robot code for summer school
Dependencies: PM2_Libary Eigen
Fork of PM2_Example_Summer_School by
Robot_Library/robot.cpp
- Committer:
- eversonrosed
- Date:
- 2022-05-30
- Branch:
- distance-sensor
- Revision:
- 70:0e9e3c6223d1
- Parent:
- 68:61aad0993a29
- Child:
- 72:9325748d2d02
File content as of revision 70:0e9e3c6223d1:
#include "robot.h" #include "EncoderCounter.h" #include "PeripheralNames.h" #include "PinNames.h" #include <cstdint> #include <cstdio> Robot::Robot() : dist(PB_1), // initialize all of the physical ports bit0(PH_1), bit1(PC_2), bit2(PC_3), ir_sensor_0(dist, bit0, bit1, bit2, 0), // one IR sensor i2c2(PB_9, PB_8), // line sensor line_sensor(i2c2), pwm_M1(PA_9), // motors + encoders pwm_M2(PA_8), encoder_M1(PA_6, PC_7), encoder_M2(PB_6, PB_7) { // initialize all variables wheel_to_robot << -WHEEL_RADIUS / 2.0f, WHEEL_RADIUS / 2.0f, -WHEEL_RADIUS / DISTANCE_BETWEEN_WHEELS, -WHEEL_RADIUS / DISTANCE_BETWEEN_WHEELS; // transformation matrix robot_to_wheel = wheel_to_robot.inverse(); robot_speed_desired.setZero(); // zero out all speeds wheel_speed_desired.setZero(); wheel_speed_smooth.setZero(); robot_speed_actual.setZero(); wheel_speed_actual.setZero(); // MOTORS + MOTION // TRAJECTORY PLANNERS trajectoryPlanners[0] = new Motion(); trajectoryPlanners[1] = new Motion(); trajectoryPlanners[0]->setProfileVelocity(MAX_MOTOR_VOLTAGE * KN / 60.0f); trajectoryPlanners[1]->setProfileVelocity(MAX_MOTOR_VOLTAGE * KN / 60.0f); trajectoryPlanners[0]->setProfileAcceleration(10.0f); trajectoryPlanners[1]->setProfileAcceleration(10.0f); trajectoryPlanners[0]->setProfileDeceleration(10.0f); trajectoryPlanners[1]->setProfileDeceleration(10.0f); // SPEED CONTROLLERS speedControllers[0] = new SpeedController( COUNTS_PER_TURN, KN, MAX_MOTOR_VOLTAGE, pwm_M1, encoder_M1); speedControllers[1] = new SpeedController( COUNTS_PER_TURN, KN, MAX_MOTOR_VOLTAGE, pwm_M2, encoder_M2); speedControllers[0]->setSpeedCntrlGain( 0.04f); // adjust speed controller gains speedControllers[1]->setSpeedCntrlGain(0.04f); speedControllers[0]->setMaxAccelerationRPS( 999.0f); // adjust max. acceleration for smooth movement speedControllers[1]->setMaxAccelerationRPS(999.0f); } Robot::~Robot() { delete trajectoryPlanners[0]; delete trajectoryPlanners[1]; delete speedControllers[0]; delete speedControllers[1]; } void Robot::Update() { controller.Update(); wheel_speed_actual << speedControllers[0]->getSpeedRPS(), speedControllers[1]->getSpeedRPS(); robot_speed_actual = wheel_to_robot * wheel_speed_actual; printf("STATE: %d \r\n", state); switch (state) { case INITIAL: Initial(); break; case IDLE: Idle(); break; case FOLLOWING_LINE: FollowingLine(); break; case RIGHT_TURN_90: RightTurn_90(); break; case LEFT_TURN_90: LeftTurn_90(); break; case AVOIDING_OBSTACLE: AvoidObstacle(); break; default: state = IDLE; // on default, stop the car } wheel_speed_desired = robot_to_wheel * robot_speed_desired; // smooth desired wheel_speeds trajectoryPlanners[0]->incrementToVelocity(wheel_speed_desired(0) / (2.0f * M_PI), controller.Period()); trajectoryPlanners[1]->incrementToVelocity(wheel_speed_desired(1) / (2.0f * M_PI), controller.Period()); wheel_speed_smooth << trajectoryPlanners[0]->getVelocity(), trajectoryPlanners[1]->getVelocity(); // command speedController objects speedControllers[0]->setDesiredSpeedRPS(wheel_speed_smooth(0)); speedControllers[1]->setDesiredSpeedRPS(wheel_speed_smooth(1)); } void Robot::Initial() { printf("Initial State\n"); // TODO: REMOVE PRINT // initialize the robot. // enable_motors = 1; // motors_enabled = false; robot_speed_desired(0) = 0.0f; // set speed and rotational velocity to zero robot_speed_desired(1) = 0.0f; if (controller.GetTurnedOn()) // check to see if blue button is toggled { state = FOLLOWING_LINE; } } void Robot::Idle() { printf("Idle\n"); // TODO: REMOVE PRINT robot_speed_desired(0) = 0.0f; // set speed and rotational velocity to zero robot_speed_desired(1) = 0.0f; } void Robot::FollowingLine() // Updates once per cycle. { if (!controller.GetTurnedOn()) { state = IDLE; return; } printf("FollowingLine\n"); // TODO: REMOVE PRINT printf("%d", line_sensor.getRaw()); // print raw line sensor data uint8_t binary_sensor_data = line_sensor.getRaw(); // convert line sensor data into binary // representation of it // if(IsSharpTurn(binary_sensor_data)) { return; } // check if the sensor // reads in any sharp turns. if so, exit the PID movement and turn sharply. // first test PID movement. it is possible that PID movement works just as // well. PID_Move(binary_sensor_data); // move the robot smoothly with error // calculation and stuff? } void Robot::RightTurn_90() { // count encoder values and turn until the motor has rotated ~ 90 degrees // im actually not sure if we need this, try testing with just the PID system // first } void Robot::LeftTurn_90() { // count encoder values and turn until the motor has rotated ~ 90 degrees // im actually not sure if we need this, try testing with just the PID system // first } void Robot::AvoidObstacle() { // TODO } void Robot::PID_Move(std::uint8_t s_binary) // for following smooth lines ONLY { float errval = 0; if (s_binary & 0b00000001) errval += error_angles[3]; else if (s_binary & 0b00000010) errval += error_angles[2]; else if (s_binary & 0b00000100) errval += error_angles[1]; else if (s_binary & 0b00001000) errval += error_angles[0]; if (s_binary & 0b10000000) errval -= error_angles[3]; else if (s_binary & 0b01000000) errval -= error_angles[2]; else if (s_binary & 0b00100000) errval -= error_angles[1]; else if (s_binary & 0b00010000) errval -= error_angles[0]; float dt = controller.Period(); integral_error += dt * errval; float integral_term = integral_error / t_int; float derivative_term = t_deriv * (errval - previous_error_value) / dt; float control_input = k_prop * (errval + integral_term + derivative_term); robot_speed_desired(0) = TRANSLATIONAL_VELOCITY; robot_speed_desired(1) = ROTATIONAL_VELOCITY * control_input; previous_error_value = errval; // Delay total_error/2. not exactly sure why. } bool Robot::IsSharpTurn(int binary_sensor_data) { return binary_sensor_data & 0b11110000 || binary_sensor_data & 0b00001111; } void Robot::PID_Delay(int ms) { // add in delay ? // implement }