Prototype RF driver for STM Sub-1 GHz RF expansion board based on the SPSGRF-868 module for STM32 Nucleo.

Prototype RF Driver for STM Sub-1 GHz RF Expansion Boards based on the SPSGRF-868 and SPSGRF-915 Modules for STM32 Nucleo

Currently supported boards:

Note, in order to use expansion board X-NUCLEO-IDS01A4 in mbed you need to perform the following HW modifications on the board:

  • Unmount resistor R4
  • Mount resistor R7

Furthermore, on some Nucleo development boards (e.g. the NUCLEO_F429ZI), in order to be able to use Ethernet together with these Sub-1 GHz RF expansion boards, you need to compile this driver with macro SPIRIT1_SPI_MOSI=PB_5 defined, while the development board typically requires some HW modification as e.g. described here!

This driver can be used together with the 6LoWPAN stack (a.k.a. Nanostack).

source/NanostackRfPhySpirit1.cpp

Committer:
Wolfgang Betz
Date:
2018-02-02
Revision:
82:a18c22d2b83a
Parent:
78:65de72417cd3

File content as of revision 82:a18c22d2b83a:

#include "NanostackRfPhySpirit1.h"

#ifdef MBED_CONF_NANOSTACK_CONFIGURATION
#if MBED_CONF_RTOS_PRESENT

#include "SimpleSpirit1.h"
#include "nanostack/platform/arm_hal_phy.h"
#include "platform/arm_hal_interrupt.h"

#include "mbed_trace.h"
#define TRACE_GROUP  "SPIRIT"

/* Define beyond macro if you want to perform heavy debug tracing (includes tracing in IRQ context) */
// #define HEAVY_TRACING

static phy_device_driver_s device_driver;
static int8_t rf_radio_driver_id = -1;

const phy_rf_channel_configuration_s phy_subghz = {868000000, 1000000, 250000, 11, M_GFSK};

static phy_device_channel_page_s phy_channel_pages[] = {
        {CHANNEL_PAGE_2, &phy_subghz},
        {CHANNEL_PAGE_0, NULL}
};

static uint8_t tx_sequence = 0xff;
static uint8_t mac_tx_handle = 0;

static SimpleSpirit1 *rf_device = NULL;
static uint8_t rf_rx_buf[MAX_PACKET_LEN];

static uint16_t stored_short_adr;
static uint16_t stored_pan_id;
static uint8_t stored_mac_address[8] = MBED_CONF_SPIRIT1_MAC_ADDRESS;

#define RF_SIG_ACK_NEEDED (1<<0)
#define RF_SIG_CB_TX_DONE (1<<1)
#define RF_SIG_CB_RX_RCVD (1<<2)
static Thread rf_ack_sender(osPriorityRealtime);
static volatile uint8_t rf_rx_sequence;
static volatile bool rf_ack_sent = false;
static volatile bool expecting_ack = false;
static volatile bool need_ack = false;

/* MAC frame helper macros */
#define MAC_FCF_FRAME_TYPE_MASK         0x0007
#define MAC_FCF_FRAME_TYPE_SHIFT        0
#define MAC_FCF_SECURITY_BIT_MASK       0x0008
#define MAC_FCF_SECURITY_BIT_SHIFT      3
#define MAC_FCF_PENDING_BIT_MASK        0x0010
#define MAC_FCF_PENDING_BIT_SHIFT       4
#define MAC_FCF_ACK_REQ_BIT_MASK        0x0020
#define MAC_FCF_ACK_REQ_BIT_SHIFT       5
#define MAC_FCF_INTRA_PANID_MASK        0x0040
#define MAC_FCF_INTRA_PANID_SHIFT       6
#define MAC_FCF_DST_ADDR_MASK           0x0c00
#define MAC_FCF_DST_ADDR_SHIFT          10
#define MAC_FCF_VERSION_MASK            0x3000
#define MAC_FCF_VERSION_SHIFT           12
#define MAC_FCF_SRC_ADDR_MASK           0xc000
#define MAC_FCF_SRC_ADDR_SHIFT          14

/* MAC supported frame types */
#define FC_BEACON_FRAME         0x00
#define FC_DATA_FRAME           0x01
#define FC_ACK_FRAME            0x02
#define FC_CMD_FRAME            0x03

static inline void rf_if_lock(void)
{
    platform_enter_critical();
}

static inline void rf_if_unlock(void)
{
    platform_exit_critical();
}

static inline uint16_t rf_read_16_bit(uint8_t *data_ptr) { // little-endian
    uint16_t ret;

    ret = ((uint16_t)data_ptr[0]) + (((uint16_t)data_ptr[1]) << 8);
    return ret;
}

/* Note: we are in IRQ context */
static inline void rf_send_signal(int32_t signal) {
#ifdef HEAVY_TRACING
    tr_info("%s (%d): %d", __func__, __LINE__, signal);
#endif
    rf_ack_sender.signal_set(signal);
}

static volatile phy_link_tx_status_e phy_status;
/* Note: we are in IRQ context */
static void rf_handle_ack(uint8_t seq_number)
{
    /*Received ACK sequence must be equal with transmitted packet sequence*/
    if(tx_sequence == seq_number)
    {
#ifdef HEAVY_TRACING
        tr_info("%s (%d)", __func__, __LINE__);
#endif

        /*Call PHY TX Done API*/
        if(device_driver.phy_tx_done_cb){
            phy_status = PHY_LINK_TX_DONE;
            rf_send_signal(RF_SIG_CB_TX_DONE);
        }
    } else {
#ifdef HEAVY_TRACING
        tr_info("%s (%d)", __func__, __LINE__);
#endif

        /*Call PHY TX Done API*/
        if(device_driver.phy_tx_done_cb){
            phy_status = PHY_LINK_TX_FAIL;
            rf_send_signal(RF_SIG_CB_TX_DONE);
        }
    }
}

/* Note: we are in IRQ context */
static inline bool rf_check_mac_address(uint8_t *dest) {
    for(int i = 0; i < 8; i++) {
        if(dest[i] != stored_mac_address[7-i]) {
#ifdef HEAVY_TRACING
            tr_debug("%s (%d): i=%d, dest=%x, stored=%x",
                    __func__, __LINE__,
                    i, dest[i], stored_mac_address[7-i]);
#endif
            return false;
        }
    }
    return true;
}

/* Note: we are in IRQ context */
/* Returns true if packet should be accepted */
static bool rf_check_destination(int len, uint8_t *ack_requested) {
    uint8_t frame_type;
    uint16_t dst_pan_id;
    uint16_t dst_short_adr;
    uint8_t dst_addr_mode = 0x0; /*0x00 = no address 0x01 = reserved 0x02 = 16-bit short address 0x03 = 64-bit extended address */
    uint8_t src_addr_mode = 0x0; /*0x00 = no address 0x01 = reserved 0x02 = 16-bit short address 0x03 = 64-bit extended address */
    uint8_t min_size = 3; // FCF & SeqNr
    bool ret = false;
#if defined(HEAVY_TRACING)
    bool panid_compr = false;
#endif

    if(len < 3) {
        tr_debug("%s (%d)", __func__, __LINE__);
        return false;
    }

    uint16_t fcf = rf_read_16_bit(rf_rx_buf);
    frame_type = ((fcf & MAC_FCF_FRAME_TYPE_MASK) >> MAC_FCF_FRAME_TYPE_SHIFT);
    (*ack_requested) = ((fcf & MAC_FCF_ACK_REQ_BIT_MASK) >> MAC_FCF_ACK_REQ_BIT_SHIFT);
    dst_addr_mode = ((fcf & MAC_FCF_DST_ADDR_MASK) >> MAC_FCF_DST_ADDR_SHIFT);
    src_addr_mode = ((fcf & MAC_FCF_SRC_ADDR_MASK) >> MAC_FCF_SRC_ADDR_SHIFT);
#if defined(HEAVY_TRACING)
    panid_compr = ((fcf & MAC_FCF_INTRA_PANID_MASK) >> MAC_FCF_INTRA_PANID_SHIFT);
#endif

#ifdef HEAVY_TRACING
    tr_info("%s (%d): len=%d, ftype=%x, snr=%x, ack=%d, dst=%x, src=%x, intra=%d", __func__, __LINE__, len, frame_type,
            rf_rx_buf[2], (*ack_requested), dst_addr_mode, src_addr_mode, panid_compr);
#endif

    if(frame_type == FC_ACK_FRAME) { // betzw: we support up to two different forms of ACK frames!
        if((len == 3) && (dst_addr_mode == 0x0) && (src_addr_mode == 0x0)) {
            ret = true;
        }

#ifdef HEAVY_TRACING
        tr_info("%s (%d): ret=%d", __func__, __LINE__, ret);
#endif
        (*ack_requested) = 0;  // Never acknowledge ACK frames
        return ret;
    }

    switch(dst_addr_mode) {
        case 0x00:
            ret = true; // no check possible;
            break;

        case 0x02:
            min_size += 4; // pan id + short dest adr

            if(len < 5) {
#ifdef HEAVY_TRACING
                tr_debug("%s (%d)", __func__, __LINE__);
#endif
                return false;
            }

            dst_pan_id = rf_read_16_bit(&rf_rx_buf[3]);
            if((dst_pan_id != stored_pan_id) && (dst_pan_id != 0xFFFF)) {
#ifdef HEAVY_TRACING
                tr_debug("%s (%d)", __func__, __LINE__);
#endif
                return false;
            }

            if(len < 7) {
#ifdef HEAVY_TRACING
                tr_debug("%s (%d)", __func__, __LINE__);
#endif
                return false;
            }

            dst_short_adr = rf_read_16_bit(&rf_rx_buf[5]);
            if((dst_short_adr != stored_short_adr) && (dst_short_adr != 0xFFFF)) {
#ifdef HEAVY_TRACING
                tr_debug("%s (%d): %d!=%d", __func__, __LINE__, dst_short_adr, stored_short_adr);
#endif
                return false;
            }

            ret = true;
            break;

        case 0x03:
            min_size += 10; // pan id + dest mac addr

            if(len < 5) {
#ifdef HEAVY_TRACING
                tr_debug("%s (%d)", __func__, __LINE__);
#endif
                return false;
            }

            dst_pan_id = rf_read_16_bit(&rf_rx_buf[3]);
            if((dst_pan_id != stored_pan_id) && (dst_pan_id != 0xFFFF)) {
#ifdef HEAVY_TRACING
                tr_debug("%s (%d)", __func__, __LINE__);
#endif
                return false;
            }

            if(len < 13) {
#ifdef HEAVY_TRACING
                tr_debug("%s (%d)", __func__, __LINE__);
#endif
                return false;
            }

            ret = rf_check_mac_address(&rf_rx_buf[5]);

            if(!ret) {
#ifdef HEAVY_TRACING
                tr_debug("%s (%d)", __func__, __LINE__);
#endif
                return false;
            }

            break;

        default:
            /* not supported */
#ifdef HEAVY_TRACING
            tr_debug("%s (%d)", __func__, __LINE__);
#endif
            return false;
    }

    if(ret && (*ack_requested)) {
        rf_rx_sequence = rf_rx_buf[2];
    }

#ifdef HEAVY_TRACING
    tr_info("%s (%d), ret=%d, ack=%d", __func__, __LINE__, ret, (*ack_requested));
#endif
    return ret;
}

static uint16_t rf_buffer_len = 0;
static uint8_t rf_sqi;
static int8_t rf_rssi;
/* Note: we are in IRQ context */
static inline void rf_handle_rx_end(void)
{
    uint8_t ack_requested = 0;

    /* Get received data */
    rf_buffer_len = rf_device->read(rf_rx_buf, MAX_PACKET_LEN);
    if(!rf_buffer_len)
        return;

#ifdef HEAVY_TRACING
    tr_debug("%s (%d)", __func__, __LINE__);
#endif

    /* Check if packet should be accepted */
    if(!rf_check_destination(rf_buffer_len, &ack_requested)) {
#ifdef HEAVY_TRACING
        tr_debug("%s (%d)", __func__, __LINE__);
#endif
        return;
    }

    /* If waiting for ACK, check here if the packet is an ACK to a message previously sent */
    if(expecting_ack) {
        uint16_t fcf = rf_read_16_bit(rf_rx_buf);
        expecting_ack = false;

        if(((fcf & MAC_FCF_FRAME_TYPE_MASK) >> MAC_FCF_FRAME_TYPE_SHIFT) == FC_ACK_FRAME) {
            /*Send sequence number in ACK handler*/
#ifdef HEAVY_TRACING
            tr_debug("%s (%d), len=%u", __func__, __LINE__, (unsigned int)rf_buffer_len);
#endif
            rf_handle_ack(rf_rx_buf[2]);
            return;
        } else {
            /*Call PHY TX Done API*/
            if(device_driver.phy_tx_done_cb){
                phy_status = PHY_LINK_TX_FAIL;
                rf_send_signal(RF_SIG_CB_TX_DONE);
            }
        }
    }

    /* Kick off ACK sending */
    if(ack_requested) {
#ifdef HEAVY_TRACING
        tr_debug("%s (%d), len=%u", __func__, __LINE__, (unsigned int)rf_buffer_len);
#endif
        rf_send_signal(RF_SIG_ACK_NEEDED);
    }

    /* Get link information */
    rf_rssi = (int8_t)rf_device->get_last_rssi_dbm();
    rf_sqi = (uint8_t)rf_device->get_last_sqi(); // use SQI as link quality

    /* Note: Checksum of the packet must be checked and removed before entering here */
    /* TODO - betzw: what to do? */

#ifdef HEAVY_TRACING
    tr_debug("%s (%d)", __func__, __LINE__);
#endif

    /* Send received data and link information to the network stack */
    if( device_driver.phy_rx_cb ){
        rf_send_signal(RF_SIG_CB_RX_RCVD);
    }
}

/* Note: we are in IRQ context */
static inline void rf_handle_tx_end(void)
{
    /* Check if this is an ACK sending which is still pending */
    if(rf_ack_sent) {
        rf_ack_sent = false;
#ifdef HEAVY_TRACING
        tr_debug("%s (%d)", __func__, __LINE__);
#endif
        return; // no need to inform stack
    }

    /* Transform `need_ack` in `expecting_ack` */
    if(need_ack) {
        need_ack = false;
        expecting_ack = true;
    }

    /*Call PHY TX Done API*/
    if(device_driver.phy_tx_done_cb){
        phy_status = PHY_LINK_TX_SUCCESS;
        rf_send_signal(RF_SIG_CB_TX_DONE);
    }
}

/* Note: we might be in IRQ context */
static inline void rf_handle_tx_err(phy_link_tx_status_e phy_val = PHY_LINK_TX_FAIL) {
    /*Call PHY TX Done API*/
    if(device_driver.phy_tx_done_cb){
        need_ack = false;
        phy_status = phy_val;
        rf_send_signal(RF_SIG_CB_TX_DONE);
    }
}

/* Note: we are in IRQ context */
static void rf_callback_func(int event) {
    switch(event) {
        case SimpleSpirit1::RX_DONE:
            rf_handle_rx_end();
            break;
        case SimpleSpirit1::TX_DONE:
            rf_handle_tx_end();
            break;
        case SimpleSpirit1::TX_ERR:
#ifdef HEAVY_TRACING
            tr_debug("%s (%d): TX_ERR!!!", __func__, __LINE__);
#endif
            rf_handle_tx_err();
            break;
    }
}

static int8_t rf_trigger_send(uint8_t *data_ptr, uint16_t data_length, uint8_t tx_handle, data_protocol_e data_protocol)
{
#ifndef NDEBUG
    debug_if(!(data_length >= 3), "\r\nassert failed in: %s (%d)\r\n", __func__, __LINE__);
#endif

    /* Give 'rf_ack_sender' a better chance to run */
    Thread::yield();

    /* Get Lock */
    rf_if_lock();

    /*Check if transmitter is busy*/
    if(rf_device->is_receiving()) { /* betzw - WAS: (rf_device->channel_clear() != 0)), do NOT use this but rather study and enable automatic CCA */
#ifdef HEAVY_TRACING
        tr_debug("%s (%d)", __func__, __LINE__);
#endif

        /* Release Lock */
        rf_if_unlock();

        /*Return busy*/
        return -1;
    } else {
        uint16_t fcf = rf_read_16_bit(data_ptr);

        /*Check if transmitted data needs to be acked*/
        if((fcf & MAC_FCF_ACK_REQ_BIT_MASK) >> MAC_FCF_ACK_REQ_BIT_SHIFT)
            need_ack = true;
        else
            need_ack = false;

        /*Store the sequence number for ACK handling*/
        tx_sequence = *(data_ptr + 2);

        /*Store TX handle*/
        mac_tx_handle = tx_handle;

#ifdef HEAVY_TRACING
        tr_info("%s (%d), len=%d, tx_handle=%x, tx_seq=%x, need_ack=%d (%x:%x, %x:%x, %x:%x, %x:%x)", __func__, __LINE__,
                data_length, tx_handle, tx_sequence, need_ack,
                data_ptr[3], data_ptr[4], data_ptr[5], data_ptr[6],
                data_ptr[7], data_ptr[8], data_ptr[9], data_ptr[10]);
#endif

        /*Send the packet*/
        int ret = rf_device->send(data_ptr, data_length);
        if(ret != RADIO_TX_OK) {
            rf_handle_tx_err(PHY_LINK_CCA_FAIL);
        }

        /* Release Lock */
        rf_if_unlock();
    }

    /*Return success*/
    return 0;
}

static int8_t rf_interface_state_control(phy_interface_state_e new_state, uint8_t rf_channel)
{
    int8_t ret_val = 0;
    switch (new_state)
    {
        /*Reset PHY driver and set to idle*/
        case PHY_INTERFACE_RESET:
            tr_debug("%s (%d)", __func__, __LINE__);
            rf_device->reset_board();
            break;
            /*Disable PHY Interface driver*/
        case PHY_INTERFACE_DOWN:
            tr_debug("%s (%d)", __func__, __LINE__);
            ret_val = rf_device->off();
            if(ret_val != 0) ret_val = -1;
            break;
            /*Enable PHY Interface driver*/
        case PHY_INTERFACE_UP:
            ret_val = rf_device->on();
            if(ret_val != 0) {
                tr_debug("%s (%d)", __func__, __LINE__);
                ret_val = -1;
                break;
            }
            tr_debug("%s (%d) - channel: %d", __func__, __LINE__, (int)rf_channel);
            rf_device->set_channel(rf_channel);
            break;
            /*Enable wireless interface ED scan mode*/
        case PHY_INTERFACE_RX_ENERGY_STATE:
            tr_debug("%s (%d)", __func__, __LINE__);
            break;
            /*Enable Sniffer state*/
        case PHY_INTERFACE_SNIFFER_STATE:
            // TODO - if we really need this - WAS: rf_setup_sniffer(rf_channel);
            tr_debug("%s (%d)", __func__, __LINE__);
            ret_val = -1;
            break;
        default:
            tr_debug("%s (%d)", __func__, __LINE__);
            break;
    }
    return ret_val;
}

static int8_t rf_extension(phy_extension_type_e extension_type, uint8_t *data_ptr)
{
    switch (extension_type)
    {
        /*Control MAC pending bit for Indirect data transmission*/
        case PHY_EXTENSION_CTRL_PENDING_BIT:
            tr_debug("%s (%d)", __func__, __LINE__);
            break;

            /*Return frame pending status*/
        case PHY_EXTENSION_READ_LAST_ACK_PENDING_STATUS:
            tr_debug("%s (%d)", __func__, __LINE__);
            *data_ptr = 0;
            break;

            /*Set channel, used for setting channel for energy scan*/
        case PHY_EXTENSION_SET_CHANNEL:
            tr_debug("%s (%d)", __func__, __LINE__);
            break;

            /*Read energy on the channel*/
        case PHY_EXTENSION_READ_CHANNEL_ENERGY:
            // TODO: *data_ptr = rf_get_channel_energy();
            tr_debug("%s (%d)", __func__, __LINE__);
            *data_ptr = (int8_t)rf_device->get_last_rssi_dbm();
            break;

            /*Read status of the link*/
        case PHY_EXTENSION_READ_LINK_STATUS:
            // TODO: *data_ptr = rf_get_link_status();
            tr_debug("%s (%d)", __func__, __LINE__);
            *data_ptr = rf_device->get_last_sqi(); // use SQI as link quality
            break;

        default:
            tr_debug("%s (%d)", __func__, __LINE__);
            break;
    }
    return 0;
}

static inline void rf_set_mac_address(uint8_t *ptr) {
    tr_debug("%s (%d), adr0=%x, adr1=%x, adr2=%x, adr3=%x, adr4=%x, adr5=%x, adr6=%x, adr7=%x",
             __func__, __LINE__,
             ptr[0], ptr[1], ptr[2], ptr[3], ptr[4], ptr[5], ptr[6], ptr[7]);
    for(int i = 0; i < 8; i++) {
        stored_mac_address[i] = ptr[i];
    }
}

static inline void rf_get_mac_address(uint8_t *ptr) {
    for(int i = 0; i < 8; i++) {
        ptr[i] = stored_mac_address[i];
    }
    tr_debug("%s (%d), adr0=%x, adr1=%x, adr2=%x, adr3=%x, adr4=%x, adr5=%x, adr6=%x, adr7=%x",
             __func__, __LINE__,
             ptr[0], ptr[1], ptr[2], ptr[3], ptr[4], ptr[5], ptr[6], ptr[7]);
}

static inline void rf_set_short_adr(uint8_t *ptr) {
    stored_short_adr = (ptr[0] << 8) + ptr[1]; // big-endian
    tr_debug("%s (%d), adr0=%x, adr1=%x, val=%d",
             __func__, __LINE__,
             ptr[0], ptr[1], stored_short_adr);
}

static inline void rf_set_pan_id(uint8_t *ptr) {
    stored_pan_id = (ptr[0] << 8) + ptr[1]; // big-endian
    tr_debug("%s (%d), adr0=%x, adr1=%x, val=%d",
            __func__, __LINE__,
            ptr[0], ptr[1], stored_pan_id);
}

static int8_t rf_address_write(phy_address_type_e address_type, uint8_t *address_ptr)
{
    switch (address_type)
    {
        /*Set 48-bit address*/
        case PHY_MAC_48BIT:
            /* Not used in this example */
            // betzw - WAS: rf_set_mac_48bit(address_ptr);
            break;
            /*Set 64-bit address*/
        case PHY_MAC_64BIT:
            rf_set_mac_address(address_ptr);
            break;
            /*Set 16-bit address*/
        case PHY_MAC_16BIT:
            rf_set_short_adr(address_ptr);
            break;
            /*Set PAN Id*/
        case PHY_MAC_PANID:
            rf_set_pan_id(address_ptr);
            break;
    }

    return 0;
}

static void rf_ack_loop(void) {
    static uint16_t buffer[2] = {
            (FC_ACK_FRAME << MAC_FCF_FRAME_TYPE_SHIFT),
            0x0
    };

    tr_debug("%s (%d)", __func__, __LINE__);

    do {
        /* Wait for signal */
        osEvent event = rf_ack_sender.signal_wait(0);

        if(event.status != osEventSignal) {
#ifdef HEAVY_TRACING
            tr_debug("%s (%d)", __func__, __LINE__);
#endif
            continue;
        }

        int32_t signals = event.value.signals;

#ifdef HEAVY_TRACING
        tr_debug("%s (%d)", __func__, __LINE__);
#endif

        /* Get Lock */
        rf_if_lock();

        if(signals & RF_SIG_ACK_NEEDED) {
#ifdef HEAVY_TRACING
            tr_debug("%s (%d)", __func__, __LINE__);
#endif

            /* Prepare payload */
            uint8_t *ptr = (uint8_t*)&buffer[1];
            ptr[0] = rf_rx_sequence;   // Sequence number

            /* Wait for device not receiving */
            while(rf_device->is_receiving()) {
#ifdef HEAVY_TRACING
                tr_info("%s (%d)", __func__, __LINE__);
#endif
                wait_us(10);
            }

#ifdef HEAVY_TRACING
            tr_debug("%s (%d), hdr=%x, nr=%x", __func__, __LINE__, buffer[0], ptr[0]);
#endif

            /* Set information that we have sent an ACK */
            rf_ack_sent = true;

            /*Send the packet*/
            rf_device->send((uint8_t*)buffer, 3, false);

#ifdef HEAVY_TRACING
            tr_debug("%s (%d), hdr=%x, nr=%x", __func__, __LINE__, buffer[0], ptr[0]);
#endif
        }

        if(signals & RF_SIG_CB_TX_DONE) {
            device_driver.phy_tx_done_cb(rf_radio_driver_id, mac_tx_handle, phy_status,
                                         (phy_status == PHY_LINK_CCA_FAIL) ? 0xFF : 0, 0);
#ifdef HEAVY_TRACING
            tr_debug("%s (%d)", __func__, __LINE__);
#endif
        }

        if(signals & RF_SIG_CB_RX_RCVD) {
            device_driver.phy_rx_cb(rf_rx_buf, rf_buffer_len, rf_sqi, rf_rssi, rf_radio_driver_id);
#ifdef HEAVY_TRACING
            tr_debug("%s (%d)", __func__, __LINE__);
#endif
        }

        /* Release Lock */
        rf_if_unlock();

#ifdef HEAVY_TRACING
        tr_debug("%s (%d)", __func__, __LINE__);
#endif
    } while(true);
}

void NanostackRfPhySpirit1::rf_init(void) {
#ifndef NDEBUG
    osStatus ret;
#endif

    if(rf_device == NULL) {
        rf_device = &SimpleSpirit1::CreateInstance(_spi_mosi, _spi_miso, _spi_sclk, _dev_irq, _dev_cs, _dev_sdn, _brd_led);
        rf_device->attach_irq_callback(rf_callback_func);

#ifndef NDEBUG
        ret =
#endif
                rf_ack_sender.start(rf_ack_loop);

#ifndef NDEBUG
        debug_if(!(ret == osOK), "\r\nassert failed in: %s (%d)\r\n", __func__, __LINE__);
#endif
    }
}

NanostackRfPhySpirit1::NanostackRfPhySpirit1(PinName spi_mosi, PinName spi_miso, PinName spi_sclk,
                                             PinName dev_irq,  PinName dev_cs, PinName dev_sdn, PinName brd_led) :
    _spi_mosi(spi_mosi),
    _spi_miso(spi_miso),
    _spi_sclk(spi_sclk),
    _dev_irq(dev_irq),
    _dev_cs(dev_cs),
    _dev_sdn(dev_sdn),
    _brd_led(brd_led)
{
    /* Nothing to do */
    tr_debug("%s (%d)", __func__, __LINE__);
}

NanostackRfPhySpirit1::~NanostackRfPhySpirit1()
{
    /* Nothing to do */
    tr_debug("%s (%d)", __func__, __LINE__);
}

int8_t NanostackRfPhySpirit1::rf_register()
{
    tr_debug("%s (%d)", __func__, __LINE__);

    /* Get Lock */
    rf_if_lock();

    /* Do some initialization */
    rf_init();

    /* Set pointer to MAC address */
    device_driver.PHY_MAC = stored_mac_address;

    /* Set driver Name */
    device_driver.driver_description = (char*)"Spirit1 Sub-GHz RF";

    /*Type of RF PHY is SubGHz*/
    device_driver.link_type = PHY_LINK_15_4_SUBGHZ_TYPE;

    /*Maximum size of payload*/
    device_driver.phy_MTU = MAX_PACKET_LEN;

    /*No header in PHY*/
    device_driver.phy_header_length = 0;

    /*No tail in PHY*/
    device_driver.phy_tail_length = 0;

    /*Set up driver functions*/
    device_driver.address_write = &rf_address_write;
    device_driver.extension = &rf_extension;
    device_driver.state_control = &rf_interface_state_control;
    device_driver.tx = &rf_trigger_send;

    /*Set supported channel pages*/
    device_driver.phy_channel_pages = phy_channel_pages;

    //Nullify rx/tx callbacks
    device_driver.phy_rx_cb = NULL;
    device_driver.phy_tx_done_cb = NULL;
    device_driver.arm_net_virtual_rx_cb = NULL;
    device_driver.arm_net_virtual_tx_cb = NULL;

    /*Register device driver*/
    rf_radio_driver_id = arm_net_phy_register(&device_driver);

    /* Release Lock */
    rf_if_unlock();

    tr_debug("%s (%d)", __func__, __LINE__);
    return rf_radio_driver_id;
}

void NanostackRfPhySpirit1::rf_unregister()
{
    tr_debug("%s (%d)", __func__, __LINE__);

    /* Get Lock */
    rf_if_lock();

    if (rf_radio_driver_id >= 0) {
        arm_net_phy_unregister(rf_radio_driver_id);
        rf_radio_driver_id = -1;
    }

    /* Release Lock */
    rf_if_unlock();
}

void NanostackRfPhySpirit1::get_mac_address(uint8_t *mac)
{
    tr_debug("%s (%d)", __func__, __LINE__);

    /* Get Lock */
    rf_if_lock();

    if(rf_radio_driver_id >= 0) {
        rf_get_mac_address(mac);
    } else {
        error("NanostackRfPhySpirit1 must be registered to read mac address");
    }

    /* Release Lock */
    rf_if_unlock();
}

void NanostackRfPhySpirit1::set_mac_address(uint8_t *mac)
{
    tr_debug("%s (%d)", __func__, __LINE__);

    /* Get Lock */
    rf_if_lock();

    if(rf_radio_driver_id < 0) {
        rf_set_mac_address(mac);
    } else {
        error("NanostackRfPhySpirit1 cannot change mac address when running");
    }

    /* Release Lock */
    rf_if_unlock();
}

#endif /* MBED_CONF_RTOS_PRESENT */
#endif /* MBED_CONF_NANOSTACK_CONFIGURATION */