Example

Dependencies:   mbed BMI160 max32630fthr

Committer:
walterluu
Date:
Wed Dec 29 06:50:39 2021 +0000
Revision:
12:c5e42cadd5d9
Parent:
10:9882df01637d
Example;

Who changed what in which revision?

UserRevisionLine numberNew contents of line
j3 0:0db9a7ed2e63 1 /**********************************************************************
j3 0:0db9a7ed2e63 2 * Copyright (C) 2016 Maxim Integrated Products, Inc., All Rights Reserved.
j3 0:0db9a7ed2e63 3 *
j3 0:0db9a7ed2e63 4 * Permission is hereby granted, free of charge, to any person obtaining a
j3 0:0db9a7ed2e63 5 * copy of this software and associated documentation files (the "Software"),
j3 0:0db9a7ed2e63 6 * to deal in the Software without restriction, including without limitation
j3 0:0db9a7ed2e63 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
j3 0:0db9a7ed2e63 8 * and/or sell copies of the Software, and to permit persons to whom the
j3 0:0db9a7ed2e63 9 * Software is furnished to do so, subject to the following conditions:
j3 0:0db9a7ed2e63 10 *
j3 0:0db9a7ed2e63 11 * The above copyright notice and this permission notice shall be included
j3 0:0db9a7ed2e63 12 * in all copies or substantial portions of the Software.
j3 0:0db9a7ed2e63 13 *
j3 0:0db9a7ed2e63 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
j3 0:0db9a7ed2e63 15 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
j3 0:0db9a7ed2e63 16 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
j3 0:0db9a7ed2e63 17 * IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
j3 0:0db9a7ed2e63 18 * OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
j3 0:0db9a7ed2e63 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
j3 0:0db9a7ed2e63 20 * OTHER DEALINGS IN THE SOFTWARE.
j3 0:0db9a7ed2e63 21 *
j3 0:0db9a7ed2e63 22 * Except as contained in this notice, the name of Maxim Integrated
j3 0:0db9a7ed2e63 23 * Products, Inc. shall not be used except as stated in the Maxim Integrated
j3 0:0db9a7ed2e63 24 * Products, Inc. Branding Policy.
j3 0:0db9a7ed2e63 25 *
j3 0:0db9a7ed2e63 26 * The mere transfer of this software does not imply any licenses
j3 0:0db9a7ed2e63 27 * of trade secrets, proprietary technology, copyrights, patents,
j3 0:0db9a7ed2e63 28 * trademarks, maskwork rights, or any other form of intellectual
j3 0:0db9a7ed2e63 29 * property whatsoever. Maxim Integrated Products, Inc. retains all
j3 0:0db9a7ed2e63 30 * ownership rights.
j3 0:0db9a7ed2e63 31 **********************************************************************/
j3 0:0db9a7ed2e63 32
j3 0:0db9a7ed2e63 33
j3 0:0db9a7ed2e63 34 #include "mbed.h"
walterluu 12:c5e42cadd5d9 35 #include "max32630fthr.h"
j3 0:0db9a7ed2e63 36 #include "bmi160.h"
j3 0:0db9a7ed2e63 37
j3 1:a3fa54415b4e 38
j3 0:0db9a7ed2e63 39 void dumpImuRegisters(BMI160 &imu);
j3 0:0db9a7ed2e63 40 void printRegister(BMI160 &imu, BMI160::Registers reg);
j3 1:a3fa54415b4e 41 void printBlock(BMI160 &imu, BMI160::Registers startReg, BMI160::Registers stopReg);
j3 1:a3fa54415b4e 42
j3 0:0db9a7ed2e63 43
j3 0:0db9a7ed2e63 44 int main()
j3 0:0db9a7ed2e63 45 {
j3 10:9882df01637d 46 //MAX32630FTHR pegasus(MAX32630FTHR::VIO_3V3);
j3 0:0db9a7ed2e63 47
walterluu 12:c5e42cadd5d9 48 DigitalOut rLED(LED1, LED_ON);
walterluu 12:c5e42cadd5d9 49 DigitalOut gLED(LED2, LED_ON);
walterluu 12:c5e42cadd5d9 50 DigitalOut bLED(LED3, LED_ON);
j3 0:0db9a7ed2e63 51
walterluu 12:c5e42cadd5d9 52 //for(int i = 0; i < 10; i++)
walterluu 12:c5e42cadd5d9 53 // {
walterluu 12:c5e42cadd5d9 54 //
walterluu 12:c5e42cadd5d9 55 // rLED = 1;
walterluu 12:c5e42cadd5d9 56 // wait(1.0);
walterluu 12:c5e42cadd5d9 57 // rLED = 0;
walterluu 12:c5e42cadd5d9 58 // wait(1.0);
walterluu 12:c5e42cadd5d9 59 //
walterluu 12:c5e42cadd5d9 60 // printf("Blinking time %d \n", i);
walterluu 12:c5e42cadd5d9 61 //
walterluu 12:c5e42cadd5d9 62 // }
walterluu 12:c5e42cadd5d9 63 //
walterluu 12:c5e42cadd5d9 64 // rLED = 0;
walterluu 12:c5e42cadd5d9 65 // bLED = 1;
walterluu 12:c5e42cadd5d9 66 //
walterluu 12:c5e42cadd5d9 67 // printf("The end");
walterluu 12:c5e42cadd5d9 68 //
j3 1:a3fa54415b4e 69 I2C i2cBus(P5_7, P6_0);
j3 3:250503cb7cb3 70 i2cBus.frequency(400000);
j3 1:a3fa54415b4e 71 BMI160_I2C imu(i2cBus, BMI160_I2C::I2C_ADRS_SDO_LO);
j3 0:0db9a7ed2e63 72
j3 5:4deb38e46a10 73 printf("\033[H"); //home
j3 5:4deb38e46a10 74 printf("\033[0J"); //erase from cursor to end of screen
j3 1:a3fa54415b4e 75
j3 4:3d7fae7f7b75 76 uint32_t failures = 0;
j3 4:3d7fae7f7b75 77
j3 5:4deb38e46a10 78 if(imu.setSensorPowerMode(BMI160::GYRO, BMI160::NORMAL) != BMI160::RTN_NO_ERROR)
j3 5:4deb38e46a10 79 {
j3 5:4deb38e46a10 80 printf("Failed to set gyroscope power mode\n");
j3 5:4deb38e46a10 81 failures++;
j3 5:4deb38e46a10 82 }
j3 5:4deb38e46a10 83 wait_ms(100);
j3 5:4deb38e46a10 84
j3 5:4deb38e46a10 85 if(imu.setSensorPowerMode(BMI160::ACC, BMI160::NORMAL) != BMI160::RTN_NO_ERROR)
j3 5:4deb38e46a10 86 {
j3 5:4deb38e46a10 87 printf("Failed to set accelerometer power mode\n");
j3 5:4deb38e46a10 88 failures++;
j3 5:4deb38e46a10 89 }
j3 5:4deb38e46a10 90 wait_ms(100);
j3 5:4deb38e46a10 91
j3 4:3d7fae7f7b75 92
j3 4:3d7fae7f7b75 93 BMI160::AccConfig accConfig;
walterluu 12:c5e42cadd5d9 94 // example of using getSensorConfig
j3 4:3d7fae7f7b75 95 if(imu.getSensorConfig(accConfig) == BMI160::RTN_NO_ERROR)
j3 4:3d7fae7f7b75 96 {
j3 4:3d7fae7f7b75 97 printf("ACC Range = %d\n", accConfig.range);
j3 4:3d7fae7f7b75 98 printf("ACC UnderSampling = %d\n", accConfig.us);
j3 4:3d7fae7f7b75 99 printf("ACC BandWidthParam = %d\n", accConfig.bwp);
j3 4:3d7fae7f7b75 100 printf("ACC OutputDataRate = %d\n\n", accConfig.odr);
j3 4:3d7fae7f7b75 101 }
j3 4:3d7fae7f7b75 102 else
j3 4:3d7fae7f7b75 103 {
j3 4:3d7fae7f7b75 104 printf("Failed to get accelerometer configuration\n");
j3 4:3d7fae7f7b75 105 failures++;
j3 4:3d7fae7f7b75 106 }
j3 1:a3fa54415b4e 107
walterluu 12:c5e42cadd5d9 108 // example of setting user defined configuration
j3 4:3d7fae7f7b75 109 accConfig.range = BMI160::SENS_4G;
j3 4:3d7fae7f7b75 110 accConfig.us = BMI160::ACC_US_OFF;
j3 4:3d7fae7f7b75 111 accConfig.bwp = BMI160::ACC_BWP_2;
j3 4:3d7fae7f7b75 112 accConfig.odr = BMI160::ACC_ODR_8;
j3 4:3d7fae7f7b75 113 if(imu.setSensorConfig(accConfig) == BMI160::RTN_NO_ERROR)
j3 4:3d7fae7f7b75 114 {
j3 4:3d7fae7f7b75 115 printf("ACC Range = %d\n", accConfig.range);
j3 4:3d7fae7f7b75 116 printf("ACC UnderSampling = %d\n", accConfig.us);
j3 4:3d7fae7f7b75 117 printf("ACC BandWidthParam = %d\n", accConfig.bwp);
j3 4:3d7fae7f7b75 118 printf("ACC OutputDataRate = %d\n\n", accConfig.odr);
j3 4:3d7fae7f7b75 119 }
j3 4:3d7fae7f7b75 120 else
j3 4:3d7fae7f7b75 121 {
j3 4:3d7fae7f7b75 122 printf("Failed to set accelerometer configuration\n");
j3 4:3d7fae7f7b75 123 failures++;
j3 4:3d7fae7f7b75 124 }
j3 4:3d7fae7f7b75 125
j3 4:3d7fae7f7b75 126 BMI160::GyroConfig gyroConfig;
j3 4:3d7fae7f7b75 127 if(imu.getSensorConfig(gyroConfig) == BMI160::RTN_NO_ERROR)
j3 0:0db9a7ed2e63 128 {
j3 4:3d7fae7f7b75 129 printf("GYRO Range = %d\n", gyroConfig.range);
j3 4:3d7fae7f7b75 130 printf("GYRO BandWidthParam = %d\n", gyroConfig.bwp);
j3 4:3d7fae7f7b75 131 printf("GYRO OutputDataRate = %d\n\n", gyroConfig.odr);
j3 4:3d7fae7f7b75 132 }
j3 4:3d7fae7f7b75 133 else
j3 4:3d7fae7f7b75 134 {
j3 4:3d7fae7f7b75 135 printf("Failed to get gyroscope configuration\n");
j3 4:3d7fae7f7b75 136 failures++;
j3 4:3d7fae7f7b75 137 }
j3 4:3d7fae7f7b75 138
j3 6:1d23dc51ee3f 139 wait(1.0);
j3 4:3d7fae7f7b75 140 printf("\033[H"); //home
j3 4:3d7fae7f7b75 141 printf("\033[0J"); //erase from cursor to end of screen
j3 4:3d7fae7f7b75 142
j3 4:3d7fae7f7b75 143 if(failures == 0)
j3 4:3d7fae7f7b75 144 {
walterluu 12:c5e42cadd5d9 145 // flo//at imuTemperature;
j3 4:3d7fae7f7b75 146 BMI160::SensorData accData;
j3 4:3d7fae7f7b75 147 BMI160::SensorData gyroData;
j3 4:3d7fae7f7b75 148 BMI160::SensorTime sensorTime;
j3 3:250503cb7cb3 149
j3 4:3d7fae7f7b75 150 while(1)
j3 4:3d7fae7f7b75 151 {
j3 4:3d7fae7f7b75 152 imu.getGyroAccXYZandSensorTime(accData, gyroData, sensorTime, accConfig.range, gyroConfig.range);
j3 4:3d7fae7f7b75 153 imu.getTemperature(&imuTemperature);
j3 4:3d7fae7f7b75 154
j3 4:3d7fae7f7b75 155 printf("ACC xAxis = %s%4.3f\n", "\033[K", accData.xAxis.scaled);
j3 4:3d7fae7f7b75 156 printf("ACC yAxis = %s%4.3f\n", "\033[K", accData.yAxis.scaled);
j3 4:3d7fae7f7b75 157 printf("ACC zAxis = %s%4.3f\n\n", "\033[K", accData.zAxis.scaled);
j3 4:3d7fae7f7b75 158
j3 4:3d7fae7f7b75 159 printf("GYRO xAxis = %s%5.1f\n", "\033[K", gyroData.xAxis.scaled);
j3 4:3d7fae7f7b75 160 printf("GYRO yAxis = %s%5.1f\n", "\033[K", gyroData.yAxis.scaled);
j3 4:3d7fae7f7b75 161 printf("GYRO zAxis = %s%5.1f\n\n", "\033[K", gyroData.zAxis.scaled);
j3 4:3d7fae7f7b75 162
j3 4:3d7fae7f7b75 163 printf("Sensor Time = %s%f\n", "\033[K", sensorTime.seconds);
j3 4:3d7fae7f7b75 164 printf("Sensor Temperature = %s%5.3f\n", "\033[K", imuTemperature);
j3 4:3d7fae7f7b75 165
j3 4:3d7fae7f7b75 166 printf("\033[H"); //home
j3 4:3d7fae7f7b75 167 gLED = !gLED;
j3 4:3d7fae7f7b75 168 }
j3 4:3d7fae7f7b75 169 }
j3 4:3d7fae7f7b75 170 else
j3 4:3d7fae7f7b75 171 {
j3 4:3d7fae7f7b75 172 while(1)
j3 4:3d7fae7f7b75 173 {
j3 4:3d7fae7f7b75 174 rLED = !rLED;
j3 4:3d7fae7f7b75 175 wait(0.25);
j3 4:3d7fae7f7b75 176 }
j3 0:0db9a7ed2e63 177 }
j3 0:0db9a7ed2e63 178 }
j3 0:0db9a7ed2e63 179
j3 0:0db9a7ed2e63 180
j3 0:0db9a7ed2e63 181 //*****************************************************************************
j3 0:0db9a7ed2e63 182 void dumpImuRegisters(BMI160 &imu)
j3 0:0db9a7ed2e63 183 {
j3 0:0db9a7ed2e63 184 printRegister(imu, BMI160::CHIP_ID);
j3 1:a3fa54415b4e 185 printBlock(imu, BMI160::ERR_REG,BMI160::FIFO_DATA);
j3 1:a3fa54415b4e 186 printBlock(imu, BMI160::ACC_CONF, BMI160::FIFO_CONFIG_1);
j3 1:a3fa54415b4e 187 printBlock(imu, BMI160::MAG_IF_0, BMI160::SELF_TEST);
j3 1:a3fa54415b4e 188 printBlock(imu, BMI160::NV_CONF, BMI160::STEP_CONF_1);
j3 0:0db9a7ed2e63 189 printRegister(imu, BMI160::CMD);
j3 0:0db9a7ed2e63 190 printf("\n");
j3 0:0db9a7ed2e63 191 }
j3 0:0db9a7ed2e63 192
j3 0:0db9a7ed2e63 193
j3 0:0db9a7ed2e63 194 //*****************************************************************************
j3 0:0db9a7ed2e63 195 void printRegister(BMI160 &imu, BMI160::Registers reg)
j3 0:0db9a7ed2e63 196 {
j3 0:0db9a7ed2e63 197 uint8_t data;
j3 1:a3fa54415b4e 198 if(imu.readRegister(reg, &data) == BMI160::RTN_NO_ERROR)
j3 0:0db9a7ed2e63 199 {
j3 0:0db9a7ed2e63 200 printf("IMU Register 0x%02x = 0x%02x\n", reg, data);
j3 0:0db9a7ed2e63 201 }
j3 0:0db9a7ed2e63 202 else
j3 0:0db9a7ed2e63 203 {
j3 0:0db9a7ed2e63 204 printf("Failed to read register\n");
j3 0:0db9a7ed2e63 205 }
j3 0:0db9a7ed2e63 206 }
j3 0:0db9a7ed2e63 207
j3 0:0db9a7ed2e63 208
j3 0:0db9a7ed2e63 209 //*****************************************************************************
j3 1:a3fa54415b4e 210 void printBlock(BMI160 &imu, BMI160::Registers startReg, BMI160::Registers stopReg)
j3 0:0db9a7ed2e63 211 {
j3 0:0db9a7ed2e63 212 uint8_t numBytes = ((stopReg - startReg) + 1);
j3 1:a3fa54415b4e 213 uint8_t buff[numBytes];
j3 0:0db9a7ed2e63 214 uint8_t offset = static_cast<uint8_t>(startReg);
j3 0:0db9a7ed2e63 215
j3 1:a3fa54415b4e 216 if(imu.readBlock(startReg, stopReg, buff) == BMI160::RTN_NO_ERROR)
j3 0:0db9a7ed2e63 217 {
j3 0:0db9a7ed2e63 218 for(uint8_t idx = offset; idx < (numBytes + offset); idx++)
j3 0:0db9a7ed2e63 219 {
j3 0:0db9a7ed2e63 220 printf("IMU Register 0x%02x = 0x%02x\n", idx, buff[idx - offset]);
j3 0:0db9a7ed2e63 221 }
j3 0:0db9a7ed2e63 222 }
j3 0:0db9a7ed2e63 223 else
j3 0:0db9a7ed2e63 224 {
j3 0:0db9a7ed2e63 225 printf("Failed to read block\n");
j3 0:0db9a7ed2e63 226 }
j3 0:0db9a7ed2e63 227 }