Callum and Adel's changes on 12/02/19

Dependencies:   Crypto

main.cpp

Committer:
adehadd
Date:
2019-03-06
Revision:
17:5a443275680a
Parent:
16:db7ef0a4aa23

File content as of revision 17:5a443275680a:

#include "SHA256.h"
#include "mbed.h"
//#include <iostream>


//Photointerrupter input pins
#define I1pin D3
#define I2pin D6
#define I3pin D5

//Incremental encoder input pins
#define CHApin   D12
#define CHBpin   D11

//Motor Drive output pins   //Mask in output byte
#define L1Lpin D1           //0x01
#define L1Hpin A3           //0x02
#define L2Lpin D0           //0x04
#define L2Hpin A6          //0x08
#define L3Lpin D10           //0x10
#define L3Hpin D2          //0x20

#define PWMpin D9

//Motor current sense
#define MCSPpin   A1
#define MCSNpin   A0

//Mapping from sequential drive states to motor phase outputs
/*
State   L1  L2  L3
0       H   -   L
1       -   H   L
2       L   H   -
3       L   -   H
4       -   L   H
5       H   L   -
6       -   -   -
7       -   -   -
*/
//Drive state to output table
const int8_t driveTable[] = {0x12,0x18,0x09,0x21,0x24,0x06,0x00,0x00};

//Mapping from interrupter inputs to sequential rotor states. 0x00 and 0x07 are not valid
const int8_t stateMap[] = {0x07,0x05,0x03,0x04,0x01,0x00,0x02,0x07};  
//const int8_t stateMap[] = {0x07,0x01,0x03,0x02,0x05,0x00,0x04,0x07}; //Alternative if phase order of input or drive is reversed

//Phase lead to make motor spin
const int8_t lead = 2;  //2 for forwards, -2 for backwards

//Status LED
DigitalOut led1(LED1);

//Photointerrupter inputs
InterruptIn I1(I1pin);
InterruptIn I2(I2pin);
InterruptIn I3(I3pin);

//Motor Drive outputs
DigitalOut L1L(L1Lpin);
DigitalOut L1H(L1Hpin);
DigitalOut L2L(L2Lpin);
DigitalOut L2H(L2Hpin);
DigitalOut L3L(L3Lpin);
DigitalOut L3H(L3Hpin);

//Set a given drive state
void motorOut(int8_t driveState){
    
    //Lookup the output byte from the drive state.
    int8_t driveOut = driveTable[driveState & 0x07];
      
    //Turn off first
    if (~driveOut & 0x01) L1L = 0;
    if (~driveOut & 0x02) L1H = 1;
    if (~driveOut & 0x04) L2L = 0;
    if (~driveOut & 0x08) L2H = 1;
    if (~driveOut & 0x10) L3L = 0;
    if (~driveOut & 0x20) L3H = 1;
    
    //Then turn on
    if (driveOut & 0x01) L1L = 1;
    if (driveOut & 0x02) L1H = 0;
    if (driveOut & 0x04) L2L = 1;
    if (driveOut & 0x08) L2H = 0;
    if (driveOut & 0x10) L3L = 1;
    if (driveOut & 0x20) L3H = 0;
    }
    
    //Convert photointerrupter inputs to a rotor state
inline int8_t readRotorState(){
    return stateMap[I1 + 2*I2 + 4*I3];
    }

//Basic synchronisation routine    
int8_t motorHome() {
    //Put the motor in drive state 0 and wait for it to stabilise
    motorOut(0);
    wait(2.0);
    
    //Get the rotor state
    return readRotorState();
}


void stateUpdate(int8_t *params[]) { // () { // **params
    *params[0] = readRotorState();
    int8_t currentState = *params[0];
    int8_t offset = *params[1];
     
    motorOut((currentState - offset + lead + 6) % 6);
}

//Main
int main() {
    //Initialise the serial port
     Serial pc(SERIAL_TX, SERIAL_RX);
     pc.printf("Hello\n\r");
    
//    std::ios::sync_with_stdio(false);
    SHA256::SHA256 Miner;
    
    uint8_t sequence[] = {0x45,0x6D,0x62,0x65,0x64,0x64,0x65,0x64,
                          0x20,0x53,0x79,0x73,0x74,0x65,0x6D,0x73,
                          0x20,0x61,0x72,0x65,0x20,0x66,0x75,0x6E,
                          0x20,0x61,0x6E,0x64,0x20,0x64,0x6F,0x20,
                          0x61,0x77,0x65,0x73,0x6F,0x6D,0x65,0x20,
                          0x74,0x68,0x69,0x6E,0x67,0x73,0x21,0x20,
                          0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
                          0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
    uint64_t* key = (uint64_t*)((int)sequence + 48);
    uint64_t* nonce = (uint64_t*)((int)sequence + 56);
    uint8_t hash[32];
    uint32_t length64 = 64;
    uint32_t hashCounter = 0;
    Timer timer;   
    
    // Motor States
    int8_t orState = 0;    //Rotot offset at motor state 0
    int8_t currentState = 0;    //Rotot offset at motor state 0
    //Run the motor synchronisation
    orState = motorHome();
    
    // Add callbacks
//    I1.fall(&stateUpdate);
//    I2.fall(&stateUpdate);
//    I3.fall(&stateUpdate);
    int8_t* params[2];
    params[0] = &currentState;
    params[1] = &orState;
    
    I1.fall(callback(&stateUpdate,params));
    I2.fall(callback(&stateUpdate,params));
    I3.fall(callback(&stateUpdate,params));
    
    // Push motor to move
    currentState = readRotorState();
    motorOut((currentState-orState+lead+6)%6); // We push it digitally
    
    // pc.printf("Rotor origin: %x\n\r",orState);
    // orState is subtracted from future rotor state inputs to align rotor and motor states
    // intState = readRotorState();
    //if (intState != intStateOld) {
//        pc.printf("old:%d \t new:%d \t next:%d \n\r",intStateOld, intState, (intState-orState+lead+6)%6);
//        intStateOld = intState;
//        motorOut((intState-orState+lead+6)%6); //+6 to make sure the remainder is positive
//    }


    // Keep the program running indefinitely
    timer.start();          // start timer
    while (1) {
//        pc.printf("Current:%d \t Next:%d \n\r", currentState, (currentState-orState+lead+6)%6);
        Miner.computeHash(hash, sequence, length64);
        hashCounter++;
        if ((hash[0]==0) && (hash[1]==0)){
            pc.printf("hash: ");
            for(int i = 0; i < 32; ++i)
                pc.printf("%02x", hash[i]);
            pc.printf("\n\r");
        }

        // Try a new nonce
        (*nonce)++;

        // Per Second i.e. when greater or equal to 1
        if (timer.read() >= 1){
            pc.printf("HashRate = %02u \n\r",hashCounter);
            hashCounter=0;
            timer.reset();
        }
    }
  
}