Prototyp V2
Dependencies: PM2_Libary
Diff: main.cpp
- Revision:
- 33:70ea029a69e8
- Parent:
- 32:bf35aeffc374
- Child:
- 34:9f779e91168e
--- a/main.cpp Wed Apr 06 07:44:41 2022 +0000 +++ b/main.cpp Wed Apr 06 12:38:20 2022 +0200 @@ -1,10 +1,6 @@ #include "mbed.h" #include "PM2_Libary.h" - - - - -// +#include <cstdint> // logical variable main task bool do_execute_main_task = false; // this variable will be toggled via the user button (blue button) to or not to execute the main task @@ -19,183 +15,180 @@ int main_task_period_ms = 50; // define main task period time in ms e.g. 50 ms -> main task runns 20 times per second Timer main_task_timer; // create Timer object which we use to run the main task every main task period time in ms -// led on nucleo board -DigitalOut user_led(LED1); // create DigitalOut object to command user led - -// additional Led -DigitalOut extra_led(PB_9); // create DigitalOut object to command extra led (do add an aditional resistor, e.g. 220...500 Ohm) - -// mechanical button -DigitalIn mechanical_button(PC_5); // create DigitalIn object to evaluate extra mechanical button, you need to specify the mode for proper usage, see below - // Sharp GP2Y0A41SK0F, 4-40 cm IR Sensor float ir_distance_mV = 0.0f; // define variable to store measurement AnalogIn ir_analog_in(PC_2); // create AnalogIn object to read in infrared distance sensor, 0...3.3V are mapped to 0...1 + + // 78:1, 100:1, ... Metal Gearmotor 20Dx44L mm 12V CB DigitalOut enable_motors(PB_15); // create DigitalOut object to enable dc motors float pwm_period_s = 0.00005f; // define pwm period time in seconds and create FastPWM objects to command dc motors -FastPWM pwm_M1(PB_13); // motor M1 is used open loop -FastPWM pwm_M2(PA_9); // motor M2 is closed-loop speed controlled (angle velocity) -FastPWM pwm_M3(PA_10); // motor M3 is closed-loop position controlled (angle controlled) +//motor pin declaration +FastPWM pwm_M_right(PA_9); +FastPWM pwm_M_left(PB_13); +FastPWM pwm_M_arm(PA_10); -EncoderCounter encoder_M1(PA_6, PC_7); // create encoder objects to read in the encoder counter values -EncoderCounter encoder_M2(PB_6, PB_7); -EncoderCounter encoder_M3(PA_0, PA_1); +//Encoder pin declaration +EncoderCounter encoder_M_right(PA_6, PC_7); //encoder pin decalaration for wheels right side +EncoderCounter encoder_M_left(PB_6, PB_7); //encoder pin decalaration for wheels left side +EncoderCounter encoder_M_arm(PA_0, PA_1); //encoder pin decalaration for arm // create SpeedController and PositionController objects, default parametrization is for 78.125:1 gear box float max_voltage = 12.0f; // define maximum voltage of battery packs, adjust this to 6.0f V if you only use one batterypack -float counts_per_turn = 20.0f * 78.125f; // define counts per turn at gearbox end: counts/turn * gearratio +float counts_per_turn_wheels = 2000.0f * 100.0f; // define counts per turn at gearbox end (counts/turn * gearratio) for wheels +float counts_per_turn_arm = 40000.0f * 100.0f; // define counts per turn at gearbox end (counts/turn * gearratio) for arm float kn = 180.0f / 12.0f; // define motor constant in rpm per V float k_gear = 100.0f / 78.125f; // define additional ratio in case you are using a dc motor with a different gear box, e.g. 100:1 float kp = 0.1f; // define custom kp, this is the default speed controller gain for gear box 78.125:1 -// SpeedController speedController_M2(counts_per_turn, kn, max_voltage, pwm_M2, encoder_M2); // default 78.125:1 gear box with default contoller parameters -SpeedController speedController_M2(counts_per_turn * k_gear, kn / k_gear, max_voltage, pwm_M2, encoder_M2); // parameters adjusted to 100:1 gear - -float max_speed_rps = 0.5f; // define maximum speed that the position controller is changig the speed, has to be smaller or equal to kn * max_voltage -// PositionController positionController_M3(counts_per_turn, kn, max_voltage, pwm_M3, encoder_M3); // default 78.125:1 gear with default contoller parameters -PositionController positionController_M3(counts_per_turn * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M3, encoder_M3); // parameters adjusted to 100:1 gear, we need a different speed controller gain here +//motors for tracks +PositionController positionController_M_right(counts_per_turn_wheels * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M_right, encoder_M_right); // parameters adjusted to 100:1 gear, we need a different speed controller gain here +PositionController positionController_M_left(counts_per_turn_wheels * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M_left, encoder_M_left); // parameters adjusted to 100:1 gear, we need a different speed controller gain here +//Arm Motor +PositionController positionController_M_Arm(counts_per_turn_arm * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M_arm, encoder_M_arm); // parameters adjusted to 100:1 gear, we need a different speed controller gain here -// Futaba Servo S3001 20mm 3kg Analog -Servo servo_S1(PB_2); // create servo objects -Servo servo_S2(PC_8); -float servo_S1_angle = 0; // servo S1 normalized angle -float servo_S2_angle = 0; // servo S2 normalized angle -int servo_period_mus = 20000; // define servo period time in mus +//float max_speed_rps = 0.5f; not sure if needed // define maximum speed that the position controller is changig the speed, has to be smaller or equal to kn * max_voltage +// PositionController positionController_M3(counts_per_turn, kn, max_voltage, pwm_M3, encoder_M3); // default 78.125:1 gear with default contoller parameters +//PositionController positionController_M3(counts_per_turn * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M3, encoder_M3); // parameters adjusted to 100:1 gear, we need a different speed controller gain here -int servo_counter = 0; // define servo counter, this is an additional variable to make the servos move -int loops_per_seconds = static_cast<int>(ceilf(1.0f/(0.001f*(float)main_task_period_ms))); // define loops per second - -// Groove Ultrasonic Ranger V2.0 -float us_distance_cm = 0.0f; // define variable to store measurement -RangeFinder us_range_finder(PB_12, 5782.0f, 0.02f, 17500); // create range finder object (ultra sonic distance sensor), 20 Hz parametrization -// RangeFinder us_range_finder(PB_12, 5782.0f, 0.02f, 7000); // create range finder object (ultra sonic distance sensor), 50 Hz parametrization // LSM9DS1 IMU, carefull: not all PES boards have an imu (chip shortage) // LSM9DS1 imu(PC_9, PA_8); // create LSM9DS1 comunication object, if you want to be able to use the imu you need to #include "LSM9DS1_i2c.h" -int main() +//Platzhalter Variabeln für die Positionierung +int16_t PositionStair = 20; +int16_t PositionBackOff = 100; +int16_t degArmStart = 40; +int16_t degArmLift = 18; +int ToNextFunction = 1; + +int StartPosition(int16_t deg){ + + positionController_M_Arm.setDesiredRotation(deg); + + return NULL; +} +//Drives forward into the next step +int Drive(int16_t dist){ + int8_t i = 0; //prov condition variable + + int8_t distance = dist; //distance which will be driven in [mm] + float factor = 1.0f; //factor for calculating the value in to the float which will be given to the setDesiredRotation function + float distanceValue = float(distance)*factor; + + positionController_M_right.setDesiredRotation(distanceValue); + positionController_M_left.setDesiredRotation(distanceValue); + + return 0; +} + +//only turns the arm until the robot is on the next step +//not yet clear if the motor controler function drives to a absolute poition or if it drives the given distance relative to the current position +int LiftUp(int16_t deg){ + int8_t rotation = deg; + int8_t i = 0; //prov condition variable + + positionController_M_Arm.setDesiredRotation(deg); + + + return 0; +} +//pow function is here so we dont have to use the math.h library +//it takes 2 arguments the base can be any negative or positive floating point number the power has to be a hos to be an "integer" defined as a double +double powerx(double base, double pow2){ + double result = -1; + double power = pow2; + double basis = base; + result = 1; + //handling negative exponents + if(power<0){ + for(double i=1; i<=(power*(-1.0)); i++) { + result *= basis; + } + result = 1.0/result; + } + //handling positive exponents + else{ + for(double i=1; i<=power; i++){ + result *= basis;}} + + return result; + } + +double mapping(float adc_value_mV){ + double distance = 0.0f; //distance in mm + double infY =360 , supY = 2360; //Window for sensor values + double voltage_mV = adc_value_mV; + double p1 = -1.127*powerx(10,-14), p2 = 8.881*powerx(10,-11), p3 = -2.76*powerx(10,-7), p4 = 0.0004262, p5 = -0.3363, p6 = 120.1 ; //faktoren für polynomkurve -> von matlab exportiert + if(voltage_mV > infY && voltage_mV < supY){ + distance = p1*powerx(voltage_mV,5) + p2*powerx(voltage_mV,4) + p3*powerx(voltage_mV,3) + p4*powerx(voltage_mV,2) + p5*voltage_mV + p6; + } + return (distance); +} + + +int main(void) { // attach button fall and rise functions to user button object - user_button.fall(&user_button_pressed_fcn); - user_button.rise(&user_button_released_fcn); - - // start timer - main_task_timer.start(); - - // set pullup mode: add resistor between pin and 3.3 V, so that there is a defined potential - mechanical_button.mode(PullUp); +user_button.fall(&user_button_pressed_fcn); + user_button.rise(&user_button_released_fcn); + - // enable hardwaredriver dc motors: 0 -> disabled, 1 -> enabled - enable_motors = 1; - - // motor M1 is used open-loop, we need to initialize the pwm and set pwm output to zero at the beginning, range: 0...1 -> u_min...u_max: 0.5 -> 0 V - pwm_M1.period(pwm_period_s); - pwm_M1.write(0.5f); - - // enable servos, you can also disable them at any point in your program if you don't want your servos to become warm - servo_S1.Enable(servo_S1_angle, servo_period_mus); - servo_S2.Enable(servo_S2_angle, servo_period_mus); - while (true) { // this loop will run forever - - main_task_timer.reset(); - - if (do_execute_main_task) { - - // read analog input - ir_distance_mV = 1.0e3f * ir_analog_in.read() * 3.3f; + while (true){ + ir_distance_mV = 1.0e3f * ir_analog_in.read() * 3.3f; + + printf("test pow function 2 ^ 2 %lf\n",powerx(2,2)); + printf("test mapping function %f\n", mapping(ir_distance_mV)); - // command dc motors if mechanical button is pressed - if (mechanical_button.read()) { - pwm_M1.write(0.75f); // write output voltage to motor M1 - speedController_M2.setDesiredSpeedRPS(0.5f); // set a desired speed for speed controlled dc motors M2 - positionController_M3.setDesiredRotation(1.5f, max_speed_rps); // set a desired rotation for position controlled dc motors M3 - } else { - pwm_M1.write(0.5f); - speedController_M2.setDesiredSpeedRPS(0.0f); - positionController_M3.setDesiredRotation(0.0f, max_speed_rps); - } + printf("IR sensor (mV): %3.3f\n", ir_distance_mV); + - // check if servos are enabled - if (!servo_S1.isEnabled()) servo_S1.Enable(servo_S1_angle, servo_period_mus); - if (!servo_S2.isEnabled()) servo_S2.Enable(servo_S2_angle, servo_period_mus); - // command servo position, this needs to be calibrated - servo_S1.SetPosition(servo_S1_angle); - if (servo_S1_angle <= 1.0f & servo_counter%loops_per_seconds == 0 & servo_counter != 0) { - servo_S1_angle += 0.01f; - } - servo_S2.SetPosition(servo_S2_angle); - if (servo_S2_angle <= 1.0f & servo_counter%loops_per_seconds == 0 & servo_counter != 0) { - servo_S2_angle += 0.01f; - } - servo_counter++; - - // read ultra sonic distance sensor - us_distance_cm = us_range_finder.read_cm(); - - // visual feedback that the main task is executed - extra_led = 1; - - } else { - - ir_distance_mV = 0.0f; - - pwm_M1.write(0.5f); - speedController_M2.setDesiredSpeedRPS(0.0f); - positionController_M3.setDesiredRotation(0.0f, max_speed_rps); + switch (ToNextFunction) { + case 1: StartPosition(degArmStart); + printf("a"); + // ToNextFunction+=1; + break; + case 2: Drive(PositionStair); + printf("b"); + // ToNextFunction+=1; + break; + case 3:// LiftUp(degArmLift); + // ToNextFunction+=1; + printf("c"); + break; + case 4: Drive(PositionBackOff); + printf("d"); + // ToNextFunction+=1; + break; + case 5: LiftUp(degArmStart); + printf("d"); + // ToNextFunction = 0; + break; + } - servo_S1_angle = 0; - servo_S2_angle = 0; - // servo_S1.SetPosition(servo_S1_angle); - // servo_S2.SetPosition(servo_S2_angle); - if (servo_S1.isEnabled()) servo_S1.Disable(); - if (servo_S2.isEnabled()) servo_S2.Disable(); - - us_distance_cm = 0.0f; - - extra_led = 0; - } - - user_led = !user_led; - - // do only output via serial what's really necessary (this makes your code slow) - printf("IR sensor (mV): %3.3f, Encoder M1: %3d, Speed M2 (rps) %3.3f, Position M3 (rot): %3.3f, Servo S1 angle (normalized): %3.3f, Servo S2 angle (normalized): %3.3f, US sensor (cm): %3.3f\r\n", - ir_distance_mV, - encoder_M1.read(), - speedController_M2.getSpeedRPS(), - positionController_M3.getRotation(), - servo_S1_angle, - servo_S2_angle, - us_distance_cm); - - // read out the imu, the actual frames of the sensor reading needs to be figured out - // imu.updateGyro(); - // imu.updateAcc(); - // imu.updateMag(); - // printf("%.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f\r\n", imu.readGyroX(), imu.readGyroY(), imu.readGyroZ(), - // imu.readAccX(), imu.readAccY(), imu.readAccZ(), imu.readMagX(), imu.readMagY(), imu.readMagZ()); - - // read timer and make the main thread sleep for the remaining time span (non blocking) + + + } + // read timer and make the main thread sleep for the remaining time span (non blocking) int main_task_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(main_task_timer.elapsed_time()).count(); thread_sleep_for(main_task_period_ms - main_task_elapsed_time_ms); - } + return 0; } + void user_button_pressed_fcn() { user_button_timer.start(); user_button_timer.reset(); } -void user_button_released_fcn() -{ +void user_button_released_fcn() { // read timer and toggle do_execute_main_task if the button was pressed longer than the below specified time int user_button_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(user_button_timer.elapsed_time()).count(); user_button_timer.stop(); if (user_button_elapsed_time_ms > 200) { - do_execute_main_task = !do_execute_main_task; - } -} \ No newline at end of file + ToNextFunction += 1;} + } \ No newline at end of file