Code for controlling mbed hardware (LED's, motors), as well as code for the Raspberry Pi to run a Support Vector Machine that identifies objects using the Pi camera
Dependencies: mbed Motordriver mbed-rtos PololuLedStrip
mbed/mbed-rtos/rtos/Thread.cpp
- Committer:
- arogliero3
- Date:
- 2019-12-05
- Revision:
- 0:e0dbd261724a
File content as of revision 0:e0dbd261724a:
/* mbed Microcontroller Library * Copyright (c) 2006-2012 ARM Limited * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "rtos/Thread.h" #include "mbed.h" #include "rtos/rtos_idle.h" // rt_tid2ptcb is an internal function which we exposed to get TCB for thread id #undef NULL //Workaround for conflicting macros in rt_TypeDef.h and stdio.h #include "rt_TypeDef.h" extern "C" P_TCB rt_tid2ptcb(osThreadId thread_id); static void (*terminate_hook)(osThreadId id) = 0; extern "C" void thread_terminate_hook(osThreadId id) { if (terminate_hook != (void (*)(osThreadId))NULL) { terminate_hook(id); } } namespace rtos { void Thread::constructor(osPriority priority, uint32_t stack_size, unsigned char *stack_pointer) { _tid = 0; _dynamic_stack = (stack_pointer == NULL); #if defined(__MBED_CMSIS_RTOS_CA9) || defined(__MBED_CMSIS_RTOS_CM) _thread_def.tpriority = priority; _thread_def.stacksize = stack_size; _thread_def.stack_pointer = (uint32_t*)stack_pointer; #endif } void Thread::constructor(Callback<void()> task, osPriority priority, uint32_t stack_size, unsigned char *stack_pointer) { constructor(priority, stack_size, stack_pointer); switch (start(task)) { case osErrorResource: error("OS ran out of threads!\n"); break; case osErrorParameter: error("Thread already running!\n"); break; case osErrorNoMemory: error("Error allocating the stack memory\n"); default: break; } } osStatus Thread::start(Callback<void()> task) { _mutex.lock(); if (_tid != 0) { _mutex.unlock(); return osErrorParameter; } #if defined(__MBED_CMSIS_RTOS_CA9) || defined(__MBED_CMSIS_RTOS_CM) _thread_def.pthread = Thread::_thunk; if (_thread_def.stack_pointer == NULL) { _thread_def.stack_pointer = new uint32_t[_thread_def.stacksize/sizeof(uint32_t)]; MBED_ASSERT(_thread_def.stack_pointer != NULL); } //Fill the stack with a magic word for maximum usage checking for (uint32_t i = 0; i < (_thread_def.stacksize / sizeof(uint32_t)); i++) { _thread_def.stack_pointer[i] = 0xE25A2EA5; } #endif _task = task; _tid = osThreadCreate(&_thread_def, this); if (_tid == NULL) { if (_dynamic_stack) { delete[] (_thread_def.stack_pointer); _thread_def.stack_pointer = (uint32_t*)NULL; } _mutex.unlock(); _join_sem.release(); return osErrorResource; } _mutex.unlock(); return osOK; } osStatus Thread::terminate() { osStatus ret; _mutex.lock(); // Set the Thread's tid to NULL and // release the semaphore before terminating // since this thread could be terminating itself osThreadId local_id = _tid; _join_sem.release(); _tid = (osThreadId)NULL; ret = osThreadTerminate(local_id); _mutex.unlock(); return ret; } osStatus Thread::join() { int32_t ret = _join_sem.wait(); if (ret < 0) { return osErrorOS; } // The semaphore has been released so this thread is being // terminated or has been terminated. Once the mutex has // been locked it is ensured that the thread is deleted. _mutex.lock(); MBED_ASSERT(NULL == _tid); _mutex.unlock(); // Release sem so any other threads joining this thread wake up _join_sem.release(); return osOK; } osStatus Thread::set_priority(osPriority priority) { osStatus ret; _mutex.lock(); ret = osThreadSetPriority(_tid, priority); _mutex.unlock(); return ret; } osPriority Thread::get_priority() { osPriority ret; _mutex.lock(); ret = osThreadGetPriority(_tid); _mutex.unlock(); return ret; } int32_t Thread::signal_set(int32_t signals) { // osSignalSet is thread safe as long as the underlying // thread does not get terminated or return from main return osSignalSet(_tid, signals); } int32_t Thread::signal_clr(int32_t signals) { // osSignalClear is thread safe as long as the underlying // thread does not get terminated or return from main return osSignalClear(_tid, signals); } Thread::State Thread::get_state() { #if !defined(__MBED_CMSIS_RTOS_CA9) && !defined(__MBED_CMSIS_RTOS_CM) #ifdef CMSIS_OS_RTX State status = Deleted; _mutex.lock(); if (_tid != NULL) { status = (State)_thread_def.tcb.state; } _mutex.unlock(); return status; #endif #else State status = Deleted; _mutex.lock(); if (_tid != NULL) { status = (State)osThreadGetState(_tid); } _mutex.unlock(); return status; #endif } uint32_t Thread::stack_size() { #ifndef __MBED_CMSIS_RTOS_CA9 #if defined(CMSIS_OS_RTX) && !defined(__MBED_CMSIS_RTOS_CM) uint32_t size = 0; _mutex.lock(); if (_tid != NULL) { size = _thread_def.tcb.priv_stack; } _mutex.unlock(); return size; #else uint32_t size = 0; _mutex.lock(); if (_tid != NULL) { P_TCB tcb = rt_tid2ptcb(_tid); size = tcb->priv_stack; } _mutex.unlock(); return size; #endif #else return 0; #endif } uint32_t Thread::free_stack() { #ifndef __MBED_CMSIS_RTOS_CA9 #if defined(CMSIS_OS_RTX) && !defined(__MBED_CMSIS_RTOS_CM) uint32_t size = 0; _mutex.lock(); if (_tid != NULL) { uint32_t bottom = (uint32_t)_thread_def.tcb.stack; size = _thread_def.tcb.tsk_stack - bottom; } _mutex.unlock(); return size; #else uint32_t size = 0; _mutex.lock(); if (_tid != NULL) { P_TCB tcb = rt_tid2ptcb(_tid); uint32_t bottom = (uint32_t)tcb->stack; size = tcb->tsk_stack - bottom; } _mutex.unlock(); return size; #endif #else return 0; #endif } uint32_t Thread::used_stack() { #ifndef __MBED_CMSIS_RTOS_CA9 #if defined(CMSIS_OS_RTX) && !defined(__MBED_CMSIS_RTOS_CM) uint32_t size = 0; _mutex.lock(); if (_tid != NULL) { uint32_t top = (uint32_t)_thread_def.tcb.stack + _thread_def.tcb.priv_stack; size = top - _thread_def.tcb.tsk_stack; } _mutex.unlock(); return size; #else uint32_t size = 0; _mutex.lock(); if (_tid != NULL) { P_TCB tcb = rt_tid2ptcb(_tid); uint32_t top = (uint32_t)tcb->stack + tcb->priv_stack; size = top - tcb->tsk_stack; } _mutex.unlock(); return size; #endif #else return 0; #endif } uint32_t Thread::max_stack() { #ifndef __MBED_CMSIS_RTOS_CA9 #if defined(CMSIS_OS_RTX) && !defined(__MBED_CMSIS_RTOS_CM) uint32_t size = 0; _mutex.lock(); if (_tid != NULL) { uint32_t high_mark = 0; while (_thread_def.tcb.stack[high_mark] == 0xE25A2EA5) high_mark++; size = _thread_def.tcb.priv_stack - (high_mark * 4); } _mutex.unlock(); return size; #else uint32_t size = 0; _mutex.lock(); if (_tid != NULL) { P_TCB tcb = rt_tid2ptcb(_tid); uint32_t high_mark = 0; while (tcb->stack[high_mark] == 0xE25A2EA5) high_mark++; size = tcb->priv_stack - (high_mark * 4); } _mutex.unlock(); return size; #endif #else return 0; #endif } osEvent Thread::signal_wait(int32_t signals, uint32_t millisec) { return osSignalWait(signals, millisec); } osStatus Thread::wait(uint32_t millisec) { return osDelay(millisec); } osStatus Thread::yield() { return osThreadYield(); } osThreadId Thread::gettid() { return osThreadGetId(); } void Thread::attach_idle_hook(void (*fptr)(void)) { rtos_attach_idle_hook(fptr); } void Thread::attach_terminate_hook(void (*fptr)(osThreadId id)) { terminate_hook = fptr; } Thread::~Thread() { // terminate is thread safe terminate(); #ifdef __MBED_CMSIS_RTOS_CM if (_dynamic_stack) { delete[] (_thread_def.stack_pointer); _thread_def.stack_pointer = (uint32_t*)NULL; } #endif } void Thread::_thunk(const void * thread_ptr) { Thread *t = (Thread*)thread_ptr; t->_task(); t->_mutex.lock(); t->_tid = (osThreadId)NULL; t->_join_sem.release(); // rtos will release the mutex automatically } }