f0333 267 // In this state the robot follows a preprogrammed shape, e.g.
AppelSab 6:a02ad75f0333 268 // a square.
AppelSab 6:a02ad75f0333 269
AppelSab 6:a02ad75f0333 270 led_red = 1; led_green = 1; led_blue = 0; // Colouring the led GREEN
AppelSab 6:a02ad75f0333 271
AppelSab 6:a02ad75f0333 272 // Requirements to move to the next state:
AppelSab 6:a02ad75f0333 273 // When the home button or the failure button is pressed, we
AppelSab 6:a02ad75f0333 274 // will the move to the corresponding state.
AppelSab 6:a02ad75f0333 275
AppelSab 6:a02ad75f0333 276 // BUILD DEMO MODE
AppelSab 6:a02ad75f0333 277 // FIND ALTERNATIVE FOR KEYBOARD
AppelSab 6:a02ad75f0333 278 c = pc.getcNb();
AppelSab 6:a02ad75f0333 279 if (c == 'h')
AppelSab 6:a02ad75f0333 280 {
AppelSab 6:a02ad75f0333 281 currentState = HOMING;
AppelSab 6:a02ad75f0333 282 }
AppelSab 6:a02ad75f0333 283 wait(1.0f);
AppelSab 6:a02ad75f0333 284
AppelSab 6:a02ad75f0333 285 if (Fail_button == 0)
AppelSab 6:a02ad75f0333 286 {
AppelSab 6:a02ad75f0333 287 currentState = FAILURE_MODE;
AppelSab 6:a02ad75f0333 288 stateChanged = true;
AppelSab 6:a02ad75f0333 289 }
AppelSab 6:a02ad75f0333 290 break;
AppelSab 6:a02ad75f0333 291
AppelSab 6:a02ad75f0333 292 case MOVE_W_EMG:
AppelSab 6:a02ad75f0333 293 // Description:
AppelSab 6:a02ad75f0333 294 // In this state the robot will be controlled by use of
AppelSab 6:a02ad75f0333 295 // EMG-signals.
AppelSab 6:a02ad75f0333 296
AppelSab 6:a02ad75f0333 297 led_red = 1; led_green = 0; led_blue = 1; // Colouring the led GREEN
Mirjam 7:d4090f334ce2 298
Mirjam 7:d4090f334ce2 299 if (emg1_filtered >= (threshold_EMG*EMG_calibrated_max_1)){
Mirjam 7:d4090f334ce2 300 need_to_move_1 = 1; // The robot does have to move
Mirjam 7:d4090f334ce2 301 }
Mirjam 7:d4090f334ce2 302 else {
Mirjam 7:d4090f334ce2 303 need_to_move_1 = 0; // If the robot does not have to move
Mirjam 7:d4090f334ce2 304 }
Mirjam 7:d4090f334ce2 305
arnouddomhof 8:2afb66572fc4 306 if(emg2_filtered >= threshold_EMG*EMG_calibrated_max_2){
Mirjam 7:d4090f334ce2 307 need_to_move_2 = 1;
Mirjam 7:d4090f334ce2 308 }
Mirjam 7:d4090f334ce2 309 else {
Mirjam 7:d4090f334ce2 310 need_to_move_2 = 0;
Mirjam 7:d4090f334ce2 311 }
AppelSab 6:a02ad75f0333 312 // Requirements to move to the next state:
AppelSab 6:a02ad75f0333 313 // When the home button or the failure button is pressed, we
AppelSab 6:a02ad75f0333 314 // will the move to the corresponding state.
AppelSab 6:a02ad75f0333 315
AppelSab 6:a02ad75f0333 316 wait(1);
AppelSab 6:a02ad75f0333 317 c = pc.getcNb();
AppelSab 6:a02ad75f0333 318 if (c == 'h')
AppelSab 6:a02ad75f0333 319 {
AppelSab 6:a02ad75f0333 320 currentState = HOMING;
AppelSab 6:a02ad75f0333 321 }
AppelSab 6:a02ad75f0333 322 wait(1.0f);
AppelSab 6:a02ad75f0333 323
AppelSab 6:a02ad75f0333 324 if (Fail_button == 0)
AppelSab 6:a02ad75f0333 325 {
AppelSab 6:a02ad75f0333 326 currentState = FAILURE_MODE;
AppelSab 6:a02ad75f0333 327 stateChanged = true;
AppelSab 6:a02ad75f0333 328 }
AppelSab 6:a02ad75f0333 329 break;
AppelSab 6:a02ad75f0333 330
AppelSab 6:a02ad75f0333 331 case FAILURE_MODE:
AppelSab 6:a02ad75f0333 332 // Description:
AppelSab 6:a02ad75f0333 333 // This state is reached when the failure button is reached.
AppelSab 6:a02ad75f0333 334 // In this state everything is turned off.
AppelSab 6:a02ad75f0333 335
AppelSab 6:a02ad75f0333 336 led_red = 0; led_green = 1; led_blue = 1; // Colouring the led RED
AppelSab 6:a02ad75f0333 337 // Actions
AppelSab 6:a02ad75f0333 338 if (stateChanged)
AppelSab 6:a02ad75f0333 339 {
AppelSab 6:a02ad75f0333 340 motor1_pwm.write(fabs(0.0)); // Stop all motors!
AppelSab 6:a02ad75f0333 341 motor2_pwm.write(fabs(0.0));
AppelSab 6:a02ad75f0333 342 pc.printf("FAILURE MODE \r\n PLEASE RESTART THE WHOLE ROBOT \r\n (and make sure this does not happen again) \r\n");
AppelSab 6:a02ad75f0333 343 stateChanged = false;
AppelSab 6:a02ad75f0333 344 }
AppelSab 6:a02ad75f0333 345 break;
AppelSab 6:a02ad75f0333 346
AppelSab 6:a02ad75f0333 347 // State transition logic
AppelSab 6:a02ad75f0333 348 // No state transition, you need to restart the robot.
AppelSab 6:a02ad75f0333 349
AppelSab 6:a02ad75f0333 350 default:
AppelSab 6:a02ad75f0333 351 // This state is a default state, this state is reached when
AppelSab 6:a02ad75f0333 352 // the program somehow defies all of the other states.
AppelSab 6:a02ad75f0333 353
AppelSab 6:a02ad75f0333 354 pc.printf("Unknown or unimplemented state reached!!! \n\r");
AppelSab 6:a02ad75f0333 355 led_red = 1; led_green = 1; led_blue = 1; // Colouring the led BLACK
AppelSab 6:a02ad75f0333 356 for (int n = 0; n < 50; n++) // Making an SOS signal with the RED led
AppelSab 6:a02ad75f0333 357 {
AppelSab 6:a02ad75f0333 358 for (int i = 0; i < 6; i++)
AppelSab 6:a02ad75f0333 359 {
AppelSab 6:a02ad75f0333 360 led_red = !led_red;
AppelSab 6:a02ad75f0333 361 wait(0.6f);
AppelSab 6:a02ad75f0333 362 }
AppelSab 6:a02ad75f0333 363 wait(0.4f);
AppelSab 6:a02ad75f0333 364 for (int i = 0 ; i < 6; i++)
AppelSab 6:a02ad75f0333 365 {
AppelSab 6:a02ad75f0333 366 led_red = !led_red;
AppelSab 6:a02ad75f0333 367 wait(0.2f);
AppelSab 6:a02ad75f0333 368 }
AppelSab 6:a02ad75f0333 369 wait(0.4f);
AppelSab 6:a02ad75f0333 370 }
arnouddomhof 3:dca57056e5cb 371 }
AppelSab 6:a02ad75f0333 372 }
AppelSab 6:a02ad75f0333 373
AppelSab 6:a02ad75f0333 374 // --------------------------------
AppelSab 6:a02ad75f0333 375 // ----- MAIN LOOP ----------------
AppelSab 6:a02ad75f0333 376 // --------------------------------
AppelSab 6:a02ad75f0333 377
Mirjam 0:46dbc9b620d8 378 int main()
Mirjam 0:46dbc9b620d8 379 {
Mirjam 4:a0c1c021026b 380 // Switch all LEDs off
arnouddomhof 3:dca57056e5cb 381 led_red = 1;
arnouddomhof 3:dca57056e5cb 382 led_green = 1;
arnouddomhof 3:dca57056e5cb 383 led_blue = 1;
AppelSab 6:a02ad75f0333 384
arnouddomhof 3:dca57056e5cb 385 pc.baud(115200);
arnouddomhof 8:2afb66572fc4 386
arnouddomhof 8:2afb66572fc4 387 pc.printf("\r\n _______________ INSERT ROBOT NAME HERE! _______________ \r\n");
arnouddomhof 8:2afb66572fc4 388 wait(0.5f);
arnouddomhof 8:2afb66572fc4 389 pc.printf("WAITING... \r\n");
arnouddomhof 8:2afb66572fc4 390
AppelSab 6:a02ad75f0333 391 StateMachine.attach(&ProcessStateMachine, 0.005f); // Run statemachine 200 times per second
arnouddomhof 8:2afb66572fc4 392 /**
Mirjam 7:d4090f334ce2 393 sample_EMGtoHIDscope.attach(&sample, 0.02f); // Display EMG values 50 times per second
arnouddomhof 8:2afb66572fc4 394 */
Mirjam 0:46dbc9b620d8 395 while (true) {
AppelSab 6:a02ad75f0333 396
AppelSab 6:a02ad75f0333 397 }
AppelSab 6:a02ad75f0333 398 }
AppelSab 6:a02ad75f0333 399
arnouddomhof 5:07e401cb251d 400