Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: ST_INTERFACES X_NUCLEO_COMMON
Dependents: ConcorsoFinal HelloWorld_IHM01A1 m3pi_BT m3pi_LIDAR ... more
Fork of X_NUCLEO_53L0A1 by
X-NUCLEO-53L0A1 Proximity Sensor Expansion Board Firmware Package
Introduction
This firmware package includes Component Device Drivers and the Board Support Package for STMicroelectronics' X-NUCLEO-53L0A1 Proximity sensor expansion board based on VL53L0X.
Firmware Library
Class X_NUCLEO_53L0A1 is intended to represent the Proximity sensor expansion board with the same name.
The expansion board provides support for the following components:
- on-board VL53L0X proximity sensor,
- up to two additional VL53L0X Satellites,
- on-board 4-digit display
It is intentionally implemented as a singleton because only one X-NUCLEO-VL53L0A1 may be deployed at a time in a HW component stack. In order to get the singleton instance you have to call class method `Instance()`, e.g.:
// Sensors expansion board singleton instance static X_NUCLEO_53L0A1 *board = X_NUCLEO_53L0A1::Instance(device_i2c, A2, D8, D2);
Example Applications
- Hello World 53L0
- Display 53L0A1
- Display 53L0A1 Interrupts
- Display 53L0A1 with satellites
- 53L0A1 Satellites with Interrupts
- 53L0A1_HandGestureRecognition
The library and sample application code were tested against mbed revision 143, dated 26th May 2017.
Diff: Components/VL53L0X/vl53l0x_class.cpp
- Revision:
- 0:c523920bcc09
- Child:
- 2:58b5e9097aa3
- Child:
- 4:4e1576541eed
diff -r 000000000000 -r c523920bcc09 Components/VL53L0X/vl53l0x_class.cpp
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Components/VL53L0X/vl53l0x_class.cpp Mon Nov 28 11:25:33 2016 +0000
@@ -0,0 +1,5349 @@
+/**
+ ******************************************************************************
+ * @file vl53l0x_class.cpp
+ * @author IMG
+ * @version V0.0.1
+ * @date 28-June-2016
+ * @brief Implementation file for the VL53L0X driver class
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>© COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
+ *
+ * Redistribution and use in source and binary forms, with or without modification,
+ * are permitted provided that the following conditions are met:
+ * 1. Redistributions of source code must retain the above copyright notice,
+ * this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright notice,
+ * this list of conditions and the following disclaimer in the documentation
+ * and/or other materials provided with the distribution.
+ * 3. Neither the name of STMicroelectronics nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+ * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ ******************************************************************************
+*/
+
+/* Includes */
+#include <stdlib.h>
+
+#include "vl53l0x_class.h"
+
+//#include "vl53l0x_api_core.h"
+//#include "vl53l0x_api_calibration.h"
+//#include "vl53l0x_api_strings.h"
+#include "vl53l0x_interrupt_threshold_settings.h"
+#include "vl53l0x_tuning.h"
+#include "vl53l0x_types.h"
+
+
+/****************** define for i2c configuration *******************************/
+
+#define TEMP_BUF_SIZE 64
+
+/** Maximum buffer size to be used in i2c */
+#define VL53L0X_MAX_I2C_XFER_SIZE 64 /* Maximum buffer size to be used in i2c */
+#define VL53L0X_I2C_USER_VAR /* none but could be for a flag var to get/pass to mutex interruptible return flags and try again */
+
+
+#define LOG_FUNCTION_START(fmt, ...) \
+ _LOG_FUNCTION_START(TRACE_MODULE_API, fmt, ##__VA_ARGS__)
+#define LOG_FUNCTION_END(status, ...) \
+ _LOG_FUNCTION_END(TRACE_MODULE_API, status, ##__VA_ARGS__)
+#define LOG_FUNCTION_END_FMT(status, fmt, ...) \
+ _LOG_FUNCTION_END_FMT(TRACE_MODULE_API, status, fmt, ##__VA_ARGS__)
+
+#ifdef VL53L0X_LOG_ENABLE
+#define trace_print(level, ...) trace_print_module_function(TRACE_MODULE_API, \
+ level, TRACE_FUNCTION_NONE, ##__VA_ARGS__)
+#endif
+
+#define REF_ARRAY_SPAD_0 0
+#define REF_ARRAY_SPAD_5 5
+#define REF_ARRAY_SPAD_10 10
+
+uint32_t refArrayQuadrants[4] = {REF_ARRAY_SPAD_10, REF_ARRAY_SPAD_5,
+ REF_ARRAY_SPAD_0, REF_ARRAY_SPAD_5 };
+
+
+
+
+VL53L0X_Error VL53L0X::VL53L0X_device_read_strobe(VL53L0X_DEV Dev)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ uint8_t strobe;
+ uint32_t LoopNb;
+ LOG_FUNCTION_START("");
+
+ Status |= VL53L0X_WrByte(Dev, 0x83, 0x00);
+
+ /* polling
+ * use timeout to avoid deadlock*/
+ if (Status == VL53L0X_ERROR_NONE) {
+ LoopNb = 0;
+ do {
+ Status = VL53L0X_RdByte(Dev, 0x83, &strobe);
+ if ((strobe != 0x00) || Status != VL53L0X_ERROR_NONE)
+ break;
+
+ LoopNb = LoopNb + 1;
+ } while (LoopNb < VL53L0X_DEFAULT_MAX_LOOP);
+
+ if (LoopNb >= VL53L0X_DEFAULT_MAX_LOOP)
+ Status = VL53L0X_ERROR_TIME_OUT;
+
+ }
+
+ Status |= VL53L0X_WrByte(Dev, 0x83, 0x01);
+
+ LOG_FUNCTION_END(Status);
+ return Status;
+
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_get_info_from_device(VL53L0X_DEV Dev, uint8_t option)
+{
+
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ uint8_t byte;
+ uint32_t TmpDWord;
+ uint8_t ModuleId;
+ uint8_t Revision;
+ uint8_t ReferenceSpadCount = 0;
+ uint8_t ReferenceSpadType = 0;
+ uint32_t PartUIDUpper = 0;
+ uint32_t PartUIDLower = 0;
+ uint32_t OffsetFixed1104_mm = 0;
+ int16_t OffsetMicroMeters = 0;
+ uint32_t DistMeasTgtFixed1104_mm = 400 << 4;
+ uint32_t DistMeasFixed1104_400_mm = 0;
+ uint32_t SignalRateMeasFixed1104_400_mm = 0;
+ char ProductId[19];
+ char *ProductId_tmp;
+ uint8_t ReadDataFromDeviceDone;
+ FixPoint1616_t SignalRateMeasFixed400mmFix = 0;
+ uint8_t NvmRefGoodSpadMap[VL53L0X_REF_SPAD_BUFFER_SIZE];
+ int i;
+
+
+ LOG_FUNCTION_START("");
+
+ ReadDataFromDeviceDone = VL53L0X_GETDEVICESPECIFICPARAMETER(Dev,
+ ReadDataFromDeviceDone);
+
+ /* This access is done only once after that a GetDeviceInfo or
+ * datainit is done*/
+ if (ReadDataFromDeviceDone != 7) {
+
+ Status |= VL53L0X_WrByte(Dev, 0x80, 0x01);
+ Status |= VL53L0X_WrByte(Dev, 0xFF, 0x01);
+ Status |= VL53L0X_WrByte(Dev, 0x00, 0x00);
+
+ Status |= VL53L0X_WrByte(Dev, 0xFF, 0x06);
+ Status |= VL53L0X_RdByte(Dev, 0x83, &byte);
+ Status |= VL53L0X_WrByte(Dev, 0x83, byte|4);
+ Status |= VL53L0X_WrByte(Dev, 0xFF, 0x07);
+ Status |= VL53L0X_WrByte(Dev, 0x81, 0x01);
+
+ Status |= VL53L0X_PollingDelay(Dev);
+
+ Status |= VL53L0X_WrByte(Dev, 0x80, 0x01);
+
+ if (((option & 1) == 1) &&
+ ((ReadDataFromDeviceDone & 1) == 0)) {
+ Status |= VL53L0X_WrByte(Dev, 0x94, 0x6b);
+ Status |= VL53L0X_device_read_strobe(Dev);
+ Status |= VL53L0X_RdDWord(Dev, 0x90, &TmpDWord);
+
+ ReferenceSpadCount = (uint8_t)((TmpDWord >> 8) & 0x07f);
+ ReferenceSpadType = (uint8_t)((TmpDWord >> 15) & 0x01);
+
+ Status |= VL53L0X_WrByte(Dev, 0x94, 0x24);
+ Status |= VL53L0X_device_read_strobe(Dev);
+ Status |= VL53L0X_RdDWord(Dev, 0x90, &TmpDWord);
+
+
+ NvmRefGoodSpadMap[0] = (uint8_t)((TmpDWord >> 24)
+ & 0xff);
+ NvmRefGoodSpadMap[1] = (uint8_t)((TmpDWord >> 16)
+ & 0xff);
+ NvmRefGoodSpadMap[2] = (uint8_t)((TmpDWord >> 8)
+ & 0xff);
+ NvmRefGoodSpadMap[3] = (uint8_t)(TmpDWord & 0xff);
+
+ Status |= VL53L0X_WrByte(Dev, 0x94, 0x25);
+ Status |= VL53L0X_device_read_strobe(Dev);
+ Status |= VL53L0X_RdDWord(Dev, 0x90, &TmpDWord);
+
+ NvmRefGoodSpadMap[4] = (uint8_t)((TmpDWord >> 24)
+ & 0xff);
+ NvmRefGoodSpadMap[5] = (uint8_t)((TmpDWord >> 16)
+ & 0xff);
+ }
+
+ if (((option & 2) == 2) &&
+ ((ReadDataFromDeviceDone & 2) == 0)) {
+
+ Status |= VL53L0X_WrByte(Dev, 0x94, 0x02);
+ Status |= VL53L0X_device_read_strobe(Dev);
+ Status |= VL53L0X_RdByte(Dev, 0x90, &ModuleId);
+
+ Status |= VL53L0X_WrByte(Dev, 0x94, 0x7B);
+ Status |= VL53L0X_device_read_strobe(Dev);
+ Status |= VL53L0X_RdByte(Dev, 0x90, &Revision);
+
+ Status |= VL53L0X_WrByte(Dev, 0x94, 0x77);
+ Status |= VL53L0X_device_read_strobe(Dev);
+ Status |= VL53L0X_RdDWord(Dev, 0x90, &TmpDWord);
+
+ ProductId[0] = (char)((TmpDWord >> 25) & 0x07f);
+ ProductId[1] = (char)((TmpDWord >> 18) & 0x07f);
+ ProductId[2] = (char)((TmpDWord >> 11) & 0x07f);
+ ProductId[3] = (char)((TmpDWord >> 4) & 0x07f);
+
+ byte = (uint8_t)((TmpDWord & 0x00f) << 3);
+
+ Status |= VL53L0X_WrByte(Dev, 0x94, 0x78);
+ Status |= VL53L0X_device_read_strobe(Dev);
+ Status |= VL53L0X_RdDWord(Dev, 0x90, &TmpDWord);
+
+ ProductId[4] = (char)(byte +
+ ((TmpDWord >> 29) & 0x07f));
+ ProductId[5] = (char)((TmpDWord >> 22) & 0x07f);
+ ProductId[6] = (char)((TmpDWord >> 15) & 0x07f);
+ ProductId[7] = (char)((TmpDWord >> 8) & 0x07f);
+ ProductId[8] = (char)((TmpDWord >> 1) & 0x07f);
+
+ byte = (uint8_t)((TmpDWord & 0x001) << 6);
+
+ Status |= VL53L0X_WrByte(Dev, 0x94, 0x79);
+
+ Status |= VL53L0X_device_read_strobe(Dev);
+
+ Status |= VL53L0X_RdDWord(Dev, 0x90, &TmpDWord);
+
+ ProductId[9] = (char)(byte +
+ ((TmpDWord >> 26) & 0x07f));
+ ProductId[10] = (char)((TmpDWord >> 19) & 0x07f);
+ ProductId[11] = (char)((TmpDWord >> 12) & 0x07f);
+ ProductId[12] = (char)((TmpDWord >> 5) & 0x07f);
+
+ byte = (uint8_t)((TmpDWord & 0x01f) << 2);
+
+ Status |= VL53L0X_WrByte(Dev, 0x94, 0x7A);
+
+ Status |= VL53L0X_device_read_strobe(Dev);
+
+ Status |= VL53L0X_RdDWord(Dev, 0x90, &TmpDWord);
+
+ ProductId[13] = (char)(byte +
+ ((TmpDWord >> 30) & 0x07f));
+ ProductId[14] = (char)((TmpDWord >> 23) & 0x07f);
+ ProductId[15] = (char)((TmpDWord >> 16) & 0x07f);
+ ProductId[16] = (char)((TmpDWord >> 9) & 0x07f);
+ ProductId[17] = (char)((TmpDWord >> 2) & 0x07f);
+ ProductId[18] = '\0';
+
+ }
+
+ if (((option & 4) == 4) &&
+ ((ReadDataFromDeviceDone & 4) == 0)) {
+
+ Status |= VL53L0X_WrByte(Dev, 0x94, 0x7B);
+ Status |= VL53L0X_device_read_strobe(Dev);
+ Status |= VL53L0X_RdDWord(Dev, 0x90, &PartUIDUpper);
+
+ Status |= VL53L0X_WrByte(Dev, 0x94, 0x7C);
+ Status |= VL53L0X_device_read_strobe(Dev);
+ Status |= VL53L0X_RdDWord(Dev, 0x90, &PartUIDLower);
+
+ Status |= VL53L0X_WrByte(Dev, 0x94, 0x73);
+ Status |= VL53L0X_device_read_strobe(Dev);
+ Status |= VL53L0X_RdDWord(Dev, 0x90, &TmpDWord);
+
+ SignalRateMeasFixed1104_400_mm = (TmpDWord &
+ 0x0000000ff) << 8;
+
+ Status |= VL53L0X_WrByte(Dev, 0x94, 0x74);
+ Status |= VL53L0X_device_read_strobe(Dev);
+ Status |= VL53L0X_RdDWord(Dev, 0x90, &TmpDWord);
+
+ SignalRateMeasFixed1104_400_mm |= ((TmpDWord &
+ 0xff000000) >> 24);
+
+ Status |= VL53L0X_WrByte(Dev, 0x94, 0x75);
+ Status |= VL53L0X_device_read_strobe(Dev);
+ Status |= VL53L0X_RdDWord(Dev, 0x90, &TmpDWord);
+
+ DistMeasFixed1104_400_mm = (TmpDWord & 0x0000000ff)
+ << 8;
+
+ Status |= VL53L0X_WrByte(Dev, 0x94, 0x76);
+ Status |= VL53L0X_device_read_strobe(Dev);
+ Status |= VL53L0X_RdDWord(Dev, 0x90, &TmpDWord);
+
+ DistMeasFixed1104_400_mm |= ((TmpDWord & 0xff000000)
+ >> 24);
+ }
+
+ Status |= VL53L0X_WrByte(Dev, 0x81, 0x00);
+ Status |= VL53L0X_WrByte(Dev, 0xFF, 0x06);
+ Status |= VL53L0X_RdByte(Dev, 0x83, &byte);
+ Status |= VL53L0X_WrByte(Dev, 0x83, byte&0xfb);
+ Status |= VL53L0X_WrByte(Dev, 0xFF, 0x01);
+ Status |= VL53L0X_WrByte(Dev, 0x00, 0x01);
+
+ Status |= VL53L0X_WrByte(Dev, 0xFF, 0x00);
+ Status |= VL53L0X_WrByte(Dev, 0x80, 0x00);
+ }
+
+ if ((Status == VL53L0X_ERROR_NONE) &&
+ (ReadDataFromDeviceDone != 7)) {
+ /* Assign to variable if status is ok */
+ if (((option & 1) == 1) &&
+ ((ReadDataFromDeviceDone & 1) == 0)) {
+ VL53L0X_SETDEVICESPECIFICPARAMETER(Dev,
+ ReferenceSpadCount, ReferenceSpadCount);
+
+ VL53L0X_SETDEVICESPECIFICPARAMETER(Dev,
+ ReferenceSpadType, ReferenceSpadType);
+
+ for (i = 0; i < VL53L0X_REF_SPAD_BUFFER_SIZE; i++) {
+ Dev->Data.SpadData.RefGoodSpadMap[i] =
+ NvmRefGoodSpadMap[i];
+ }
+ }
+
+ if (((option & 2) == 2) &&
+ ((ReadDataFromDeviceDone & 2) == 0)) {
+ VL53L0X_SETDEVICESPECIFICPARAMETER(Dev,
+ ModuleId, ModuleId);
+
+ VL53L0X_SETDEVICESPECIFICPARAMETER(Dev,
+ Revision, Revision);
+
+ ProductId_tmp = VL53L0X_GETDEVICESPECIFICPARAMETER(Dev,
+ ProductId);
+ VL53L0X_COPYSTRING(ProductId_tmp, ProductId);
+
+ }
+
+ if (((option & 4) == 4) &&
+ ((ReadDataFromDeviceDone & 4) == 0)) {
+ VL53L0X_SETDEVICESPECIFICPARAMETER(Dev,
+ PartUIDUpper, PartUIDUpper);
+
+ VL53L0X_SETDEVICESPECIFICPARAMETER(Dev,
+ PartUIDLower, PartUIDLower);
+
+ SignalRateMeasFixed400mmFix =
+ VL53L0X_FIXPOINT97TOFIXPOINT1616(
+ SignalRateMeasFixed1104_400_mm);
+
+ VL53L0X_SETDEVICESPECIFICPARAMETER(Dev,
+ SignalRateMeasFixed400mm,
+ SignalRateMeasFixed400mmFix);
+
+ OffsetMicroMeters = 0;
+ if (DistMeasFixed1104_400_mm != 0) {
+ OffsetFixed1104_mm =
+ DistMeasFixed1104_400_mm -
+ DistMeasTgtFixed1104_mm;
+ OffsetMicroMeters = (OffsetFixed1104_mm
+ * 1000) >> 4;
+ OffsetMicroMeters *= -1;
+ }
+
+ PALDevDataSet(Dev,
+ Part2PartOffsetAdjustmentNVMMicroMeter,
+ OffsetMicroMeters);
+ }
+ byte = (uint8_t)(ReadDataFromDeviceDone|option);
+ VL53L0X_SETDEVICESPECIFICPARAMETER(Dev, ReadDataFromDeviceDone,
+ byte);
+ }
+
+ LOG_FUNCTION_END(Status);
+ return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_get_offset_calibration_data_micro_meter(VL53L0X_DEV Dev,
+ int32_t *pOffsetCalibrationDataMicroMeter)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ uint16_t RangeOffsetRegister;
+ int16_t cMaxOffset = 2047;
+ int16_t cOffsetRange = 4096;
+
+ /* Note that offset has 10.2 format */
+
+ Status = VL53L0X_RdWord(Dev,
+ VL53L0X_REG_ALGO_PART_TO_PART_RANGE_OFFSET_MM,
+ &RangeOffsetRegister);
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ RangeOffsetRegister = (RangeOffsetRegister & 0x0fff);
+
+ /* Apply 12 bit 2's compliment conversion */
+ if (RangeOffsetRegister > cMaxOffset)
+ *pOffsetCalibrationDataMicroMeter =
+ (int16_t)(RangeOffsetRegister - cOffsetRange)
+ * 250;
+ else
+ *pOffsetCalibrationDataMicroMeter =
+ (int16_t)RangeOffsetRegister * 250;
+
+ }
+
+ return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_GetOffsetCalibrationDataMicroMeter(VL53L0X_DEV Dev,
+ int32_t *pOffsetCalibrationDataMicroMeter)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ LOG_FUNCTION_START("");
+
+ Status = VL53L0X_get_offset_calibration_data_micro_meter(Dev,
+ pOffsetCalibrationDataMicroMeter);
+
+ LOG_FUNCTION_END(Status);
+ return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_set_offset_calibration_data_micro_meter(VL53L0X_DEV Dev,
+ int32_t OffsetCalibrationDataMicroMeter)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ int32_t cMaxOffsetMicroMeter = 511000;
+ int32_t cMinOffsetMicroMeter = -512000;
+ int16_t cOffsetRange = 4096;
+ uint32_t encodedOffsetVal;
+
+ LOG_FUNCTION_START("");
+
+ if (OffsetCalibrationDataMicroMeter > cMaxOffsetMicroMeter)
+ OffsetCalibrationDataMicroMeter = cMaxOffsetMicroMeter;
+ else if (OffsetCalibrationDataMicroMeter < cMinOffsetMicroMeter)
+ OffsetCalibrationDataMicroMeter = cMinOffsetMicroMeter;
+
+ /* The offset register is 10.2 format and units are mm
+ * therefore conversion is applied by a division of
+ * 250.
+ */
+ if (OffsetCalibrationDataMicroMeter >= 0) {
+ encodedOffsetVal =
+ OffsetCalibrationDataMicroMeter/250;
+ } else {
+ encodedOffsetVal =
+ cOffsetRange +
+ OffsetCalibrationDataMicroMeter/250;
+ }
+
+ Status = VL53L0X_WrWord(Dev,
+ VL53L0X_REG_ALGO_PART_TO_PART_RANGE_OFFSET_MM,
+ encodedOffsetVal);
+
+ LOG_FUNCTION_END(Status);
+ return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_SetOffsetCalibrationDataMicroMeter(VL53L0X_DEV Dev,
+ int32_t OffsetCalibrationDataMicroMeter)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ LOG_FUNCTION_START("");
+
+ Status = VL53L0X_set_offset_calibration_data_micro_meter(Dev,
+ OffsetCalibrationDataMicroMeter);
+
+ LOG_FUNCTION_END(Status);
+ return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_apply_offset_adjustment(VL53L0X_DEV Dev)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ int32_t CorrectedOffsetMicroMeters;
+ int32_t CurrentOffsetMicroMeters;
+
+ /* if we run on this function we can read all the NVM info
+ * used by the API */
+ Status = VL53L0X_get_info_from_device(Dev, 7);
+
+ /* Read back current device offset */
+ if (Status == VL53L0X_ERROR_NONE) {
+ Status = VL53L0X_GetOffsetCalibrationDataMicroMeter(Dev,
+ &CurrentOffsetMicroMeters);
+ }
+
+ /* Apply Offset Adjustment derived from 400mm measurements */
+ if (Status == VL53L0X_ERROR_NONE) {
+
+ /* Store initial device offset */
+ PALDevDataSet(Dev, Part2PartOffsetNVMMicroMeter,
+ CurrentOffsetMicroMeters);
+
+ CorrectedOffsetMicroMeters = CurrentOffsetMicroMeters +
+ (int32_t)PALDevDataGet(Dev,
+ Part2PartOffsetAdjustmentNVMMicroMeter);
+
+ Status = VL53L0X_SetOffsetCalibrationDataMicroMeter(Dev,
+ CorrectedOffsetMicroMeters);
+
+ /* store current, adjusted offset */
+ if (Status == VL53L0X_ERROR_NONE) {
+ VL53L0X_SETPARAMETERFIELD(Dev, RangeOffsetMicroMeters,
+ CorrectedOffsetMicroMeters);
+ }
+ }
+
+ return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_GetDeviceMode(VL53L0X_DEV Dev,
+ VL53L0X_DeviceModes *pDeviceMode)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ LOG_FUNCTION_START("");
+
+ VL53L0X_GETPARAMETERFIELD(Dev, DeviceMode, *pDeviceMode);
+
+ LOG_FUNCTION_END(Status);
+ return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_GetInterMeasurementPeriodMilliSeconds(VL53L0X_DEV Dev,
+ uint32_t *pInterMeasurementPeriodMilliSeconds)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ uint16_t osc_calibrate_val;
+ uint32_t IMPeriodMilliSeconds;
+
+ LOG_FUNCTION_START("");
+
+ Status = VL53L0X_RdWord(Dev, VL53L0X_REG_OSC_CALIBRATE_VAL,
+ &osc_calibrate_val);
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ Status = VL53L0X_RdDWord(Dev,
+ VL53L0X_REG_SYSTEM_INTERMEASUREMENT_PERIOD,
+ &IMPeriodMilliSeconds);
+ }
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ if (osc_calibrate_val != 0) {
+ *pInterMeasurementPeriodMilliSeconds =
+ IMPeriodMilliSeconds / osc_calibrate_val;
+ }
+ VL53L0X_SETPARAMETERFIELD(Dev,
+ InterMeasurementPeriodMilliSeconds,
+ *pInterMeasurementPeriodMilliSeconds);
+ }
+
+ LOG_FUNCTION_END(Status);
+ return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_GetXTalkCompensationRateMegaCps(VL53L0X_DEV Dev,
+ FixPoint1616_t *pXTalkCompensationRateMegaCps)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ uint16_t Value;
+ FixPoint1616_t TempFix1616;
+
+ LOG_FUNCTION_START("");
+
+ Status = VL53L0X_RdWord(Dev,
+ VL53L0X_REG_CROSSTALK_COMPENSATION_PEAK_RATE_MCPS, (uint16_t *)&Value);
+ if (Status == VL53L0X_ERROR_NONE) {
+ if (Value == 0) {
+ /* the Xtalk is disabled return value from memory */
+ VL53L0X_GETPARAMETERFIELD(Dev,
+ XTalkCompensationRateMegaCps, TempFix1616);
+ *pXTalkCompensationRateMegaCps = TempFix1616;
+ VL53L0X_SETPARAMETERFIELD(Dev, XTalkCompensationEnable,
+ 0);
+ } else {
+ TempFix1616 = VL53L0X_FIXPOINT313TOFIXPOINT1616(Value);
+ *pXTalkCompensationRateMegaCps = TempFix1616;
+ VL53L0X_SETPARAMETERFIELD(Dev,
+ XTalkCompensationRateMegaCps, TempFix1616);
+ VL53L0X_SETPARAMETERFIELD(Dev, XTalkCompensationEnable,
+ 1);
+ }
+ }
+
+ LOG_FUNCTION_END(Status);
+ return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_GetLimitCheckValue(VL53L0X_DEV Dev, uint16_t LimitCheckId,
+ FixPoint1616_t *pLimitCheckValue)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ uint8_t EnableZeroValue = 0;
+ uint16_t Temp16;
+ FixPoint1616_t TempFix1616;
+
+ LOG_FUNCTION_START("");
+
+ switch (LimitCheckId) {
+
+ case VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE:
+ /* internal computation: */
+ VL53L0X_GETARRAYPARAMETERFIELD(Dev, LimitChecksValue,
+ VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE, TempFix1616);
+ EnableZeroValue = 0;
+ break;
+
+ case VL53L0X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE:
+ Status = VL53L0X_RdWord(Dev,
+ VL53L0X_REG_FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT,
+ &Temp16);
+ if (Status == VL53L0X_ERROR_NONE)
+ TempFix1616 = VL53L0X_FIXPOINT97TOFIXPOINT1616(Temp16);
+
+
+ EnableZeroValue = 1;
+ break;
+
+ case VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP:
+ /* internal computation: */
+ VL53L0X_GETARRAYPARAMETERFIELD(Dev, LimitChecksValue,
+ VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP, TempFix1616);
+ EnableZeroValue = 0;
+ break;
+
+ case VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD:
+ /* internal computation: */
+ VL53L0X_GETARRAYPARAMETERFIELD(Dev, LimitChecksValue,
+ VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD, TempFix1616);
+ EnableZeroValue = 0;
+ break;
+
+ case VL53L0X_CHECKENABLE_SIGNAL_RATE_MSRC:
+ case VL53L0X_CHECKENABLE_SIGNAL_RATE_PRE_RANGE:
+ Status = VL53L0X_RdWord(Dev,
+ VL53L0X_REG_PRE_RANGE_MIN_COUNT_RATE_RTN_LIMIT,
+ &Temp16);
+ if (Status == VL53L0X_ERROR_NONE)
+ TempFix1616 = VL53L0X_FIXPOINT97TOFIXPOINT1616(Temp16);
+
+
+ EnableZeroValue = 0;
+ break;
+
+ default:
+ Status = VL53L0X_ERROR_INVALID_PARAMS;
+
+ }
+
+ if (Status == VL53L0X_ERROR_NONE) {
+
+ if (EnableZeroValue == 1) {
+
+ if (TempFix1616 == 0) {
+ /* disabled: return value from memory */
+ VL53L0X_GETARRAYPARAMETERFIELD(Dev,
+ LimitChecksValue, LimitCheckId,
+ TempFix1616);
+ *pLimitCheckValue = TempFix1616;
+ VL53L0X_SETARRAYPARAMETERFIELD(Dev,
+ LimitChecksEnable, LimitCheckId, 0);
+ } else {
+ *pLimitCheckValue = TempFix1616;
+ VL53L0X_SETARRAYPARAMETERFIELD(Dev,
+ LimitChecksValue, LimitCheckId,
+ TempFix1616);
+ VL53L0X_SETARRAYPARAMETERFIELD(Dev,
+ LimitChecksEnable, LimitCheckId, 1);
+ }
+ } else {
+ *pLimitCheckValue = TempFix1616;
+ }
+ }
+
+ LOG_FUNCTION_END(Status);
+ return Status;
+
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_GetLimitCheckEnable(VL53L0X_DEV Dev, uint16_t LimitCheckId,
+ uint8_t *pLimitCheckEnable)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ uint8_t Temp8;
+
+ LOG_FUNCTION_START("");
+
+ if (LimitCheckId >= VL53L0X_CHECKENABLE_NUMBER_OF_CHECKS) {
+ Status = VL53L0X_ERROR_INVALID_PARAMS;
+ *pLimitCheckEnable = 0;
+ } else {
+ VL53L0X_GETARRAYPARAMETERFIELD(Dev, LimitChecksEnable,
+ LimitCheckId, Temp8);
+ *pLimitCheckEnable = Temp8;
+ }
+
+ LOG_FUNCTION_END(Status);
+ return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_GetWrapAroundCheckEnable(VL53L0X_DEV Dev,
+ uint8_t *pWrapAroundCheckEnable)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ uint8_t data;
+
+ LOG_FUNCTION_START("");
+
+ Status = VL53L0X_RdByte(Dev, VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG, &data);
+ if (Status == VL53L0X_ERROR_NONE) {
+ PALDevDataSet(Dev, SequenceConfig, data);
+ if (data & (0x01 << 7))
+ *pWrapAroundCheckEnable = 0x01;
+ else
+ *pWrapAroundCheckEnable = 0x00;
+ }
+ if (Status == VL53L0X_ERROR_NONE) {
+ VL53L0X_SETPARAMETERFIELD(Dev, WrapAroundCheckEnable,
+ *pWrapAroundCheckEnable);
+ }
+
+ LOG_FUNCTION_END(Status);
+ return Status;
+}
+
+VL53L0X_Error VL53L0X::sequence_step_enabled(VL53L0X_DEV Dev,
+ VL53L0X_SequenceStepId SequenceStepId, uint8_t SequenceConfig,
+ uint8_t *pSequenceStepEnabled)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ *pSequenceStepEnabled = 0;
+ LOG_FUNCTION_START("");
+
+ switch (SequenceStepId) {
+ case VL53L0X_SEQUENCESTEP_TCC:
+ *pSequenceStepEnabled = (SequenceConfig & 0x10) >> 4;
+ break;
+ case VL53L0X_SEQUENCESTEP_DSS:
+ *pSequenceStepEnabled = (SequenceConfig & 0x08) >> 3;
+ break;
+ case VL53L0X_SEQUENCESTEP_MSRC:
+ *pSequenceStepEnabled = (SequenceConfig & 0x04) >> 2;
+ break;
+ case VL53L0X_SEQUENCESTEP_PRE_RANGE:
+ *pSequenceStepEnabled = (SequenceConfig & 0x40) >> 6;
+ break;
+ case VL53L0X_SEQUENCESTEP_FINAL_RANGE:
+ *pSequenceStepEnabled = (SequenceConfig & 0x80) >> 7;
+ break;
+ default:
+ Status = VL53L0X_ERROR_INVALID_PARAMS;
+ }
+
+ LOG_FUNCTION_END(Status);
+ return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_GetSequenceStepEnables(VL53L0X_DEV Dev,
+ VL53L0X_SchedulerSequenceSteps_t *pSchedulerSequenceSteps)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ uint8_t SequenceConfig = 0;
+ LOG_FUNCTION_START("");
+
+ Status = VL53L0X_RdByte(Dev, VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG,
+ &SequenceConfig);
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ Status = sequence_step_enabled(Dev,
+ VL53L0X_SEQUENCESTEP_TCC, SequenceConfig,
+ &pSchedulerSequenceSteps->TccOn);
+ }
+ if (Status == VL53L0X_ERROR_NONE) {
+ Status = sequence_step_enabled(Dev,
+ VL53L0X_SEQUENCESTEP_DSS, SequenceConfig,
+ &pSchedulerSequenceSteps->DssOn);
+ }
+ if (Status == VL53L0X_ERROR_NONE) {
+ Status = sequence_step_enabled(Dev,
+ VL53L0X_SEQUENCESTEP_MSRC, SequenceConfig,
+ &pSchedulerSequenceSteps->MsrcOn);
+ }
+ if (Status == VL53L0X_ERROR_NONE) {
+ Status = sequence_step_enabled(Dev,
+ VL53L0X_SEQUENCESTEP_PRE_RANGE, SequenceConfig,
+ &pSchedulerSequenceSteps->PreRangeOn);
+ }
+ if (Status == VL53L0X_ERROR_NONE) {
+ Status = sequence_step_enabled(Dev,
+ VL53L0X_SEQUENCESTEP_FINAL_RANGE, SequenceConfig,
+ &pSchedulerSequenceSteps->FinalRangeOn);
+ }
+
+ LOG_FUNCTION_END(Status);
+ return Status;
+}
+
+uint8_t VL53L0X::VL53L0X_decode_vcsel_period(uint8_t vcsel_period_reg)
+{
+ /*!
+ * Converts the encoded VCSEL period register value into the real
+ * period in PLL clocks
+ */
+
+ uint8_t vcsel_period_pclks = 0;
+
+ vcsel_period_pclks = (vcsel_period_reg + 1) << 1;
+
+ return vcsel_period_pclks;
+}
+
+uint8_t VL53L0X::VL53L0X_encode_vcsel_period(uint8_t vcsel_period_pclks)
+{
+ /*!
+ * Converts the encoded VCSEL period register value into the real period
+ * in PLL clocks
+ */
+
+ uint8_t vcsel_period_reg = 0;
+
+ vcsel_period_reg = (vcsel_period_pclks >> 1) - 1;
+
+ return vcsel_period_reg;
+}
+
+
+VL53L0X_Error VL53L0X::VL53L0X_set_vcsel_pulse_period(VL53L0X_DEV Dev,
+ VL53L0X_VcselPeriod VcselPeriodType, uint8_t VCSELPulsePeriodPCLK)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ uint8_t vcsel_period_reg;
+ uint8_t MinPreVcselPeriodPCLK = 12;
+ uint8_t MaxPreVcselPeriodPCLK = 18;
+ uint8_t MinFinalVcselPeriodPCLK = 8;
+ uint8_t MaxFinalVcselPeriodPCLK = 14;
+ uint32_t MeasurementTimingBudgetMicroSeconds;
+ uint32_t FinalRangeTimeoutMicroSeconds;
+ uint32_t PreRangeTimeoutMicroSeconds;
+ uint32_t MsrcTimeoutMicroSeconds;
+ uint8_t PhaseCalInt = 0;
+
+ /* Check if valid clock period requested */
+
+ if ((VCSELPulsePeriodPCLK % 2) != 0) {
+ /* Value must be an even number */
+ Status = VL53L0X_ERROR_INVALID_PARAMS;
+ } else if (VcselPeriodType == VL53L0X_VCSEL_PERIOD_PRE_RANGE &&
+ (VCSELPulsePeriodPCLK < MinPreVcselPeriodPCLK ||
+ VCSELPulsePeriodPCLK > MaxPreVcselPeriodPCLK)) {
+ Status = VL53L0X_ERROR_INVALID_PARAMS;
+ } else if (VcselPeriodType == VL53L0X_VCSEL_PERIOD_FINAL_RANGE &&
+ (VCSELPulsePeriodPCLK < MinFinalVcselPeriodPCLK ||
+ VCSELPulsePeriodPCLK > MaxFinalVcselPeriodPCLK)) {
+
+ Status = VL53L0X_ERROR_INVALID_PARAMS;
+ }
+
+ /* Apply specific settings for the requested clock period */
+
+ if (Status != VL53L0X_ERROR_NONE)
+ return Status;
+
+
+ if (VcselPeriodType == VL53L0X_VCSEL_PERIOD_PRE_RANGE) {
+
+ /* Set phase check limits */
+ if (VCSELPulsePeriodPCLK == 12) {
+
+ Status = VL53L0X_WrByte(Dev,
+ VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_HIGH,
+ 0x18);
+ Status = VL53L0X_WrByte(Dev,
+ VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_LOW,
+ 0x08);
+ } else if (VCSELPulsePeriodPCLK == 14) {
+
+ Status = VL53L0X_WrByte(Dev,
+ VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_HIGH,
+ 0x30);
+ Status = VL53L0X_WrByte(Dev,
+ VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_LOW,
+ 0x08);
+ } else if (VCSELPulsePeriodPCLK == 16) {
+
+ Status = VL53L0X_WrByte(Dev,
+ VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_HIGH,
+ 0x40);
+ Status = VL53L0X_WrByte(Dev,
+ VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_LOW,
+ 0x08);
+ } else if (VCSELPulsePeriodPCLK == 18) {
+
+ Status = VL53L0X_WrByte(Dev,
+ VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_HIGH,
+ 0x50);
+ Status = VL53L0X_WrByte(Dev,
+ VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_LOW,
+ 0x08);
+ }
+ } else if (VcselPeriodType == VL53L0X_VCSEL_PERIOD_FINAL_RANGE) {
+
+ if (VCSELPulsePeriodPCLK == 8) {
+
+ Status = VL53L0X_WrByte(Dev,
+ VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_HIGH,
+ 0x10);
+ Status = VL53L0X_WrByte(Dev,
+ VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_LOW,
+ 0x08);
+
+ Status |= VL53L0X_WrByte(Dev,
+ VL53L0X_REG_GLOBAL_CONFIG_VCSEL_WIDTH, 0x02);
+ Status |= VL53L0X_WrByte(Dev,
+ VL53L0X_REG_ALGO_PHASECAL_CONFIG_TIMEOUT, 0x0C);
+
+ Status |= VL53L0X_WrByte(Dev, 0xff, 0x01);
+ Status |= VL53L0X_WrByte(Dev,
+ VL53L0X_REG_ALGO_PHASECAL_LIM,
+ 0x30);
+ Status |= VL53L0X_WrByte(Dev, 0xff, 0x00);
+ } else if (VCSELPulsePeriodPCLK == 10) {
+
+ Status = VL53L0X_WrByte(Dev,
+ VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_HIGH,
+ 0x28);
+ Status = VL53L0X_WrByte(Dev,
+ VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_LOW,
+ 0x08);
+
+ Status |= VL53L0X_WrByte(Dev,
+ VL53L0X_REG_GLOBAL_CONFIG_VCSEL_WIDTH, 0x03);
+ Status |= VL53L0X_WrByte(Dev,
+ VL53L0X_REG_ALGO_PHASECAL_CONFIG_TIMEOUT, 0x09);
+
+ Status |= VL53L0X_WrByte(Dev, 0xff, 0x01);
+ Status |= VL53L0X_WrByte(Dev,
+ VL53L0X_REG_ALGO_PHASECAL_LIM,
+ 0x20);
+ Status |= VL53L0X_WrByte(Dev, 0xff, 0x00);
+ } else if (VCSELPulsePeriodPCLK == 12) {
+
+ Status = VL53L0X_WrByte(Dev,
+ VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_HIGH,
+ 0x38);
+ Status = VL53L0X_WrByte(Dev,
+ VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_LOW,
+ 0x08);
+
+ Status |= VL53L0X_WrByte(Dev,
+ VL53L0X_REG_GLOBAL_CONFIG_VCSEL_WIDTH, 0x03);
+ Status |= VL53L0X_WrByte(Dev,
+ VL53L0X_REG_ALGO_PHASECAL_CONFIG_TIMEOUT, 0x08);
+
+ Status |= VL53L0X_WrByte(Dev, 0xff, 0x01);
+ Status |= VL53L0X_WrByte(Dev,
+ VL53L0X_REG_ALGO_PHASECAL_LIM,
+ 0x20);
+ Status |= VL53L0X_WrByte(Dev, 0xff, 0x00);
+ } else if (VCSELPulsePeriodPCLK == 14) {
+
+ Status = VL53L0X_WrByte(Dev,
+ VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_HIGH,
+ 0x048);
+ Status = VL53L0X_WrByte(Dev,
+ VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_LOW,
+ 0x08);
+
+ Status |= VL53L0X_WrByte(Dev,
+ VL53L0X_REG_GLOBAL_CONFIG_VCSEL_WIDTH, 0x03);
+ Status |= VL53L0X_WrByte(Dev,
+ VL53L0X_REG_ALGO_PHASECAL_CONFIG_TIMEOUT, 0x07);
+
+ Status |= VL53L0X_WrByte(Dev, 0xff, 0x01);
+ Status |= VL53L0X_WrByte(Dev,
+ VL53L0X_REG_ALGO_PHASECAL_LIM,
+ 0x20);
+ Status |= VL53L0X_WrByte(Dev, 0xff, 0x00);
+ }
+ }
+
+
+ /* Re-calculate and apply timeouts, in macro periods */
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ vcsel_period_reg = VL53L0X_encode_vcsel_period((uint8_t)
+ VCSELPulsePeriodPCLK);
+
+ /* When the VCSEL period for the pre or final range is changed,
+ * the corresponding timeout must be read from the device using
+ * the current VCSEL period, then the new VCSEL period can be
+ * applied. The timeout then must be written back to the device
+ * using the new VCSEL period.
+ *
+ * For the MSRC timeout, the same applies - this timeout being
+ * dependant on the pre-range vcsel period.
+ */
+ switch (VcselPeriodType) {
+ case VL53L0X_VCSEL_PERIOD_PRE_RANGE:
+ Status = get_sequence_step_timeout(Dev,
+ VL53L0X_SEQUENCESTEP_PRE_RANGE,
+ &PreRangeTimeoutMicroSeconds);
+
+ if (Status == VL53L0X_ERROR_NONE)
+ Status = get_sequence_step_timeout(Dev,
+ VL53L0X_SEQUENCESTEP_MSRC,
+ &MsrcTimeoutMicroSeconds);
+
+ if (Status == VL53L0X_ERROR_NONE)
+ Status = VL53L0X_WrByte(Dev,
+ VL53L0X_REG_PRE_RANGE_CONFIG_VCSEL_PERIOD,
+ vcsel_period_reg);
+
+
+ if (Status == VL53L0X_ERROR_NONE)
+ Status = set_sequence_step_timeout(Dev,
+ VL53L0X_SEQUENCESTEP_PRE_RANGE,
+ PreRangeTimeoutMicroSeconds);
+
+
+ if (Status == VL53L0X_ERROR_NONE)
+ Status = set_sequence_step_timeout(Dev,
+ VL53L0X_SEQUENCESTEP_MSRC,
+ MsrcTimeoutMicroSeconds);
+
+ VL53L0X_SETDEVICESPECIFICPARAMETER(
+ Dev,
+ PreRangeVcselPulsePeriod,
+ VCSELPulsePeriodPCLK);
+ break;
+ case VL53L0X_VCSEL_PERIOD_FINAL_RANGE:
+ Status = get_sequence_step_timeout(Dev,
+ VL53L0X_SEQUENCESTEP_FINAL_RANGE,
+ &FinalRangeTimeoutMicroSeconds);
+
+ if (Status == VL53L0X_ERROR_NONE)
+ Status = VL53L0X_WrByte(Dev,
+ VL53L0X_REG_FINAL_RANGE_CONFIG_VCSEL_PERIOD,
+ vcsel_period_reg);
+
+
+ if (Status == VL53L0X_ERROR_NONE)
+ Status = set_sequence_step_timeout(Dev,
+ VL53L0X_SEQUENCESTEP_FINAL_RANGE,
+ FinalRangeTimeoutMicroSeconds);
+
+ VL53L0X_SETDEVICESPECIFICPARAMETER(
+ Dev,
+ FinalRangeVcselPulsePeriod,
+ VCSELPulsePeriodPCLK);
+ break;
+ default:
+ Status = VL53L0X_ERROR_INVALID_PARAMS;
+ }
+ }
+
+ /* Finally, the timing budget must be re-applied */
+ if (Status == VL53L0X_ERROR_NONE) {
+ VL53L0X_GETPARAMETERFIELD(Dev,
+ MeasurementTimingBudgetMicroSeconds,
+ MeasurementTimingBudgetMicroSeconds);
+
+ Status = VL53L0X_SetMeasurementTimingBudgetMicroSeconds(Dev,
+ MeasurementTimingBudgetMicroSeconds);
+ }
+
+ /* Perform the phase calibration. This is needed after changing on
+ * vcsel period.
+ * get_data_enable = 0, restore_config = 1 */
+ if (Status == VL53L0X_ERROR_NONE)
+ Status = VL53L0X_perform_phase_calibration(
+ Dev, &PhaseCalInt, 0, 1);
+
+ return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_SetVcselPulsePeriod(VL53L0X_DEV Dev,
+ VL53L0X_VcselPeriod VcselPeriodType, uint8_t VCSELPulsePeriodPCLK)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ LOG_FUNCTION_START("");
+
+ Status = VL53L0X_set_vcsel_pulse_period(Dev, VcselPeriodType,
+ VCSELPulsePeriodPCLK);
+
+ LOG_FUNCTION_END(Status);
+ return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_get_vcsel_pulse_period(VL53L0X_DEV Dev,
+ VL53L0X_VcselPeriod VcselPeriodType, uint8_t *pVCSELPulsePeriodPCLK)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ uint8_t vcsel_period_reg;
+
+ switch (VcselPeriodType) {
+ case VL53L0X_VCSEL_PERIOD_PRE_RANGE:
+ Status = VL53L0X_RdByte(Dev,
+ VL53L0X_REG_PRE_RANGE_CONFIG_VCSEL_PERIOD,
+ &vcsel_period_reg);
+ break;
+ case VL53L0X_VCSEL_PERIOD_FINAL_RANGE:
+ Status = VL53L0X_RdByte(Dev,
+ VL53L0X_REG_FINAL_RANGE_CONFIG_VCSEL_PERIOD,
+ &vcsel_period_reg);
+ break;
+ default:
+ Status = VL53L0X_ERROR_INVALID_PARAMS;
+ }
+
+ if (Status == VL53L0X_ERROR_NONE)
+ *pVCSELPulsePeriodPCLK =
+ VL53L0X_decode_vcsel_period(vcsel_period_reg);
+
+ return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_GetVcselPulsePeriod(VL53L0X_DEV Dev,
+ VL53L0X_VcselPeriod VcselPeriodType, uint8_t *pVCSELPulsePeriodPCLK)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ LOG_FUNCTION_START("");
+
+ Status = VL53L0X_get_vcsel_pulse_period(Dev, VcselPeriodType,
+ pVCSELPulsePeriodPCLK);
+
+ LOG_FUNCTION_END(Status);
+ return Status;
+}
+
+uint32_t VL53L0X::VL53L0X_decode_timeout(uint16_t encoded_timeout)
+{
+ /*!
+ * Decode 16-bit timeout register value - format (LSByte * 2^MSByte) + 1
+ */
+
+ uint32_t timeout_macro_clks = 0;
+
+ timeout_macro_clks = ((uint32_t) (encoded_timeout & 0x00FF)
+ << (uint32_t) ((encoded_timeout & 0xFF00) >> 8)) + 1;
+
+ return timeout_macro_clks;
+}
+
+uint32_t VL53L0X::VL53L0X_calc_macro_period_ps(VL53L0X_DEV Dev, uint8_t vcsel_period_pclks)
+{
+ uint64_t PLL_period_ps;
+ uint32_t macro_period_vclks;
+ uint32_t macro_period_ps;
+
+ LOG_FUNCTION_START("");
+
+ /* The above calculation will produce rounding errors,
+ therefore set fixed value
+ */
+ PLL_period_ps = 1655;
+
+ macro_period_vclks = 2304;
+ macro_period_ps = (uint32_t)(macro_period_vclks
+ * vcsel_period_pclks * PLL_period_ps);
+
+ LOG_FUNCTION_END("");
+ return macro_period_ps;
+}
+
+/* To convert register value into us */
+uint32_t VL53L0X::VL53L0X_calc_timeout_us(VL53L0X_DEV Dev,
+ uint16_t timeout_period_mclks,
+ uint8_t vcsel_period_pclks)
+{
+ uint32_t macro_period_ps;
+ uint32_t macro_period_ns;
+ uint32_t actual_timeout_period_us = 0;
+
+ macro_period_ps = VL53L0X_calc_macro_period_ps(Dev, vcsel_period_pclks);
+ macro_period_ns = (macro_period_ps + 500) / 1000;
+
+ actual_timeout_period_us =
+ ((timeout_period_mclks * macro_period_ns) + 500) / 1000;
+
+ return actual_timeout_period_us;
+}
+
+VL53L0X_Error VL53L0X::get_sequence_step_timeout(VL53L0X_DEV Dev,
+ VL53L0X_SequenceStepId SequenceStepId,
+ uint32_t *pTimeOutMicroSecs)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ uint8_t CurrentVCSELPulsePeriodPClk;
+ uint8_t EncodedTimeOutByte = 0;
+ uint32_t TimeoutMicroSeconds = 0;
+ uint16_t PreRangeEncodedTimeOut = 0;
+ uint16_t MsrcTimeOutMClks;
+ uint16_t PreRangeTimeOutMClks;
+ uint16_t FinalRangeTimeOutMClks = 0;
+ uint16_t FinalRangeEncodedTimeOut;
+ VL53L0X_SchedulerSequenceSteps_t SchedulerSequenceSteps;
+
+ if ((SequenceStepId == VL53L0X_SEQUENCESTEP_TCC) ||
+ (SequenceStepId == VL53L0X_SEQUENCESTEP_DSS) ||
+ (SequenceStepId == VL53L0X_SEQUENCESTEP_MSRC)) {
+
+ Status = VL53L0X_GetVcselPulsePeriod(Dev,
+ VL53L0X_VCSEL_PERIOD_PRE_RANGE,
+ &CurrentVCSELPulsePeriodPClk);
+ if (Status == VL53L0X_ERROR_NONE) {
+ Status = VL53L0X_RdByte(Dev,
+ VL53L0X_REG_MSRC_CONFIG_TIMEOUT_MACROP,
+ &EncodedTimeOutByte);
+ }
+ MsrcTimeOutMClks = VL53L0X_decode_timeout(EncodedTimeOutByte);
+
+ TimeoutMicroSeconds = VL53L0X_calc_timeout_us(Dev,
+ MsrcTimeOutMClks,
+ CurrentVCSELPulsePeriodPClk);
+ } else if (SequenceStepId == VL53L0X_SEQUENCESTEP_PRE_RANGE) {
+ /* Retrieve PRE-RANGE VCSEL Period */
+ Status = VL53L0X_GetVcselPulsePeriod(Dev,
+ VL53L0X_VCSEL_PERIOD_PRE_RANGE,
+ &CurrentVCSELPulsePeriodPClk);
+
+ /* Retrieve PRE-RANGE Timeout in Macro periods (MCLKS) */
+ if (Status == VL53L0X_ERROR_NONE) {
+
+ /* Retrieve PRE-RANGE VCSEL Period */
+ Status = VL53L0X_GetVcselPulsePeriod(Dev,
+ VL53L0X_VCSEL_PERIOD_PRE_RANGE,
+ &CurrentVCSELPulsePeriodPClk);
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ Status = VL53L0X_RdWord(Dev,
+ VL53L0X_REG_PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI,
+ &PreRangeEncodedTimeOut);
+ }
+
+ PreRangeTimeOutMClks = VL53L0X_decode_timeout(
+ PreRangeEncodedTimeOut);
+
+ TimeoutMicroSeconds = VL53L0X_calc_timeout_us(Dev,
+ PreRangeTimeOutMClks,
+ CurrentVCSELPulsePeriodPClk);
+ }
+ } else if (SequenceStepId == VL53L0X_SEQUENCESTEP_FINAL_RANGE) {
+
+ VL53L0X_GetSequenceStepEnables(Dev, &SchedulerSequenceSteps);
+ PreRangeTimeOutMClks = 0;
+
+ if (SchedulerSequenceSteps.PreRangeOn) {
+ /* Retrieve PRE-RANGE VCSEL Period */
+ Status = VL53L0X_GetVcselPulsePeriod(Dev,
+ VL53L0X_VCSEL_PERIOD_PRE_RANGE,
+ &CurrentVCSELPulsePeriodPClk);
+
+ /* Retrieve PRE-RANGE Timeout in Macro periods
+ * (MCLKS) */
+ if (Status == VL53L0X_ERROR_NONE) {
+ Status = VL53L0X_RdWord(Dev,
+ VL53L0X_REG_PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI,
+ &PreRangeEncodedTimeOut);
+ PreRangeTimeOutMClks = VL53L0X_decode_timeout(
+ PreRangeEncodedTimeOut);
+ }
+ }
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ /* Retrieve FINAL-RANGE VCSEL Period */
+ Status = VL53L0X_GetVcselPulsePeriod(Dev,
+ VL53L0X_VCSEL_PERIOD_FINAL_RANGE,
+ &CurrentVCSELPulsePeriodPClk);
+ }
+
+ /* Retrieve FINAL-RANGE Timeout in Macro periods (MCLKS) */
+ if (Status == VL53L0X_ERROR_NONE) {
+ Status = VL53L0X_RdWord(Dev,
+ VL53L0X_REG_FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI,
+ &FinalRangeEncodedTimeOut);
+ FinalRangeTimeOutMClks = VL53L0X_decode_timeout(
+ FinalRangeEncodedTimeOut);
+ }
+
+ FinalRangeTimeOutMClks -= PreRangeTimeOutMClks;
+ TimeoutMicroSeconds = VL53L0X_calc_timeout_us(Dev,
+ FinalRangeTimeOutMClks,
+ CurrentVCSELPulsePeriodPClk);
+ }
+
+ *pTimeOutMicroSecs = TimeoutMicroSeconds;
+
+ return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_get_measurement_timing_budget_micro_seconds(VL53L0X_DEV Dev,
+ uint32_t *pMeasurementTimingBudgetMicroSeconds)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ VL53L0X_SchedulerSequenceSteps_t SchedulerSequenceSteps;
+ uint32_t FinalRangeTimeoutMicroSeconds;
+ uint32_t MsrcDccTccTimeoutMicroSeconds = 2000;
+ uint32_t StartOverheadMicroSeconds = 1910;
+ uint32_t EndOverheadMicroSeconds = 960;
+ uint32_t MsrcOverheadMicroSeconds = 660;
+ uint32_t TccOverheadMicroSeconds = 590;
+ uint32_t DssOverheadMicroSeconds = 690;
+ uint32_t PreRangeOverheadMicroSeconds = 660;
+ uint32_t FinalRangeOverheadMicroSeconds = 550;
+ uint32_t PreRangeTimeoutMicroSeconds = 0;
+
+ LOG_FUNCTION_START("");
+
+ /* Start and end overhead times always present */
+ *pMeasurementTimingBudgetMicroSeconds
+ = StartOverheadMicroSeconds + EndOverheadMicroSeconds;
+
+ Status = VL53L0X_GetSequenceStepEnables(Dev, &SchedulerSequenceSteps);
+
+ if (Status != VL53L0X_ERROR_NONE) {
+ LOG_FUNCTION_END(Status);
+ return Status;
+ }
+
+
+ if (SchedulerSequenceSteps.TccOn ||
+ SchedulerSequenceSteps.MsrcOn ||
+ SchedulerSequenceSteps.DssOn) {
+
+ Status = get_sequence_step_timeout(Dev,
+ VL53L0X_SEQUENCESTEP_MSRC,
+ &MsrcDccTccTimeoutMicroSeconds);
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ if (SchedulerSequenceSteps.TccOn) {
+ *pMeasurementTimingBudgetMicroSeconds +=
+ MsrcDccTccTimeoutMicroSeconds +
+ TccOverheadMicroSeconds;
+ }
+
+ if (SchedulerSequenceSteps.DssOn) {
+ *pMeasurementTimingBudgetMicroSeconds +=
+ 2 * (MsrcDccTccTimeoutMicroSeconds +
+ DssOverheadMicroSeconds);
+ } else if (SchedulerSequenceSteps.MsrcOn) {
+ *pMeasurementTimingBudgetMicroSeconds +=
+ MsrcDccTccTimeoutMicroSeconds +
+ MsrcOverheadMicroSeconds;
+ }
+ }
+ }
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ if (SchedulerSequenceSteps.PreRangeOn) {
+ Status = get_sequence_step_timeout(Dev,
+ VL53L0X_SEQUENCESTEP_PRE_RANGE,
+ &PreRangeTimeoutMicroSeconds);
+ *pMeasurementTimingBudgetMicroSeconds +=
+ PreRangeTimeoutMicroSeconds +
+ PreRangeOverheadMicroSeconds;
+ }
+ }
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ if (SchedulerSequenceSteps.FinalRangeOn) {
+ Status = get_sequence_step_timeout(Dev,
+ VL53L0X_SEQUENCESTEP_FINAL_RANGE,
+ &FinalRangeTimeoutMicroSeconds);
+ *pMeasurementTimingBudgetMicroSeconds +=
+ (FinalRangeTimeoutMicroSeconds +
+ FinalRangeOverheadMicroSeconds);
+ }
+ }
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ VL53L0X_SETPARAMETERFIELD(Dev,
+ MeasurementTimingBudgetMicroSeconds,
+ *pMeasurementTimingBudgetMicroSeconds);
+ }
+
+ LOG_FUNCTION_END(Status);
+ return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_GetMeasurementTimingBudgetMicroSeconds(VL53L0X_DEV Dev,
+ uint32_t *pMeasurementTimingBudgetMicroSeconds)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ LOG_FUNCTION_START("");
+
+ Status = VL53L0X_get_measurement_timing_budget_micro_seconds(Dev,
+ pMeasurementTimingBudgetMicroSeconds);
+
+ LOG_FUNCTION_END(Status);
+ return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_GetDeviceParameters(VL53L0X_DEV Dev,
+ VL53L0X_DeviceParameters_t *pDeviceParameters)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ int i;
+
+ LOG_FUNCTION_START("");
+
+ Status = VL53L0X_GetDeviceMode(Dev, &(pDeviceParameters->DeviceMode));
+
+ if (Status == VL53L0X_ERROR_NONE)
+ Status = VL53L0X_GetInterMeasurementPeriodMilliSeconds(Dev,
+ &(pDeviceParameters->InterMeasurementPeriodMilliSeconds));
+
+
+ if (Status == VL53L0X_ERROR_NONE)
+ pDeviceParameters->XTalkCompensationEnable = 0;
+
+ if (Status == VL53L0X_ERROR_NONE)
+ Status = VL53L0X_GetXTalkCompensationRateMegaCps(Dev,
+ &(pDeviceParameters->XTalkCompensationRateMegaCps));
+
+
+ if (Status == VL53L0X_ERROR_NONE)
+ Status = VL53L0X_GetOffsetCalibrationDataMicroMeter(Dev,
+ &(pDeviceParameters->RangeOffsetMicroMeters));
+
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ for (i = 0; i < VL53L0X_CHECKENABLE_NUMBER_OF_CHECKS; i++) {
+ /* get first the values, then the enables.
+ * VL53L0X_GetLimitCheckValue will modify the enable
+ * flags
+ */
+ if (Status == VL53L0X_ERROR_NONE) {
+ Status |= VL53L0X_GetLimitCheckValue(Dev, i,
+ &(pDeviceParameters->LimitChecksValue[i]));
+ } else {
+ break;
+ }
+ if (Status == VL53L0X_ERROR_NONE) {
+ Status |= VL53L0X_GetLimitCheckEnable(Dev, i,
+ &(pDeviceParameters->LimitChecksEnable[i]));
+ } else {
+ break;
+ }
+ }
+ }
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ Status = VL53L0X_GetWrapAroundCheckEnable(Dev,
+ &(pDeviceParameters->WrapAroundCheckEnable));
+ }
+
+ /* Need to be done at the end as it uses VCSELPulsePeriod */
+ if (Status == VL53L0X_ERROR_NONE) {
+ Status = VL53L0X_GetMeasurementTimingBudgetMicroSeconds(Dev,
+ &(pDeviceParameters->MeasurementTimingBudgetMicroSeconds));
+ }
+
+ LOG_FUNCTION_END(Status);
+ return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_SetLimitCheckValue(VL53L0X_DEV Dev, uint16_t LimitCheckId,
+ FixPoint1616_t LimitCheckValue)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ uint8_t Temp8;
+
+ LOG_FUNCTION_START("");
+
+ VL53L0X_GETARRAYPARAMETERFIELD(Dev, LimitChecksEnable, LimitCheckId,
+ Temp8);
+
+ if (Temp8 == 0) { /* disabled write only internal value */
+ VL53L0X_SETARRAYPARAMETERFIELD(Dev, LimitChecksValue,
+ LimitCheckId, LimitCheckValue);
+ } else {
+
+ switch (LimitCheckId) {
+
+ case VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE:
+ /* internal computation: */
+ VL53L0X_SETARRAYPARAMETERFIELD(Dev, LimitChecksValue,
+ VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE,
+ LimitCheckValue);
+ break;
+
+ case VL53L0X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE:
+
+ Status = VL53L0X_WrWord(Dev,
+ VL53L0X_REG_FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT,
+ VL53L0X_FIXPOINT1616TOFIXPOINT97(
+ LimitCheckValue));
+
+ break;
+
+ case VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP:
+
+ /* internal computation: */
+ VL53L0X_SETARRAYPARAMETERFIELD(Dev, LimitChecksValue,
+ VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP,
+ LimitCheckValue);
+
+ break;
+
+ case VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD:
+
+ /* internal computation: */
+ VL53L0X_SETARRAYPARAMETERFIELD(Dev, LimitChecksValue,
+ VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD,
+ LimitCheckValue);
+
+ break;
+
+ case VL53L0X_CHECKENABLE_SIGNAL_RATE_MSRC:
+ case VL53L0X_CHECKENABLE_SIGNAL_RATE_PRE_RANGE:
+
+ Status = VL53L0X_WrWord(Dev,
+ VL53L0X_REG_PRE_RANGE_MIN_COUNT_RATE_RTN_LIMIT,
+ VL53L0X_FIXPOINT1616TOFIXPOINT97(
+ LimitCheckValue));
+
+ break;
+
+ default:
+ Status = VL53L0X_ERROR_INVALID_PARAMS;
+
+ }
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ VL53L0X_SETARRAYPARAMETERFIELD(Dev, LimitChecksValue,
+ LimitCheckId, LimitCheckValue);
+ }
+ }
+
+ LOG_FUNCTION_END(Status);
+ return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_DataInit(VL53L0X_DEV Dev)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ VL53L0X_DeviceParameters_t CurrentParameters;
+ int i;
+ uint8_t StopVariable;
+
+ LOG_FUNCTION_START("");
+
+ /* by default the I2C is running at 1V8 if you want to change it you
+ * need to include this define at compilation level. */
+#ifdef USE_I2C_2V8
+ Status = VL53L0X_UpdateByte(Dev,
+ VL53L0X_REG_VHV_CONFIG_PAD_SCL_SDA__EXTSUP_HV,
+ 0xFE,
+ 0x01);
+#endif
+
+ /* Set I2C standard mode */
+ if (Status == VL53L0X_ERROR_NONE)
+ Status = VL53L0X_WrByte(Dev, 0x88, 0x00);
+
+ VL53L0X_SETDEVICESPECIFICPARAMETER(Dev, ReadDataFromDeviceDone, 0);
+
+#ifdef USE_IQC_STATION
+ if (Status == VL53L0X_ERROR_NONE)
+ Status = VL53L0X_apply_offset_adjustment(Dev);
+#endif
+
+ /* Default value is 1000 for Linearity Corrective Gain */
+ PALDevDataSet(Dev, LinearityCorrectiveGain, 1000);
+
+ /* Dmax default Parameter */
+ PALDevDataSet(Dev, DmaxCalRangeMilliMeter, 400);
+ PALDevDataSet(Dev, DmaxCalSignalRateRtnMegaCps,
+ (FixPoint1616_t)((0x00016B85))); /* 1.42 No Cover Glass*/
+
+ /* Set Default static parameters
+ *set first temporary values 9.44MHz * 65536 = 618660 */
+ VL53L0X_SETDEVICESPECIFICPARAMETER(Dev, OscFrequencyMHz, 618660);
+
+ /* Set Default XTalkCompensationRateMegaCps to 0 */
+ VL53L0X_SETPARAMETERFIELD(Dev, XTalkCompensationRateMegaCps, 0);
+
+ /* Get default parameters */
+ Status = VL53L0X_GetDeviceParameters(Dev, &CurrentParameters);
+ if (Status == VL53L0X_ERROR_NONE) {
+ /* initialize PAL values */
+ CurrentParameters.DeviceMode = VL53L0X_DEVICEMODE_SINGLE_RANGING;
+ CurrentParameters.HistogramMode = VL53L0X_HISTOGRAMMODE_DISABLED;
+ PALDevDataSet(Dev, CurrentParameters, CurrentParameters);
+ }
+
+ /* Sigma estimator variable */
+ PALDevDataSet(Dev, SigmaEstRefArray, 100);
+ PALDevDataSet(Dev, SigmaEstEffPulseWidth, 900);
+ PALDevDataSet(Dev, SigmaEstEffAmbWidth, 500);
+ PALDevDataSet(Dev, targetRefRate, 0x0A00); /* 20 MCPS in 9:7 format */
+
+ /* Use internal default settings */
+ PALDevDataSet(Dev, UseInternalTuningSettings, 1);
+
+ Status |= VL53L0X_WrByte(Dev, 0x80, 0x01);
+ Status |= VL53L0X_WrByte(Dev, 0xFF, 0x01);
+ Status |= VL53L0X_WrByte(Dev, 0x00, 0x00);
+ Status |= VL53L0X_RdByte(Dev, 0x91, &StopVariable);
+ PALDevDataSet(Dev, StopVariable, StopVariable);
+ Status |= VL53L0X_WrByte(Dev, 0x00, 0x01);
+ Status |= VL53L0X_WrByte(Dev, 0xFF, 0x00);
+ Status |= VL53L0X_WrByte(Dev, 0x80, 0x00);
+
+ /* Enable all check */
+ for (i = 0; i < VL53L0X_CHECKENABLE_NUMBER_OF_CHECKS; i++) {
+ if (Status == VL53L0X_ERROR_NONE)
+ Status |= VL53L0X_SetLimitCheckEnable(Dev, i, 1);
+ else
+ break;
+
+ }
+
+ /* Disable the following checks */
+ if (Status == VL53L0X_ERROR_NONE)
+ Status = VL53L0X_SetLimitCheckEnable(Dev,
+ VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP, 0);
+
+ if (Status == VL53L0X_ERROR_NONE)
+ Status = VL53L0X_SetLimitCheckEnable(Dev,
+ VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD, 0);
+
+ if (Status == VL53L0X_ERROR_NONE)
+ Status = VL53L0X_SetLimitCheckEnable(Dev,
+ VL53L0X_CHECKENABLE_SIGNAL_RATE_MSRC, 0);
+
+ if (Status == VL53L0X_ERROR_NONE)
+ Status = VL53L0X_SetLimitCheckEnable(Dev,
+ VL53L0X_CHECKENABLE_SIGNAL_RATE_PRE_RANGE, 0);
+
+ /* Limit default values */
+ if (Status == VL53L0X_ERROR_NONE) {
+ Status = VL53L0X_SetLimitCheckValue(Dev,
+ VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE,
+ (FixPoint1616_t)(18 * 65536));
+ }
+ if (Status == VL53L0X_ERROR_NONE) {
+ Status = VL53L0X_SetLimitCheckValue(Dev,
+ VL53L0X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE,
+ (FixPoint1616_t)(25 * 65536 / 100));
+ /* 0.25 * 65536 */
+ }
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ Status = VL53L0X_SetLimitCheckValue(Dev,
+ VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP,
+ (FixPoint1616_t)(35 * 65536));
+ }
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ Status = VL53L0X_SetLimitCheckValue(Dev,
+ VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD,
+ (FixPoint1616_t)(0 * 65536));
+ }
+
+ if (Status == VL53L0X_ERROR_NONE) {
+
+ PALDevDataSet(Dev, SequenceConfig, 0xFF);
+ Status = VL53L0X_WrByte(Dev, VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG,
+ 0xFF);
+
+ /* Set PAL state to tell that we are waiting for call to
+ * VL53L0X_StaticInit */
+ PALDevDataSet(Dev, PalState, VL53L0X_STATE_WAIT_STATICINIT);
+ }
+
+ if (Status == VL53L0X_ERROR_NONE)
+ VL53L0X_SETDEVICESPECIFICPARAMETER(Dev, RefSpadsInitialised, 0);
+
+
+ LOG_FUNCTION_END(Status);
+ return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_check_part_used(VL53L0X_DEV Dev,
+ uint8_t *Revision,
+ VL53L0X_DeviceInfo_t *pVL53L0X_DeviceInfo)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ uint8_t ModuleIdInt;
+ char *ProductId_tmp;
+
+ LOG_FUNCTION_START("");
+
+ Status = VL53L0X_get_info_from_device(Dev, 2);
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ ModuleIdInt = VL53L0X_GETDEVICESPECIFICPARAMETER(Dev, ModuleId);
+
+ if (ModuleIdInt == 0) {
+ *Revision = 0;
+ VL53L0X_COPYSTRING(pVL53L0X_DeviceInfo->ProductId, "");
+ } else {
+ *Revision = VL53L0X_GETDEVICESPECIFICPARAMETER(Dev, Revision);
+ ProductId_tmp = VL53L0X_GETDEVICESPECIFICPARAMETER(Dev,
+ ProductId);
+ VL53L0X_COPYSTRING(pVL53L0X_DeviceInfo->ProductId, ProductId_tmp);
+ }
+ }
+
+ LOG_FUNCTION_END(Status);
+ return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_get_device_info(VL53L0X_DEV Dev,
+ VL53L0X_DeviceInfo_t *pVL53L0X_DeviceInfo)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ uint8_t revision_id;
+ uint8_t Revision;
+
+ Status = VL53L0X_check_part_used(Dev, &Revision, pVL53L0X_DeviceInfo);
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ if (Revision == 0) {
+ VL53L0X_COPYSTRING(pVL53L0X_DeviceInfo->Name,
+ VL53L0X_STRING_DEVICE_INFO_NAME_TS0);
+ } else if ((Revision <= 34) && (Revision != 32)) {
+ VL53L0X_COPYSTRING(pVL53L0X_DeviceInfo->Name,
+ VL53L0X_STRING_DEVICE_INFO_NAME_TS1);
+ } else if (Revision < 39) {
+ VL53L0X_COPYSTRING(pVL53L0X_DeviceInfo->Name,
+ VL53L0X_STRING_DEVICE_INFO_NAME_TS2);
+ } else {
+ VL53L0X_COPYSTRING(pVL53L0X_DeviceInfo->Name,
+ VL53L0X_STRING_DEVICE_INFO_NAME_ES1);
+ }
+
+ VL53L0X_COPYSTRING(pVL53L0X_DeviceInfo->Type,
+ VL53L0X_STRING_DEVICE_INFO_TYPE);
+
+ }
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ Status = VL53L0X_RdByte(Dev, VL53L0X_REG_IDENTIFICATION_MODEL_ID,
+ &pVL53L0X_DeviceInfo->ProductType);
+ }
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ Status = VL53L0X_RdByte(Dev,
+ VL53L0X_REG_IDENTIFICATION_REVISION_ID,
+ &revision_id);
+ pVL53L0X_DeviceInfo->ProductRevisionMajor = 1;
+ pVL53L0X_DeviceInfo->ProductRevisionMinor =
+ (revision_id & 0xF0) >> 4;
+ }
+
+ return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_GetDeviceInfo(VL53L0X_DEV Dev,
+ VL53L0X_DeviceInfo_t *pVL53L0X_DeviceInfo)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ LOG_FUNCTION_START("");
+
+ Status = VL53L0X_get_device_info(Dev, pVL53L0X_DeviceInfo);
+
+ LOG_FUNCTION_END(Status);
+ return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_GetInterruptMaskStatus(VL53L0X_DEV Dev,
+ uint32_t *pInterruptMaskStatus)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ uint8_t Byte;
+ LOG_FUNCTION_START("");
+
+ Status = VL53L0X_RdByte(Dev, VL53L0X_REG_RESULT_INTERRUPT_STATUS, &Byte);
+ *pInterruptMaskStatus = Byte & 0x07;
+
+ if (Byte & 0x18)
+ Status = VL53L0X_ERROR_RANGE_ERROR;
+
+ LOG_FUNCTION_END(Status);
+ return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_GetMeasurementDataReady(VL53L0X_DEV Dev,
+ uint8_t *pMeasurementDataReady)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ uint8_t SysRangeStatusRegister;
+ uint8_t InterruptConfig;
+ uint32_t InterruptMask;
+ LOG_FUNCTION_START("");
+
+ InterruptConfig = VL53L0X_GETDEVICESPECIFICPARAMETER(Dev,
+ Pin0GpioFunctionality);
+
+ if (InterruptConfig ==
+ VL53L0X_REG_SYSTEM_INTERRUPT_GPIO_NEW_SAMPLE_READY) {
+ Status = VL53L0X_GetInterruptMaskStatus(Dev, &InterruptMask);
+ if (InterruptMask ==
+ VL53L0X_REG_SYSTEM_INTERRUPT_GPIO_NEW_SAMPLE_READY)
+ *pMeasurementDataReady = 1;
+ else
+ *pMeasurementDataReady = 0;
+ } else {
+ Status = VL53L0X_RdByte(Dev, VL53L0X_REG_RESULT_RANGE_STATUS,
+ &SysRangeStatusRegister);
+ if (Status == VL53L0X_ERROR_NONE) {
+ if (SysRangeStatusRegister & 0x01)
+ *pMeasurementDataReady = 1;
+ else
+ *pMeasurementDataReady = 0;
+ }
+ }
+
+ LOG_FUNCTION_END(Status);
+ return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_PollingDelay(VL53L0X_DEV Dev) {
+ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+
+ // do nothing
+ VL53L0X_OsDelay();
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_measurement_poll_for_completion(VL53L0X_DEV Dev)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ uint8_t NewDataReady = 0;
+ uint32_t LoopNb;
+
+ LOG_FUNCTION_START("");
+
+ LoopNb = 0;
+
+ do {
+ Status = VL53L0X_GetMeasurementDataReady(Dev, &NewDataReady);
+ if (Status != 0)
+ break; /* the error is set */
+
+ if (NewDataReady == 1)
+ break; /* done note that status == 0 */
+
+ LoopNb++;
+ if (LoopNb >= VL53L0X_DEFAULT_MAX_LOOP) {
+ Status = VL53L0X_ERROR_TIME_OUT;
+ break;
+ }
+
+ VL53L0X_PollingDelay(Dev);
+ } while (1);
+
+ LOG_FUNCTION_END(Status);
+
+ return Status;
+}
+
+/* Group PAL Interrupt Functions */
+VL53L0X_Error VL53L0X::VL53L0X_ClearInterruptMask(VL53L0X_DEV Dev, uint32_t InterruptMask)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ uint8_t LoopCount;
+ uint8_t Byte;
+ LOG_FUNCTION_START("");
+
+ /* clear bit 0 range interrupt, bit 1 error interrupt */
+ LoopCount = 0;
+ do {
+ Status = VL53L0X_WrByte(Dev,
+ VL53L0X_REG_SYSTEM_INTERRUPT_CLEAR, 0x01);
+ Status |= VL53L0X_WrByte(Dev,
+ VL53L0X_REG_SYSTEM_INTERRUPT_CLEAR, 0x00);
+ Status |= VL53L0X_RdByte(Dev,
+ VL53L0X_REG_RESULT_INTERRUPT_STATUS, &Byte);
+ LoopCount++;
+ } while (((Byte & 0x07) != 0x00)
+ && (LoopCount < 3)
+ && (Status == VL53L0X_ERROR_NONE));
+
+
+ if (LoopCount >= 3)
+ Status = VL53L0X_ERROR_INTERRUPT_NOT_CLEARED;
+
+ LOG_FUNCTION_END(Status);
+ return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_perform_single_ref_calibration(VL53L0X_DEV Dev,
+ uint8_t vhv_init_byte)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+
+ if (Status == VL53L0X_ERROR_NONE)
+ Status = VL53L0X_WrByte(Dev, VL53L0X_REG_SYSRANGE_START,
+ VL53L0X_REG_SYSRANGE_MODE_START_STOP |
+ vhv_init_byte);
+
+ if (Status == VL53L0X_ERROR_NONE)
+ Status = VL53L0X_measurement_poll_for_completion(Dev);
+
+ if (Status == VL53L0X_ERROR_NONE)
+ Status = VL53L0X_ClearInterruptMask(Dev, 0);
+
+ if (Status == VL53L0X_ERROR_NONE)
+ Status = VL53L0X_WrByte(Dev, VL53L0X_REG_SYSRANGE_START, 0x00);
+
+ return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_ref_calibration_io(VL53L0X_DEV Dev, uint8_t read_not_write,
+ uint8_t VhvSettings, uint8_t PhaseCal,
+ uint8_t *pVhvSettings, uint8_t *pPhaseCal,
+ const uint8_t vhv_enable, const uint8_t phase_enable)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ uint8_t PhaseCalint = 0;
+
+ /* Read VHV from device */
+ Status |= VL53L0X_WrByte(Dev, 0xFF, 0x01);
+ Status |= VL53L0X_WrByte(Dev, 0x00, 0x00);
+ Status |= VL53L0X_WrByte(Dev, 0xFF, 0x00);
+
+ if (read_not_write) {
+ if (vhv_enable)
+ Status |= VL53L0X_RdByte(Dev, 0xCB, pVhvSettings);
+ if (phase_enable)
+ Status |= VL53L0X_RdByte(Dev, 0xEE, &PhaseCalint);
+ } else {
+ if (vhv_enable)
+ Status |= VL53L0X_WrByte(Dev, 0xCB, VhvSettings);
+ if (phase_enable)
+ Status |= VL53L0X_UpdateByte(Dev, 0xEE, 0x80, PhaseCal);
+ }
+
+ Status |= VL53L0X_WrByte(Dev, 0xFF, 0x01);
+ Status |= VL53L0X_WrByte(Dev, 0x00, 0x01);
+ Status |= VL53L0X_WrByte(Dev, 0xFF, 0x00);
+
+ *pPhaseCal = (uint8_t)(PhaseCalint&0xEF);
+
+ return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_perform_vhv_calibration(VL53L0X_DEV Dev,
+ uint8_t *pVhvSettings, const uint8_t get_data_enable,
+ const uint8_t restore_config)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ uint8_t SequenceConfig = 0;
+ uint8_t VhvSettings = 0;
+ uint8_t PhaseCal = 0;
+ uint8_t PhaseCalInt = 0;
+
+ /* store the value of the sequence config,
+ * this will be reset before the end of the function
+ */
+
+ if (restore_config)
+ SequenceConfig = PALDevDataGet(Dev, SequenceConfig);
+
+ /* Run VHV */
+ Status = VL53L0X_WrByte(Dev, VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG, 0x01);
+
+ if (Status == VL53L0X_ERROR_NONE)
+ Status = VL53L0X_perform_single_ref_calibration(Dev, 0x40);
+
+ /* Read VHV from device */
+ if ((Status == VL53L0X_ERROR_NONE) && (get_data_enable == 1)) {
+ Status = VL53L0X_ref_calibration_io(Dev, 1,
+ VhvSettings, PhaseCal, /* Not used here */
+ pVhvSettings, &PhaseCalInt,
+ 1, 0);
+ } else
+ *pVhvSettings = 0;
+
+
+ if ((Status == VL53L0X_ERROR_NONE) && restore_config) {
+ /* restore the previous Sequence Config */
+ Status = VL53L0X_WrByte(Dev, VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG,
+ SequenceConfig);
+ if (Status == VL53L0X_ERROR_NONE)
+ PALDevDataSet(Dev, SequenceConfig, SequenceConfig);
+
+ }
+
+ return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_perform_phase_calibration(VL53L0X_DEV Dev,
+ uint8_t *pPhaseCal, const uint8_t get_data_enable,
+ const uint8_t restore_config)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ uint8_t SequenceConfig = 0;
+ uint8_t VhvSettings = 0;
+ uint8_t PhaseCal = 0;
+ uint8_t VhvSettingsint;
+
+ /* store the value of the sequence config,
+ * this will be reset before the end of the function
+ */
+
+ if (restore_config)
+ SequenceConfig = PALDevDataGet(Dev, SequenceConfig);
+
+ /* Run PhaseCal */
+ Status = VL53L0X_WrByte(Dev, VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG, 0x02);
+
+ if (Status == VL53L0X_ERROR_NONE)
+ Status = VL53L0X_perform_single_ref_calibration(Dev, 0x0);
+
+ /* Read PhaseCal from device */
+ if ((Status == VL53L0X_ERROR_NONE) && (get_data_enable == 1)) {
+ Status = VL53L0X_ref_calibration_io(Dev, 1,
+ VhvSettings, PhaseCal, /* Not used here */
+ &VhvSettingsint, pPhaseCal,
+ 0, 1);
+ } else
+ *pPhaseCal = 0;
+
+
+ if ((Status == VL53L0X_ERROR_NONE) && restore_config) {
+ /* restore the previous Sequence Config */
+ Status = VL53L0X_WrByte(Dev, VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG,
+ SequenceConfig);
+ if (Status == VL53L0X_ERROR_NONE)
+ PALDevDataSet(Dev, SequenceConfig, SequenceConfig);
+
+ }
+
+ return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_perform_ref_calibration(VL53L0X_DEV Dev,
+ uint8_t *pVhvSettings, uint8_t *pPhaseCal, uint8_t get_data_enable)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ uint8_t SequenceConfig = 0;
+
+ /* store the value of the sequence config,
+ * this will be reset before the end of the function
+ */
+
+ SequenceConfig = PALDevDataGet(Dev, SequenceConfig);
+
+ /* In the following function we don't save the config to optimize
+ * writes on device. Config is saved and restored only once. */
+ Status = VL53L0X_perform_vhv_calibration(
+ Dev, pVhvSettings, get_data_enable, 0);
+
+
+ if (Status == VL53L0X_ERROR_NONE)
+ Status = VL53L0X_perform_phase_calibration(
+ Dev, pPhaseCal, get_data_enable, 0);
+
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ /* restore the previous Sequence Config */
+ Status = VL53L0X_WrByte(Dev, VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG,
+ SequenceConfig);
+ if (Status == VL53L0X_ERROR_NONE)
+ PALDevDataSet(Dev, SequenceConfig, SequenceConfig);
+
+ }
+
+ return Status;
+}
+
+void VL53L0X::get_next_good_spad(uint8_t goodSpadArray[], uint32_t size,
+ uint32_t curr, int32_t *next)
+{
+ uint32_t startIndex;
+ uint32_t fineOffset;
+ uint32_t cSpadsPerByte = 8;
+ uint32_t coarseIndex;
+ uint32_t fineIndex;
+ uint8_t dataByte;
+ uint8_t success = 0;
+
+ /*
+ * Starting with the current good spad, loop through the array to find
+ * the next. i.e. the next bit set in the sequence.
+ *
+ * The coarse index is the byte index of the array and the fine index is
+ * the index of the bit within each byte.
+ */
+
+ *next = -1;
+
+ startIndex = curr / cSpadsPerByte;
+ fineOffset = curr % cSpadsPerByte;
+
+ for (coarseIndex = startIndex; ((coarseIndex < size) && !success);
+ coarseIndex++) {
+ fineIndex = 0;
+ dataByte = goodSpadArray[coarseIndex];
+
+ if (coarseIndex == startIndex) {
+ /* locate the bit position of the provided current
+ * spad bit before iterating */
+ dataByte >>= fineOffset;
+ fineIndex = fineOffset;
+ }
+
+ while (fineIndex < cSpadsPerByte) {
+ if ((dataByte & 0x1) == 1) {
+ success = 1;
+ *next = coarseIndex * cSpadsPerByte + fineIndex;
+ break;
+ }
+ dataByte >>= 1;
+ fineIndex++;
+ }
+ }
+}
+
+uint8_t VL53L0X::is_aperture(uint32_t spadIndex)
+{
+ /*
+ * This function reports if a given spad index is an aperture SPAD by
+ * deriving the quadrant.
+ */
+ uint32_t quadrant;
+ uint8_t isAperture = 1;
+ quadrant = spadIndex >> 6;
+ if (refArrayQuadrants[quadrant] == REF_ARRAY_SPAD_0)
+ isAperture = 0;
+
+ return isAperture;
+}
+
+VL53L0X_Error VL53L0X::enable_spad_bit(uint8_t spadArray[], uint32_t size,
+ uint32_t spadIndex)
+{
+ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ uint32_t cSpadsPerByte = 8;
+ uint32_t coarseIndex;
+ uint32_t fineIndex;
+
+ coarseIndex = spadIndex / cSpadsPerByte;
+ fineIndex = spadIndex % cSpadsPerByte;
+ if (coarseIndex >= size)
+ status = VL53L0X_ERROR_REF_SPAD_INIT;
+ else
+ spadArray[coarseIndex] |= (1 << fineIndex);
+
+ return status;
+}
+
+VL53L0X_Error VL53L0X::set_ref_spad_map(VL53L0X_DEV Dev, uint8_t *refSpadArray)
+{
+ VL53L0X_Error status = VL53L0X_WriteMulti(Dev,
+ VL53L0X_REG_GLOBAL_CONFIG_SPAD_ENABLES_REF_0,
+ refSpadArray, 6);
+
+ return status;
+}
+
+VL53L0X_Error VL53L0X::get_ref_spad_map(VL53L0X_DEV Dev, uint8_t *refSpadArray)
+{
+ VL53L0X_Error status = VL53L0X_ReadMulti(Dev,
+ VL53L0X_REG_GLOBAL_CONFIG_SPAD_ENABLES_REF_0,
+ refSpadArray,
+ 6);
+// VL53L0X_Error status = VL53L0X_ERROR_NONE;
+// uint8_t count=0;
+
+// for (count = 0; count < 6; count++)
+// status = VL53L0X_RdByte(Dev, (VL53L0X_REG_GLOBAL_CONFIG_SPAD_ENABLES_REF_0 + count), &refSpadArray[count]);
+ return status;
+}
+
+VL53L0X_Error VL53L0X::enable_ref_spads(VL53L0X_DEV Dev,
+ uint8_t apertureSpads,
+ uint8_t goodSpadArray[],
+ uint8_t spadArray[],
+ uint32_t size,
+ uint32_t start,
+ uint32_t offset,
+ uint32_t spadCount,
+ uint32_t *lastSpad)
+{
+ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ uint32_t index;
+ uint32_t i;
+ int32_t nextGoodSpad = offset;
+ uint32_t currentSpad;
+ uint8_t checkSpadArray[6];
+
+ /*
+ * This function takes in a spad array which may or may not have SPADS
+ * already enabled and appends from a given offset a requested number
+ * of new SPAD enables. The 'good spad map' is applied to
+ * determine the next SPADs to enable.
+ *
+ * This function applies to only aperture or only non-aperture spads.
+ * Checks are performed to ensure this.
+ */
+
+ currentSpad = offset;
+ for (index = 0; index < spadCount; index++) {
+ get_next_good_spad(goodSpadArray, size, currentSpad,
+ &nextGoodSpad);
+
+ if (nextGoodSpad == -1) {
+ status = VL53L0X_ERROR_REF_SPAD_INIT;
+ break;
+ }
+
+ /* Confirm that the next good SPAD is non-aperture */
+ if (is_aperture(start + nextGoodSpad) != apertureSpads) {
+ /* if we can't get the required number of good aperture
+ * spads from the current quadrant then this is an error
+ */
+ status = VL53L0X_ERROR_REF_SPAD_INIT;
+ break;
+ }
+ currentSpad = (uint32_t)nextGoodSpad;
+ enable_spad_bit(spadArray, size, currentSpad);
+ currentSpad++;
+ }
+ *lastSpad = currentSpad;
+
+ if (status == VL53L0X_ERROR_NONE)
+ status = set_ref_spad_map(Dev, spadArray);
+
+
+ if (status == VL53L0X_ERROR_NONE) {
+ status = get_ref_spad_map(Dev, checkSpadArray);
+
+ i = 0;
+
+ /* Compare spad maps. If not equal report error. */
+ while (i < size) {
+ if (spadArray[i] != checkSpadArray[i]) {
+ status = VL53L0X_ERROR_REF_SPAD_INIT;
+ break;
+ }
+ i++;
+ }
+ }
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_SetDeviceMode(VL53L0X_DEV Dev, VL53L0X_DeviceModes DeviceMode)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+
+ LOG_FUNCTION_START("%d", (int)DeviceMode);
+
+ switch (DeviceMode) {
+ case VL53L0X_DEVICEMODE_SINGLE_RANGING:
+ case VL53L0X_DEVICEMODE_CONTINUOUS_RANGING:
+ case VL53L0X_DEVICEMODE_CONTINUOUS_TIMED_RANGING:
+ case VL53L0X_DEVICEMODE_GPIO_DRIVE:
+ case VL53L0X_DEVICEMODE_GPIO_OSC:
+ /* Supported modes */
+ VL53L0X_SETPARAMETERFIELD(Dev, DeviceMode, DeviceMode);
+ break;
+ default:
+ /* Unsupported mode */
+ Status = VL53L0X_ERROR_MODE_NOT_SUPPORTED;
+ }
+
+ LOG_FUNCTION_END(Status);
+ return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_GetInterruptThresholds(VL53L0X_DEV Dev,
+ VL53L0X_DeviceModes DeviceMode, FixPoint1616_t *pThresholdLow,
+ FixPoint1616_t *pThresholdHigh)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ uint16_t Threshold16;
+ LOG_FUNCTION_START("");
+
+ /* no dependency on DeviceMode for Ewok */
+
+ Status = VL53L0X_RdWord(Dev, VL53L0X_REG_SYSTEM_THRESH_LOW, &Threshold16);
+ /* Need to multiply by 2 because the FW will apply a x2 */
+ *pThresholdLow = (FixPoint1616_t)((0x00fff & Threshold16) << 17);
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ Status = VL53L0X_RdWord(Dev, VL53L0X_REG_SYSTEM_THRESH_HIGH,
+ &Threshold16);
+ /* Need to multiply by 2 because the FW will apply a x2 */
+ *pThresholdHigh =
+ (FixPoint1616_t)((0x00fff & Threshold16) << 17);
+ }
+
+ LOG_FUNCTION_END(Status);
+ return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_load_tuning_settings(VL53L0X_DEV Dev,
+ uint8_t *pTuningSettingBuffer)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ int i;
+ int Index;
+ uint8_t msb;
+ uint8_t lsb;
+ uint8_t SelectParam;
+ uint8_t NumberOfWrites;
+ uint8_t Address;
+ uint8_t localBuffer[4]; /* max */
+ uint16_t Temp16;
+
+ LOG_FUNCTION_START("");
+
+ Index = 0;
+
+ while ((*(pTuningSettingBuffer + Index) != 0) &&
+ (Status == VL53L0X_ERROR_NONE)) {
+ NumberOfWrites = *(pTuningSettingBuffer + Index);
+ Index++;
+ if (NumberOfWrites == 0xFF) {
+ /* internal parameters */
+ SelectParam = *(pTuningSettingBuffer + Index);
+ Index++;
+ switch (SelectParam) {
+ case 0: /* uint16_t SigmaEstRefArray -> 2 bytes */
+ msb = *(pTuningSettingBuffer + Index);
+ Index++;
+ lsb = *(pTuningSettingBuffer + Index);
+ Index++;
+ Temp16 = VL53L0X_MAKEUINT16(lsb, msb);
+ PALDevDataSet(Dev, SigmaEstRefArray, Temp16);
+ break;
+ case 1: /* uint16_t SigmaEstEffPulseWidth -> 2 bytes */
+ msb = *(pTuningSettingBuffer + Index);
+ Index++;
+ lsb = *(pTuningSettingBuffer + Index);
+ Index++;
+ Temp16 = VL53L0X_MAKEUINT16(lsb, msb);
+ PALDevDataSet(Dev, SigmaEstEffPulseWidth,
+ Temp16);
+ break;
+ case 2: /* uint16_t SigmaEstEffAmbWidth -> 2 bytes */
+ msb = *(pTuningSettingBuffer + Index);
+ Index++;
+ lsb = *(pTuningSettingBuffer + Index);
+ Index++;
+ Temp16 = VL53L0X_MAKEUINT16(lsb, msb);
+ PALDevDataSet(Dev, SigmaEstEffAmbWidth, Temp16);
+ break;
+ case 3: /* uint16_t targetRefRate -> 2 bytes */
+ msb = *(pTuningSettingBuffer + Index);
+ Index++;
+ lsb = *(pTuningSettingBuffer + Index);
+ Index++;
+ Temp16 = VL53L0X_MAKEUINT16(lsb, msb);
+ PALDevDataSet(Dev, targetRefRate, Temp16);
+ break;
+ default: /* invalid parameter */
+ Status = VL53L0X_ERROR_INVALID_PARAMS;
+ }
+
+ } else if (NumberOfWrites <= 4) {
+ Address = *(pTuningSettingBuffer + Index);
+ Index++;
+
+ for (i = 0; i < NumberOfWrites; i++) {
+ localBuffer[i] = *(pTuningSettingBuffer +
+ Index);
+ Index++;
+ }
+
+ Status = VL53L0X_WriteMulti(Dev, Address, localBuffer,
+ NumberOfWrites);
+
+ } else {
+ Status = VL53L0X_ERROR_INVALID_PARAMS;
+ }
+ }
+
+ LOG_FUNCTION_END(Status);
+ return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_CheckAndLoadInterruptSettings(VL53L0X_DEV Dev,
+ uint8_t StartNotStopFlag)
+{
+ uint8_t InterruptConfig;
+ FixPoint1616_t ThresholdLow;
+ FixPoint1616_t ThresholdHigh;
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+
+ InterruptConfig = VL53L0X_GETDEVICESPECIFICPARAMETER(Dev,
+ Pin0GpioFunctionality);
+
+ if ((InterruptConfig ==
+ VL53L0X_GPIOFUNCTIONALITY_THRESHOLD_CROSSED_LOW) ||
+ (InterruptConfig ==
+ VL53L0X_GPIOFUNCTIONALITY_THRESHOLD_CROSSED_HIGH) ||
+ (InterruptConfig ==
+ VL53L0X_GPIOFUNCTIONALITY_THRESHOLD_CROSSED_OUT)) {
+
+ Status = VL53L0X_GetInterruptThresholds(Dev,
+ VL53L0X_DEVICEMODE_CONTINUOUS_RANGING,
+ &ThresholdLow, &ThresholdHigh);
+
+ if (((ThresholdLow > 255*65536) ||
+ (ThresholdHigh > 255*65536)) &&
+ (Status == VL53L0X_ERROR_NONE)) {
+
+ if (StartNotStopFlag != 0) {
+ Status = VL53L0X_load_tuning_settings(Dev,
+ InterruptThresholdSettings);
+ } else {
+ Status |= VL53L0X_WrByte(Dev, 0xFF, 0x04);
+ Status |= VL53L0X_WrByte(Dev, 0x70, 0x00);
+ Status |= VL53L0X_WrByte(Dev, 0xFF, 0x00);
+ Status |= VL53L0X_WrByte(Dev, 0x80, 0x00);
+ }
+
+ }
+
+
+ }
+
+ return Status;
+
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_StartMeasurement(VL53L0X_DEV Dev)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ VL53L0X_DeviceModes DeviceMode;
+ uint8_t Byte;
+ uint8_t StartStopByte = VL53L0X_REG_SYSRANGE_MODE_START_STOP;
+ uint32_t LoopNb;
+ LOG_FUNCTION_START("");
+
+ /* Get Current DeviceMode */
+ VL53L0X_GetDeviceMode(Dev, &DeviceMode);
+
+ Status = VL53L0X_WrByte(Dev, 0x80, 0x01);
+ Status = VL53L0X_WrByte(Dev, 0xFF, 0x01);
+ Status = VL53L0X_WrByte(Dev, 0x00, 0x00);
+ Status = VL53L0X_WrByte(Dev, 0x91, PALDevDataGet(Dev, StopVariable));
+ Status = VL53L0X_WrByte(Dev, 0x00, 0x01);
+ Status = VL53L0X_WrByte(Dev, 0xFF, 0x00);
+ Status = VL53L0X_WrByte(Dev, 0x80, 0x00);
+
+ switch (DeviceMode) {
+ case VL53L0X_DEVICEMODE_SINGLE_RANGING:
+ Status = VL53L0X_WrByte(Dev, VL53L0X_REG_SYSRANGE_START, 0x01);
+
+ Byte = StartStopByte;
+ if (Status == VL53L0X_ERROR_NONE) {
+ /* Wait until start bit has been cleared */
+ LoopNb = 0;
+ do {
+ if (LoopNb > 0)
+ Status = VL53L0X_RdByte(Dev,
+ VL53L0X_REG_SYSRANGE_START, &Byte);
+ LoopNb = LoopNb + 1;
+ } while (((Byte & StartStopByte) == StartStopByte)
+ && (Status == VL53L0X_ERROR_NONE)
+ && (LoopNb < VL53L0X_DEFAULT_MAX_LOOP));
+
+ if (LoopNb >= VL53L0X_DEFAULT_MAX_LOOP)
+ Status = VL53L0X_ERROR_TIME_OUT;
+
+ }
+
+ break;
+ case VL53L0X_DEVICEMODE_CONTINUOUS_RANGING:
+ /* Back-to-back mode */
+
+ /* Check if need to apply interrupt settings */
+ if (Status == VL53L0X_ERROR_NONE)
+ Status = VL53L0X_CheckAndLoadInterruptSettings(Dev, 1);
+
+ Status = VL53L0X_WrByte(Dev,
+ VL53L0X_REG_SYSRANGE_START,
+ VL53L0X_REG_SYSRANGE_MODE_BACKTOBACK);
+ if (Status == VL53L0X_ERROR_NONE) {
+ /* Set PAL State to Running */
+ PALDevDataSet(Dev, PalState, VL53L0X_STATE_RUNNING);
+ }
+ break;
+ case VL53L0X_DEVICEMODE_CONTINUOUS_TIMED_RANGING:
+ /* Continuous mode */
+ /* Check if need to apply interrupt settings */
+ if (Status == VL53L0X_ERROR_NONE)
+ Status = VL53L0X_CheckAndLoadInterruptSettings(Dev, 1);
+
+ Status = VL53L0X_WrByte(Dev,
+ VL53L0X_REG_SYSRANGE_START,
+ VL53L0X_REG_SYSRANGE_MODE_TIMED);
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ /* Set PAL State to Running */
+ PALDevDataSet(Dev, PalState, VL53L0X_STATE_RUNNING);
+ }
+ break;
+ default:
+ /* Selected mode not supported */
+ Status = VL53L0X_ERROR_MODE_NOT_SUPPORTED;
+ }
+
+
+ LOG_FUNCTION_END(Status);
+ return Status;
+}
+
+/* Group PAL Measurement Functions */
+VL53L0X_Error VL53L0X::VL53L0X_PerformSingleMeasurement(VL53L0X_DEV Dev)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ VL53L0X_DeviceModes DeviceMode;
+
+ LOG_FUNCTION_START("");
+
+ /* Get Current DeviceMode */
+ Status = VL53L0X_GetDeviceMode(Dev, &DeviceMode);
+
+ /* Start immediately to run a single ranging measurement in case of
+ * single ranging or single histogram */
+ if (Status == VL53L0X_ERROR_NONE
+ && DeviceMode == VL53L0X_DEVICEMODE_SINGLE_RANGING)
+ Status = VL53L0X_StartMeasurement(Dev);
+
+
+ if (Status == VL53L0X_ERROR_NONE)
+ Status = VL53L0X_measurement_poll_for_completion(Dev);
+
+
+ /* Change PAL State in case of single ranging or single histogram */
+ if (Status == VL53L0X_ERROR_NONE
+ && DeviceMode == VL53L0X_DEVICEMODE_SINGLE_RANGING)
+ PALDevDataSet(Dev, PalState, VL53L0X_STATE_IDLE);
+
+
+ LOG_FUNCTION_END(Status);
+ return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_GetXTalkCompensationEnable(VL53L0X_DEV Dev,
+ uint8_t *pXTalkCompensationEnable)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ uint8_t Temp8;
+ LOG_FUNCTION_START("");
+
+ VL53L0X_GETPARAMETERFIELD(Dev, XTalkCompensationEnable, Temp8);
+ *pXTalkCompensationEnable = Temp8;
+
+ LOG_FUNCTION_END(Status);
+ return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_get_total_xtalk_rate(VL53L0X_DEV Dev,
+ VL53L0X_RangingMeasurementData_t *pRangingMeasurementData,
+ FixPoint1616_t *ptotal_xtalk_rate_mcps)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+
+ uint8_t xtalkCompEnable;
+ FixPoint1616_t totalXtalkMegaCps;
+ FixPoint1616_t xtalkPerSpadMegaCps;
+
+ *ptotal_xtalk_rate_mcps = 0;
+
+ Status = VL53L0X_GetXTalkCompensationEnable(Dev, &xtalkCompEnable);
+ if (Status == VL53L0X_ERROR_NONE) {
+
+ if (xtalkCompEnable) {
+
+ VL53L0X_GETPARAMETERFIELD(
+ Dev,
+ XTalkCompensationRateMegaCps,
+ xtalkPerSpadMegaCps);
+
+ /* FixPoint1616 * FixPoint 8:8 = FixPoint0824 */
+ totalXtalkMegaCps =
+ pRangingMeasurementData->EffectiveSpadRtnCount *
+ xtalkPerSpadMegaCps;
+
+ /* FixPoint0824 >> 8 = FixPoint1616 */
+ *ptotal_xtalk_rate_mcps =
+ (totalXtalkMegaCps + 0x80) >> 8;
+ }
+ }
+
+ return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_get_total_signal_rate(VL53L0X_DEV Dev,
+ VL53L0X_RangingMeasurementData_t *pRangingMeasurementData,
+ FixPoint1616_t *ptotal_signal_rate_mcps)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ FixPoint1616_t totalXtalkMegaCps;
+
+ LOG_FUNCTION_START("");
+
+ *ptotal_signal_rate_mcps =
+ pRangingMeasurementData->SignalRateRtnMegaCps;
+
+ Status = VL53L0X_get_total_xtalk_rate(
+ Dev, pRangingMeasurementData, &totalXtalkMegaCps);
+
+ if (Status == VL53L0X_ERROR_NONE)
+ *ptotal_signal_rate_mcps += totalXtalkMegaCps;
+
+ return Status;
+}
+
+/* To convert ms into register value */
+uint32_t VL53L0X::VL53L0X_calc_timeout_mclks(VL53L0X_DEV Dev,
+ uint32_t timeout_period_us,
+ uint8_t vcsel_period_pclks)
+{
+ uint32_t macro_period_ps;
+ uint32_t macro_period_ns;
+ uint32_t timeout_period_mclks = 0;
+
+ macro_period_ps = VL53L0X_calc_macro_period_ps(Dev, vcsel_period_pclks);
+ macro_period_ns = (macro_period_ps + 500) / 1000;
+
+ timeout_period_mclks =
+ (uint32_t) (((timeout_period_us * 1000)
+ + (macro_period_ns / 2)) / macro_period_ns);
+
+ return timeout_period_mclks;
+}
+
+uint32_t VL53L0X::VL53L0X_isqrt(uint32_t num)
+{
+ /*
+ * Implements an integer square root
+ *
+ * From: http://en.wikipedia.org/wiki/Methods_of_computing_square_roots
+ */
+
+ uint32_t res = 0;
+ uint32_t bit = 1 << 30;
+ /* The second-to-top bit is set:
+ * 1 << 14 for 16-bits, 1 << 30 for 32 bits */
+
+ /* "bit" starts at the highest power of four <= the argument. */
+ while (bit > num)
+ bit >>= 2;
+
+
+ while (bit != 0) {
+ if (num >= res + bit) {
+ num -= res + bit;
+ res = (res >> 1) + bit;
+ } else
+ res >>= 1;
+
+ bit >>= 2;
+ }
+
+ return res;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_calc_dmax(
+ VL53L0X_DEV Dev,
+ FixPoint1616_t totalSignalRate_mcps,
+ FixPoint1616_t totalCorrSignalRate_mcps,
+ FixPoint1616_t pwMult,
+ uint32_t sigmaEstimateP1,
+ FixPoint1616_t sigmaEstimateP2,
+ uint32_t peakVcselDuration_us,
+ uint32_t *pdmax_mm)
+{
+ const uint32_t cSigmaLimit = 18;
+ const FixPoint1616_t cSignalLimit = 0x4000; /* 0.25 */
+ const FixPoint1616_t cSigmaEstRef = 0x00000042; /* 0.001 */
+ const uint32_t cAmbEffWidthSigmaEst_ns = 6;
+ const uint32_t cAmbEffWidthDMax_ns = 7;
+ uint32_t dmaxCalRange_mm;
+ FixPoint1616_t dmaxCalSignalRateRtn_mcps;
+ FixPoint1616_t minSignalNeeded;
+ FixPoint1616_t minSignalNeeded_p1;
+ FixPoint1616_t minSignalNeeded_p2;
+ FixPoint1616_t minSignalNeeded_p3;
+ FixPoint1616_t minSignalNeeded_p4;
+ FixPoint1616_t sigmaLimitTmp;
+ FixPoint1616_t sigmaEstSqTmp;
+ FixPoint1616_t signalLimitTmp;
+ FixPoint1616_t SignalAt0mm;
+ FixPoint1616_t dmaxDark;
+ FixPoint1616_t dmaxAmbient;
+ FixPoint1616_t dmaxDarkTmp;
+ FixPoint1616_t sigmaEstP2Tmp;
+ uint32_t signalRateTemp_mcps;
+
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+
+ LOG_FUNCTION_START("");
+
+ dmaxCalRange_mm =
+ PALDevDataGet(Dev, DmaxCalRangeMilliMeter);
+
+ dmaxCalSignalRateRtn_mcps =
+ PALDevDataGet(Dev, DmaxCalSignalRateRtnMegaCps);
+
+ /* uint32 * FixPoint1616 = FixPoint1616 */
+ SignalAt0mm = dmaxCalRange_mm * dmaxCalSignalRateRtn_mcps;
+
+ /* FixPoint1616 >> 8 = FixPoint2408 */
+ SignalAt0mm = (SignalAt0mm + 0x80) >> 8;
+ SignalAt0mm *= dmaxCalRange_mm;
+
+ minSignalNeeded_p1 = 0;
+ if (totalCorrSignalRate_mcps > 0) {
+
+ /* Shift by 10 bits to increase resolution prior to the
+ * division */
+ signalRateTemp_mcps = totalSignalRate_mcps << 10;
+
+ /* Add rounding value prior to division */
+ minSignalNeeded_p1 = signalRateTemp_mcps +
+ (totalCorrSignalRate_mcps/2);
+
+ /* FixPoint0626/FixPoint1616 = FixPoint2210 */
+ minSignalNeeded_p1 /= totalCorrSignalRate_mcps;
+
+ /* Apply a factored version of the speed of light.
+ Correction to be applied at the end */
+ minSignalNeeded_p1 *= 3;
+
+ /* FixPoint2210 * FixPoint2210 = FixPoint1220 */
+ minSignalNeeded_p1 *= minSignalNeeded_p1;
+
+ /* FixPoint1220 >> 16 = FixPoint2804 */
+ minSignalNeeded_p1 = (minSignalNeeded_p1 + 0x8000) >> 16;
+ }
+
+ minSignalNeeded_p2 = pwMult * sigmaEstimateP1;
+
+ /* FixPoint1616 >> 16 = uint32 */
+ minSignalNeeded_p2 = (minSignalNeeded_p2 + 0x8000) >> 16;
+
+ /* uint32 * uint32 = uint32 */
+ minSignalNeeded_p2 *= minSignalNeeded_p2;
+
+ /* Check sigmaEstimateP2
+ * If this value is too high there is not enough signal rate
+ * to calculate dmax value so set a suitable value to ensure
+ * a very small dmax.
+ */
+ sigmaEstP2Tmp = (sigmaEstimateP2 + 0x8000) >> 16;
+ sigmaEstP2Tmp = (sigmaEstP2Tmp + cAmbEffWidthSigmaEst_ns/2)/
+ cAmbEffWidthSigmaEst_ns;
+ sigmaEstP2Tmp *= cAmbEffWidthDMax_ns;
+
+ if (sigmaEstP2Tmp > 0xffff) {
+ minSignalNeeded_p3 = 0xfff00000;
+ } else {
+
+ /* DMAX uses a different ambient width from sigma, so apply
+ * correction.
+ * Perform division before multiplication to prevent overflow.
+ */
+ sigmaEstimateP2 = (sigmaEstimateP2 + cAmbEffWidthSigmaEst_ns/2)/
+ cAmbEffWidthSigmaEst_ns;
+ sigmaEstimateP2 *= cAmbEffWidthDMax_ns;
+
+ /* FixPoint1616 >> 16 = uint32 */
+ minSignalNeeded_p3 = (sigmaEstimateP2 + 0x8000) >> 16;
+
+ minSignalNeeded_p3 *= minSignalNeeded_p3;
+
+ }
+
+ /* FixPoint1814 / uint32 = FixPoint1814 */
+ sigmaLimitTmp = ((cSigmaLimit << 14) + 500) / 1000;
+
+ /* FixPoint1814 * FixPoint1814 = FixPoint3628 := FixPoint0428 */
+ sigmaLimitTmp *= sigmaLimitTmp;
+
+ /* FixPoint1616 * FixPoint1616 = FixPoint3232 */
+ sigmaEstSqTmp = cSigmaEstRef * cSigmaEstRef;
+
+ /* FixPoint3232 >> 4 = FixPoint0428 */
+ sigmaEstSqTmp = (sigmaEstSqTmp + 0x08) >> 4;
+
+ /* FixPoint0428 - FixPoint0428 = FixPoint0428 */
+ sigmaLimitTmp -= sigmaEstSqTmp;
+
+ /* uint32_t * FixPoint0428 = FixPoint0428 */
+ minSignalNeeded_p4 = 4 * 12 * sigmaLimitTmp;
+
+ /* FixPoint0428 >> 14 = FixPoint1814 */
+ minSignalNeeded_p4 = (minSignalNeeded_p4 + 0x2000) >> 14;
+
+ /* uint32 + uint32 = uint32 */
+ minSignalNeeded = (minSignalNeeded_p2 + minSignalNeeded_p3);
+
+ /* uint32 / uint32 = uint32 */
+ minSignalNeeded += (peakVcselDuration_us/2);
+ minSignalNeeded /= peakVcselDuration_us;
+
+ /* uint32 << 14 = FixPoint1814 */
+ minSignalNeeded <<= 14;
+
+ /* FixPoint1814 / FixPoint1814 = uint32 */
+ minSignalNeeded += (minSignalNeeded_p4/2);
+ minSignalNeeded /= minSignalNeeded_p4;
+
+ /* FixPoint3200 * FixPoint2804 := FixPoint2804*/
+ minSignalNeeded *= minSignalNeeded_p1;
+
+ /* Apply correction by dividing by 1000000.
+ * This assumes 10E16 on the numerator of the equation
+ * and 10E-22 on the denominator.
+ * We do this because 32bit fix point calculation can't
+ * handle the larger and smaller elements of this equation,
+ * i.e. speed of light and pulse widths.
+ */
+ minSignalNeeded = (minSignalNeeded + 500) / 1000;
+ minSignalNeeded <<= 4;
+
+ minSignalNeeded = (minSignalNeeded + 500) / 1000;
+
+ /* FixPoint1616 >> 8 = FixPoint2408 */
+ signalLimitTmp = (cSignalLimit + 0x80) >> 8;
+
+ /* FixPoint2408/FixPoint2408 = uint32 */
+ if (signalLimitTmp != 0)
+ dmaxDarkTmp = (SignalAt0mm + (signalLimitTmp / 2))
+ / signalLimitTmp;
+ else
+ dmaxDarkTmp = 0;
+
+ dmaxDark = VL53L0X_isqrt(dmaxDarkTmp);
+
+ /* FixPoint2408/FixPoint2408 = uint32 */
+ if (minSignalNeeded != 0)
+ dmaxAmbient = (SignalAt0mm + minSignalNeeded/2)
+ / minSignalNeeded;
+ else
+ dmaxAmbient = 0;
+
+ dmaxAmbient = VL53L0X_isqrt(dmaxAmbient);
+
+ *pdmax_mm = dmaxDark;
+ if (dmaxDark > dmaxAmbient)
+ *pdmax_mm = dmaxAmbient;
+
+ LOG_FUNCTION_END(Status);
+
+ return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_calc_sigma_estimate(VL53L0X_DEV Dev,
+ VL53L0X_RangingMeasurementData_t *pRangingMeasurementData,
+ FixPoint1616_t *pSigmaEstimate,
+ uint32_t *pDmax_mm)
+{
+ /* Expressed in 100ths of a ns, i.e. centi-ns */
+ const uint32_t cPulseEffectiveWidth_centi_ns = 800;
+ /* Expressed in 100ths of a ns, i.e. centi-ns */
+ const uint32_t cAmbientEffectiveWidth_centi_ns = 600;
+ const FixPoint1616_t cDfltFinalRangeIntegrationTimeMilliSecs = 0x00190000; /* 25ms */
+ const uint32_t cVcselPulseWidth_ps = 4700; /* pico secs */
+ const FixPoint1616_t cSigmaEstMax = 0x028F87AE;
+ const FixPoint1616_t cSigmaEstRtnMax = 0xF000;
+ const FixPoint1616_t cAmbToSignalRatioMax = 0xF0000000/
+ cAmbientEffectiveWidth_centi_ns;
+ /* Time Of Flight per mm (6.6 pico secs) */
+ const FixPoint1616_t cTOF_per_mm_ps = 0x0006999A;
+ const uint32_t c16BitRoundingParam = 0x00008000;
+ const FixPoint1616_t cMaxXTalk_kcps = 0x00320000;
+ const uint32_t cPllPeriod_ps = 1655;
+
+ uint32_t vcselTotalEventsRtn;
+ uint32_t finalRangeTimeoutMicroSecs;
+ uint32_t preRangeTimeoutMicroSecs;
+ uint32_t finalRangeIntegrationTimeMilliSecs;
+ FixPoint1616_t sigmaEstimateP1;
+ FixPoint1616_t sigmaEstimateP2;
+ FixPoint1616_t sigmaEstimateP3;
+ FixPoint1616_t deltaT_ps;
+ FixPoint1616_t pwMult;
+ FixPoint1616_t sigmaEstRtn;
+ FixPoint1616_t sigmaEstimate;
+ FixPoint1616_t xTalkCorrection;
+ FixPoint1616_t ambientRate_kcps;
+ FixPoint1616_t peakSignalRate_kcps;
+ FixPoint1616_t xTalkCompRate_mcps;
+ uint32_t xTalkCompRate_kcps;
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ FixPoint1616_t diff1_mcps;
+ FixPoint1616_t diff2_mcps;
+ FixPoint1616_t sqr1;
+ FixPoint1616_t sqr2;
+ FixPoint1616_t sqrSum;
+ FixPoint1616_t sqrtResult_centi_ns;
+ FixPoint1616_t sqrtResult;
+ FixPoint1616_t totalSignalRate_mcps;
+ FixPoint1616_t correctedSignalRate_mcps;
+ FixPoint1616_t sigmaEstRef;
+ uint32_t vcselWidth;
+ uint32_t finalRangeMacroPCLKS;
+ uint32_t preRangeMacroPCLKS;
+ uint32_t peakVcselDuration_us;
+ uint8_t finalRangeVcselPCLKS;
+ uint8_t preRangeVcselPCLKS;
+ /*! \addtogroup calc_sigma_estimate
+ * @{
+ *
+ * Estimates the range sigma
+ */
+
+ LOG_FUNCTION_START("");
+
+ VL53L0X_GETPARAMETERFIELD(Dev, XTalkCompensationRateMegaCps,
+ xTalkCompRate_mcps);
+
+ /*
+ * We work in kcps rather than mcps as this helps keep within the
+ * confines of the 32 Fix1616 type.
+ */
+
+ ambientRate_kcps =
+ (pRangingMeasurementData->AmbientRateRtnMegaCps * 1000) >> 16;
+
+ correctedSignalRate_mcps =
+ pRangingMeasurementData->SignalRateRtnMegaCps;
+
+
+ Status = VL53L0X_get_total_signal_rate(
+ Dev, pRangingMeasurementData, &totalSignalRate_mcps);
+ Status = VL53L0X_get_total_xtalk_rate(
+ Dev, pRangingMeasurementData, &xTalkCompRate_mcps);
+
+
+ /* Signal rate measurement provided by device is the
+ * peak signal rate, not average.
+ */
+ peakSignalRate_kcps = (totalSignalRate_mcps * 1000);
+ peakSignalRate_kcps = (peakSignalRate_kcps + 0x8000) >> 16;
+
+ xTalkCompRate_kcps = xTalkCompRate_mcps * 1000;
+
+ if (xTalkCompRate_kcps > cMaxXTalk_kcps)
+ xTalkCompRate_kcps = cMaxXTalk_kcps;
+
+ if (Status == VL53L0X_ERROR_NONE) {
+
+ /* Calculate final range macro periods */
+ finalRangeTimeoutMicroSecs = VL53L0X_GETDEVICESPECIFICPARAMETER(
+ Dev, FinalRangeTimeoutMicroSecs);
+
+ finalRangeVcselPCLKS = VL53L0X_GETDEVICESPECIFICPARAMETER(
+ Dev, FinalRangeVcselPulsePeriod);
+
+ finalRangeMacroPCLKS = VL53L0X_calc_timeout_mclks(
+ Dev, finalRangeTimeoutMicroSecs, finalRangeVcselPCLKS);
+
+ /* Calculate pre-range macro periods */
+ preRangeTimeoutMicroSecs = VL53L0X_GETDEVICESPECIFICPARAMETER(
+ Dev, PreRangeTimeoutMicroSecs);
+
+ preRangeVcselPCLKS = VL53L0X_GETDEVICESPECIFICPARAMETER(
+ Dev, PreRangeVcselPulsePeriod);
+
+ preRangeMacroPCLKS = VL53L0X_calc_timeout_mclks(
+ Dev, preRangeTimeoutMicroSecs, preRangeVcselPCLKS);
+
+ vcselWidth = 3;
+ if (finalRangeVcselPCLKS == 8)
+ vcselWidth = 2;
+
+
+ peakVcselDuration_us = vcselWidth * 2048 *
+ (preRangeMacroPCLKS + finalRangeMacroPCLKS);
+ peakVcselDuration_us = (peakVcselDuration_us + 500)/1000;
+ peakVcselDuration_us *= cPllPeriod_ps;
+ peakVcselDuration_us = (peakVcselDuration_us + 500)/1000;
+
+ /* Fix1616 >> 8 = Fix2408 */
+ totalSignalRate_mcps = (totalSignalRate_mcps + 0x80) >> 8;
+
+ /* Fix2408 * uint32 = Fix2408 */
+ vcselTotalEventsRtn = totalSignalRate_mcps *
+ peakVcselDuration_us;
+
+ /* Fix2408 >> 8 = uint32 */
+ vcselTotalEventsRtn = (vcselTotalEventsRtn + 0x80) >> 8;
+
+ /* Fix2408 << 8 = Fix1616 = */
+ totalSignalRate_mcps <<= 8;
+ }
+
+ if (Status != VL53L0X_ERROR_NONE) {
+ LOG_FUNCTION_END(Status);
+ return Status;
+ }
+
+ if (peakSignalRate_kcps == 0) {
+ *pSigmaEstimate = cSigmaEstMax;
+ PALDevDataSet(Dev, SigmaEstimate, cSigmaEstMax);
+ *pDmax_mm = 0;
+ } else {
+ if (vcselTotalEventsRtn < 1)
+ vcselTotalEventsRtn = 1;
+
+ sigmaEstimateP1 = cPulseEffectiveWidth_centi_ns;
+
+ /* ((FixPoint1616 << 16)* uint32)/uint32 = FixPoint1616 */
+ sigmaEstimateP2 = (ambientRate_kcps << 16)/peakSignalRate_kcps;
+ if (sigmaEstimateP2 > cAmbToSignalRatioMax) {
+ /* Clip to prevent overflow. Will ensure safe
+ * max result. */
+ sigmaEstimateP2 = cAmbToSignalRatioMax;
+ }
+ sigmaEstimateP2 *= cAmbientEffectiveWidth_centi_ns;
+
+ sigmaEstimateP3 = 2 * VL53L0X_isqrt(vcselTotalEventsRtn * 12);
+
+ /* uint32 * FixPoint1616 = FixPoint1616 */
+ deltaT_ps = pRangingMeasurementData->RangeMilliMeter *
+ cTOF_per_mm_ps;
+
+ /*
+ * vcselRate - xtalkCompRate
+ * (uint32 << 16) - FixPoint1616 = FixPoint1616.
+ * Divide result by 1000 to convert to mcps.
+ * 500 is added to ensure rounding when integer division
+ * truncates.
+ */
+ diff1_mcps = (((peakSignalRate_kcps << 16) -
+ 2 * xTalkCompRate_kcps) + 500)/1000;
+
+ /* vcselRate + xtalkCompRate */
+ diff2_mcps = ((peakSignalRate_kcps << 16) + 500)/1000;
+
+ /* Shift by 8 bits to increase resolution prior to the
+ * division */
+ diff1_mcps <<= 8;
+
+ /* FixPoint0824/FixPoint1616 = FixPoint2408 */
+// xTalkCorrection = abs(diff1_mcps/diff2_mcps);
+// abs is causing compiler overloading isue in C++, but unsigned types. So, redundant call anyway!
+ xTalkCorrection = diff1_mcps/diff2_mcps;
+
+ /* FixPoint2408 << 8 = FixPoint1616 */
+ xTalkCorrection <<= 8;
+
+ if(pRangingMeasurementData->RangeStatus != 0){
+ pwMult = 1 << 16;
+ } else {
+ /* FixPoint1616/uint32 = FixPoint1616 */
+ pwMult = deltaT_ps/cVcselPulseWidth_ps; /* smaller than 1.0f */
+
+ /*
+ * FixPoint1616 * FixPoint1616 = FixPoint3232, however both
+ * values are small enough such that32 bits will not be
+ * exceeded.
+ */
+ pwMult *= ((1 << 16) - xTalkCorrection);
+
+ /* (FixPoint3232 >> 16) = FixPoint1616 */
+ pwMult = (pwMult + c16BitRoundingParam) >> 16;
+
+ /* FixPoint1616 + FixPoint1616 = FixPoint1616 */
+ pwMult += (1 << 16);
+
+ /*
+ * At this point the value will be 1.xx, therefore if we square
+ * the value this will exceed 32 bits. To address this perform
+ * a single shift to the right before the multiplication.
+ */
+ pwMult >>= 1;
+ /* FixPoint1715 * FixPoint1715 = FixPoint3430 */
+ pwMult = pwMult * pwMult;
+
+ /* (FixPoint3430 >> 14) = Fix1616 */
+ pwMult >>= 14;
+ }
+
+ /* FixPoint1616 * uint32 = FixPoint1616 */
+ sqr1 = pwMult * sigmaEstimateP1;
+
+ /* (FixPoint1616 >> 16) = FixPoint3200 */
+ sqr1 = (sqr1 + 0x8000) >> 16;
+
+ /* FixPoint3200 * FixPoint3200 = FixPoint6400 */
+ sqr1 *= sqr1;
+
+ sqr2 = sigmaEstimateP2;
+
+ /* (FixPoint1616 >> 16) = FixPoint3200 */
+ sqr2 = (sqr2 + 0x8000) >> 16;
+
+ /* FixPoint3200 * FixPoint3200 = FixPoint6400 */
+ sqr2 *= sqr2;
+
+ /* FixPoint64000 + FixPoint6400 = FixPoint6400 */
+ sqrSum = sqr1 + sqr2;
+
+ /* SQRT(FixPoin6400) = FixPoint3200 */
+ sqrtResult_centi_ns = VL53L0X_isqrt(sqrSum);
+
+ /* (FixPoint3200 << 16) = FixPoint1616 */
+ sqrtResult_centi_ns <<= 16;
+
+ /*
+ * Note that the Speed Of Light is expressed in um per 1E-10
+ * seconds (2997) Therefore to get mm/ns we have to divide by
+ * 10000
+ */
+ sigmaEstRtn = (((sqrtResult_centi_ns+50)/100) /
+ sigmaEstimateP3);
+ sigmaEstRtn *= VL53L0X_SPEED_OF_LIGHT_IN_AIR;
+
+ /* Add 5000 before dividing by 10000 to ensure rounding. */
+ sigmaEstRtn += 5000;
+ sigmaEstRtn /= 10000;
+
+ if (sigmaEstRtn > cSigmaEstRtnMax) {
+ /* Clip to prevent overflow. Will ensure safe
+ * max result. */
+ sigmaEstRtn = cSigmaEstRtnMax;
+ }
+ finalRangeIntegrationTimeMilliSecs =
+ (finalRangeTimeoutMicroSecs + preRangeTimeoutMicroSecs + 500)/1000;
+
+ /* sigmaEstRef = 1mm * 25ms/final range integration time (inc pre-range)
+ * sqrt(FixPoint1616/int) = FixPoint2408)
+ */
+ sigmaEstRef =
+ VL53L0X_isqrt((cDfltFinalRangeIntegrationTimeMilliSecs +
+ finalRangeIntegrationTimeMilliSecs/2)/
+ finalRangeIntegrationTimeMilliSecs);
+
+ /* FixPoint2408 << 8 = FixPoint1616 */
+ sigmaEstRef <<= 8;
+ sigmaEstRef = (sigmaEstRef + 500)/1000;
+
+ /* FixPoint1616 * FixPoint1616 = FixPoint3232 */
+ sqr1 = sigmaEstRtn * sigmaEstRtn;
+ /* FixPoint1616 * FixPoint1616 = FixPoint3232 */
+ sqr2 = sigmaEstRef * sigmaEstRef;
+
+ /* sqrt(FixPoint3232) = FixPoint1616 */
+ sqrtResult = VL53L0X_isqrt((sqr1 + sqr2));
+ /*
+ * Note that the Shift by 4 bits increases resolution prior to
+ * the sqrt, therefore the result must be shifted by 2 bits to
+ * the right to revert back to the FixPoint1616 format.
+ */
+
+ sigmaEstimate = 1000 * sqrtResult;
+
+ if ((peakSignalRate_kcps < 1) || (vcselTotalEventsRtn < 1) ||
+ (sigmaEstimate > cSigmaEstMax)) {
+ sigmaEstimate = cSigmaEstMax;
+ }
+
+ *pSigmaEstimate = (uint32_t)(sigmaEstimate);
+ PALDevDataSet(Dev, SigmaEstimate, *pSigmaEstimate);
+ Status = VL53L0X_calc_dmax(
+ Dev,
+ totalSignalRate_mcps,
+ correctedSignalRate_mcps,
+ pwMult,
+ sigmaEstimateP1,
+ sigmaEstimateP2,
+ peakVcselDuration_us,
+ pDmax_mm);
+ }
+
+ LOG_FUNCTION_END(Status);
+ return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_get_pal_range_status(VL53L0X_DEV Dev,
+ uint8_t DeviceRangeStatus,
+ FixPoint1616_t SignalRate,
+ uint16_t EffectiveSpadRtnCount,
+ VL53L0X_RangingMeasurementData_t *pRangingMeasurementData,
+ uint8_t *pPalRangeStatus)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ uint8_t NoneFlag;
+ uint8_t SigmaLimitflag = 0;
+ uint8_t SignalRefClipflag = 0;
+ uint8_t RangeIgnoreThresholdflag = 0;
+ uint8_t SigmaLimitCheckEnable = 0;
+ uint8_t SignalRateFinalRangeLimitCheckEnable = 0;
+ uint8_t SignalRefClipLimitCheckEnable = 0;
+ uint8_t RangeIgnoreThresholdLimitCheckEnable = 0;
+ FixPoint1616_t SigmaEstimate;
+ FixPoint1616_t SigmaLimitValue;
+ FixPoint1616_t SignalRefClipValue;
+ FixPoint1616_t RangeIgnoreThresholdValue;
+ FixPoint1616_t SignalRatePerSpad;
+ uint8_t DeviceRangeStatusInternal = 0;
+ uint16_t tmpWord = 0;
+ uint8_t Temp8;
+ uint32_t Dmax_mm = 0;
+ FixPoint1616_t LastSignalRefMcps;
+
+ LOG_FUNCTION_START("");
+
+
+ /*
+ * VL53L0X has a good ranging when the value of the
+ * DeviceRangeStatus = 11. This function will replace the value 0 with
+ * the value 11 in the DeviceRangeStatus.
+ * In addition, the SigmaEstimator is not included in the VL53L0X
+ * DeviceRangeStatus, this will be added in the PalRangeStatus.
+ */
+
+ DeviceRangeStatusInternal = ((DeviceRangeStatus & 0x78) >> 3);
+
+ if (DeviceRangeStatusInternal == 0 ||
+ DeviceRangeStatusInternal == 5 ||
+ DeviceRangeStatusInternal == 7 ||
+ DeviceRangeStatusInternal == 12 ||
+ DeviceRangeStatusInternal == 13 ||
+ DeviceRangeStatusInternal == 14 ||
+ DeviceRangeStatusInternal == 15
+ ) {
+ NoneFlag = 1;
+ } else {
+ NoneFlag = 0;
+ }
+
+ /*
+ * Check if Sigma limit is enabled, if yes then do comparison with limit
+ * value and put the result back into pPalRangeStatus.
+ */
+ if (Status == VL53L0X_ERROR_NONE)
+ Status = VL53L0X_GetLimitCheckEnable(Dev,
+ VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE,
+ &SigmaLimitCheckEnable);
+
+ if ((SigmaLimitCheckEnable != 0) && (Status == VL53L0X_ERROR_NONE)) {
+ /*
+ * compute the Sigma and check with limit
+ */
+ Status = VL53L0X_calc_sigma_estimate(
+ Dev,
+ pRangingMeasurementData,
+ &SigmaEstimate,
+ &Dmax_mm);
+ if (Status == VL53L0X_ERROR_NONE)
+ pRangingMeasurementData->RangeDMaxMilliMeter = Dmax_mm;
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ Status = VL53L0X_GetLimitCheckValue(Dev,
+ VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE,
+ &SigmaLimitValue);
+
+ if ((SigmaLimitValue > 0) &&
+ (SigmaEstimate > SigmaLimitValue))
+ /* Limit Fail */
+ SigmaLimitflag = 1;
+ }
+ }
+
+ /*
+ * Check if Signal ref clip limit is enabled, if yes then do comparison
+ * with limit value and put the result back into pPalRangeStatus.
+ */
+ if (Status == VL53L0X_ERROR_NONE)
+ Status = VL53L0X_GetLimitCheckEnable(Dev,
+ VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP,
+ &SignalRefClipLimitCheckEnable);
+
+ if ((SignalRefClipLimitCheckEnable != 0) &&
+ (Status == VL53L0X_ERROR_NONE)) {
+
+ Status = VL53L0X_GetLimitCheckValue(Dev,
+ VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP,
+ &SignalRefClipValue);
+
+ /* Read LastSignalRefMcps from device */
+ if (Status == VL53L0X_ERROR_NONE)
+ Status = VL53L0X_WrByte(Dev, 0xFF, 0x01);
+
+ if (Status == VL53L0X_ERROR_NONE)
+ Status = VL53L0X_RdWord(Dev,
+ VL53L0X_REG_RESULT_PEAK_SIGNAL_RATE_REF,
+ &tmpWord);
+
+ if (Status == VL53L0X_ERROR_NONE)
+ Status = VL53L0X_WrByte(Dev, 0xFF, 0x00);
+
+ LastSignalRefMcps = VL53L0X_FIXPOINT97TOFIXPOINT1616(tmpWord);
+ PALDevDataSet(Dev, LastSignalRefMcps, LastSignalRefMcps);
+
+ if ((SignalRefClipValue > 0) &&
+ (LastSignalRefMcps > SignalRefClipValue)) {
+ /* Limit Fail */
+ SignalRefClipflag = 1;
+ }
+ }
+
+ /*
+ * Check if Signal ref clip limit is enabled, if yes then do comparison
+ * with limit value and put the result back into pPalRangeStatus.
+ * EffectiveSpadRtnCount has a format 8.8
+ * If (Return signal rate < (1.5 x Xtalk x number of Spads)) : FAIL
+ */
+ if (Status == VL53L0X_ERROR_NONE)
+ Status = VL53L0X_GetLimitCheckEnable(Dev,
+ VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD,
+ &RangeIgnoreThresholdLimitCheckEnable);
+
+ if ((RangeIgnoreThresholdLimitCheckEnable != 0) &&
+ (Status == VL53L0X_ERROR_NONE)) {
+
+ /* Compute the signal rate per spad */
+ if (EffectiveSpadRtnCount == 0) {
+ SignalRatePerSpad = 0;
+ } else {
+ SignalRatePerSpad = (FixPoint1616_t)((256 * SignalRate)
+ / EffectiveSpadRtnCount);
+ }
+
+ Status = VL53L0X_GetLimitCheckValue(Dev,
+ VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD,
+ &RangeIgnoreThresholdValue);
+
+ if ((RangeIgnoreThresholdValue > 0) &&
+ (SignalRatePerSpad < RangeIgnoreThresholdValue)) {
+ /* Limit Fail add 2^6 to range status */
+ RangeIgnoreThresholdflag = 1;
+ }
+ }
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ if (NoneFlag == 1) {
+ *pPalRangeStatus = 255; /* NONE */
+ } else if (DeviceRangeStatusInternal == 1 ||
+ DeviceRangeStatusInternal == 2 ||
+ DeviceRangeStatusInternal == 3) {
+ *pPalRangeStatus = 5; /* HW fail */
+ } else if (DeviceRangeStatusInternal == 6 ||
+ DeviceRangeStatusInternal == 9) {
+ *pPalRangeStatus = 4; /* Phase fail */
+ } else if (DeviceRangeStatusInternal == 8 ||
+ DeviceRangeStatusInternal == 10 ||
+ SignalRefClipflag == 1) {
+ *pPalRangeStatus = 3; /* Min range */
+ } else if (DeviceRangeStatusInternal == 4 ||
+ RangeIgnoreThresholdflag == 1) {
+ *pPalRangeStatus = 2; /* Signal Fail */
+ } else if (SigmaLimitflag == 1) {
+ *pPalRangeStatus = 1; /* Sigma Fail */
+ } else {
+ *pPalRangeStatus = 0; /* Range Valid */
+ }
+ }
+
+ /* DMAX only relevant during range error */
+ if (*pPalRangeStatus == 0)
+ pRangingMeasurementData->RangeDMaxMilliMeter = 0;
+
+ /* fill the Limit Check Status */
+
+ Status = VL53L0X_GetLimitCheckEnable(Dev,
+ VL53L0X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE,
+ &SignalRateFinalRangeLimitCheckEnable);
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ if ((SigmaLimitCheckEnable == 0) || (SigmaLimitflag == 1))
+ Temp8 = 1;
+ else
+ Temp8 = 0;
+ VL53L0X_SETARRAYPARAMETERFIELD(Dev, LimitChecksStatus,
+ VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE, Temp8);
+
+ if ((DeviceRangeStatusInternal == 4) ||
+ (SignalRateFinalRangeLimitCheckEnable == 0))
+ Temp8 = 1;
+ else
+ Temp8 = 0;
+ VL53L0X_SETARRAYPARAMETERFIELD(Dev, LimitChecksStatus,
+ VL53L0X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE,
+ Temp8);
+
+ if ((SignalRefClipLimitCheckEnable == 0) ||
+ (SignalRefClipflag == 1))
+ Temp8 = 1;
+ else
+ Temp8 = 0;
+
+ VL53L0X_SETARRAYPARAMETERFIELD(Dev, LimitChecksStatus,
+ VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP, Temp8);
+
+ if ((RangeIgnoreThresholdLimitCheckEnable == 0) ||
+ (RangeIgnoreThresholdflag == 1))
+ Temp8 = 1;
+ else
+ Temp8 = 0;
+
+ VL53L0X_SETARRAYPARAMETERFIELD(Dev, LimitChecksStatus,
+ VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD,
+ Temp8);
+ }
+
+ LOG_FUNCTION_END(Status);
+ return Status;
+
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_GetRangingMeasurementData(VL53L0X_DEV Dev,
+ VL53L0X_RangingMeasurementData_t *pRangingMeasurementData)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ uint8_t DeviceRangeStatus;
+ uint8_t RangeFractionalEnable;
+ uint8_t PalRangeStatus;
+ uint8_t XTalkCompensationEnable;
+ uint16_t AmbientRate;
+ FixPoint1616_t SignalRate;
+ uint16_t XTalkCompensationRateMegaCps;
+ uint16_t EffectiveSpadRtnCount;
+ uint16_t tmpuint16;
+ uint16_t XtalkRangeMilliMeter;
+ uint16_t LinearityCorrectiveGain;
+ uint8_t localBuffer[12];
+ VL53L0X_RangingMeasurementData_t LastRangeDataBuffer;
+
+ LOG_FUNCTION_START("");
+
+ /*
+ * use multi read even if some registers are not useful, result will
+ * be more efficient
+ * start reading at 0x14 dec20
+ * end reading at 0x21 dec33 total 14 bytes to read
+ */
+ Status = VL53L0X_ReadMulti(Dev, 0x14, localBuffer, 12);
+
+ if (Status == VL53L0X_ERROR_NONE) {
+
+ pRangingMeasurementData->ZoneId = 0; /* Only one zone */
+ pRangingMeasurementData->TimeStamp = 0; /* Not Implemented */
+
+ tmpuint16 = VL53L0X_MAKEUINT16(localBuffer[11], localBuffer[10]);
+ /* cut1.1 if SYSTEM__RANGE_CONFIG if 1 range is 2bits fractional
+ *(format 11.2) else no fractional
+ */
+
+ pRangingMeasurementData->MeasurementTimeUsec = 0;
+
+ SignalRate = VL53L0X_FIXPOINT97TOFIXPOINT1616(
+ VL53L0X_MAKEUINT16(localBuffer[7], localBuffer[6]));
+ /* peak_signal_count_rate_rtn_mcps */
+ pRangingMeasurementData->SignalRateRtnMegaCps = SignalRate;
+
+ AmbientRate = VL53L0X_MAKEUINT16(localBuffer[9], localBuffer[8]);
+ pRangingMeasurementData->AmbientRateRtnMegaCps =
+ VL53L0X_FIXPOINT97TOFIXPOINT1616(AmbientRate);
+
+ EffectiveSpadRtnCount = VL53L0X_MAKEUINT16(localBuffer[3],
+ localBuffer[2]);
+ /* EffectiveSpadRtnCount is 8.8 format */
+ pRangingMeasurementData->EffectiveSpadRtnCount =
+ EffectiveSpadRtnCount;
+
+ DeviceRangeStatus = localBuffer[0];
+
+ /* Get Linearity Corrective Gain */
+ LinearityCorrectiveGain = PALDevDataGet(Dev,
+ LinearityCorrectiveGain);
+
+ /* Get ranging configuration */
+ RangeFractionalEnable = PALDevDataGet(Dev,
+ RangeFractionalEnable);
+
+ if (LinearityCorrectiveGain != 1000) {
+
+ tmpuint16 = (uint16_t)((LinearityCorrectiveGain
+ * tmpuint16 + 500) / 1000);
+
+ /* Implement Xtalk */
+ VL53L0X_GETPARAMETERFIELD(Dev,
+ XTalkCompensationRateMegaCps,
+ XTalkCompensationRateMegaCps);
+ VL53L0X_GETPARAMETERFIELD(Dev, XTalkCompensationEnable,
+ XTalkCompensationEnable);
+
+ if (XTalkCompensationEnable) {
+
+ if ((SignalRate
+ - ((XTalkCompensationRateMegaCps
+ * EffectiveSpadRtnCount) >> 8))
+ <= 0) {
+ if (RangeFractionalEnable)
+ XtalkRangeMilliMeter = 8888;
+ else
+ XtalkRangeMilliMeter = 8888
+ << 2;
+ } else {
+ XtalkRangeMilliMeter =
+ (tmpuint16 * SignalRate)
+ / (SignalRate
+ - ((XTalkCompensationRateMegaCps
+ * EffectiveSpadRtnCount)
+ >> 8));
+ }
+
+ tmpuint16 = XtalkRangeMilliMeter;
+ }
+
+ }
+
+ if (RangeFractionalEnable) {
+ pRangingMeasurementData->RangeMilliMeter =
+ (uint16_t)((tmpuint16) >> 2);
+ pRangingMeasurementData->RangeFractionalPart =
+ (uint8_t)((tmpuint16 & 0x03) << 6);
+ } else {
+ pRangingMeasurementData->RangeMilliMeter = tmpuint16;
+ pRangingMeasurementData->RangeFractionalPart = 0;
+ }
+
+ /*
+ * For a standard definition of RangeStatus, this should
+ * return 0 in case of good result after a ranging
+ * The range status depends on the device so call a device
+ * specific function to obtain the right Status.
+ */
+ Status |= VL53L0X_get_pal_range_status(Dev, DeviceRangeStatus,
+ SignalRate, EffectiveSpadRtnCount,
+ pRangingMeasurementData, &PalRangeStatus);
+
+ if (Status == VL53L0X_ERROR_NONE)
+ pRangingMeasurementData->RangeStatus = PalRangeStatus;
+
+ }
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ /* Copy last read data into Dev buffer */
+ LastRangeDataBuffer = PALDevDataGet(Dev, LastRangeMeasure);
+
+ LastRangeDataBuffer.RangeMilliMeter =
+ pRangingMeasurementData->RangeMilliMeter;
+ LastRangeDataBuffer.RangeFractionalPart =
+ pRangingMeasurementData->RangeFractionalPart;
+ LastRangeDataBuffer.RangeDMaxMilliMeter =
+ pRangingMeasurementData->RangeDMaxMilliMeter;
+ LastRangeDataBuffer.MeasurementTimeUsec =
+ pRangingMeasurementData->MeasurementTimeUsec;
+ LastRangeDataBuffer.SignalRateRtnMegaCps =
+ pRangingMeasurementData->SignalRateRtnMegaCps;
+ LastRangeDataBuffer.AmbientRateRtnMegaCps =
+ pRangingMeasurementData->AmbientRateRtnMegaCps;
+ LastRangeDataBuffer.EffectiveSpadRtnCount =
+ pRangingMeasurementData->EffectiveSpadRtnCount;
+ LastRangeDataBuffer.RangeStatus =
+ pRangingMeasurementData->RangeStatus;
+
+ PALDevDataSet(Dev, LastRangeMeasure, LastRangeDataBuffer);
+ }
+
+ LOG_FUNCTION_END(Status);
+ return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_PerformSingleRangingMeasurement(VL53L0X_DEV Dev,
+ VL53L0X_RangingMeasurementData_t *pRangingMeasurementData)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+
+ LOG_FUNCTION_START("");
+
+ /* This function will do a complete single ranging
+ * Here we fix the mode! */
+ Status = VL53L0X_SetDeviceMode(Dev, VL53L0X_DEVICEMODE_SINGLE_RANGING);
+
+ if (Status == VL53L0X_ERROR_NONE)
+ Status = VL53L0X_PerformSingleMeasurement(Dev);
+
+
+ if (Status == VL53L0X_ERROR_NONE)
+ Status = VL53L0X_GetRangingMeasurementData(Dev,
+ pRangingMeasurementData);
+
+
+ if (Status == VL53L0X_ERROR_NONE)
+ Status = VL53L0X_ClearInterruptMask(Dev, 0);
+
+
+ LOG_FUNCTION_END(Status);
+ return Status;
+}
+
+VL53L0X_Error VL53L0X::perform_ref_signal_measurement(VL53L0X_DEV Dev,
+ uint16_t *refSignalRate)
+{
+ VL53L0X_Error status = VL53L0X_ERROR_NONE;
+ VL53L0X_RangingMeasurementData_t rangingMeasurementData;
+
+ uint8_t SequenceConfig = 0;
+
+ /* store the value of the sequence config,
+ * this will be reset before the end of the function
+ */
+
+ SequenceConfig = PALDevDataGet(Dev, SequenceConfig);
+
+ /*
+ * This function performs a reference signal rate measurement.
+ */
+ if (status == VL53L0X_ERROR_NONE)
+ status = VL53L0X_WrByte(Dev,
+ VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG, 0xC0);
+
+ if (status == VL53L0X_ERROR_NONE)
+ status = VL53L0X_PerformSingleRangingMeasurement(Dev,
+ &rangingMeasurementData);
+
+ if (status == VL53L0X_ERROR_NONE)
+ status = VL53L0X_WrByte(Dev, 0xFF, 0x01);
+
+ if (status == VL53L0X_ERROR_NONE)
+ status = VL53L0X_RdWord(Dev,
+ VL53L0X_REG_RESULT_PEAK_SIGNAL_RATE_REF,
+ refSignalRate);
+
+ if (status == VL53L0X_ERROR_NONE)
+ status = VL53L0X_WrByte(Dev, 0xFF, 0x00);
+
+ if (status == VL53L0X_ERROR_NONE) {
+ /* restore the previous Sequence Config */
+ status = VL53L0X_WrByte(Dev, VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG,
+ SequenceConfig);
+ if (status == VL53L0X_ERROR_NONE)
+ PALDevDataSet(Dev, SequenceConfig, SequenceConfig);
+ }
+
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_perform_ref_spad_management(VL53L0X_DEV Dev,
+ uint32_t *refSpadCount,
+ uint8_t *isApertureSpads)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ uint8_t lastSpadArray[6];
+ uint8_t startSelect = 0xB4;
+ uint32_t minimumSpadCount = 3;
+ uint32_t maxSpadCount = 44;
+ uint32_t currentSpadIndex = 0;
+ uint32_t lastSpadIndex = 0;
+ int32_t nextGoodSpad = 0;
+ uint16_t targetRefRate = 0x0A00; /* 20 MCPS in 9:7 format */
+ uint16_t peakSignalRateRef;
+ uint32_t needAptSpads = 0;
+ uint32_t index = 0;
+ uint32_t spadArraySize = 6;
+ uint32_t signalRateDiff = 0;
+ uint32_t lastSignalRateDiff = 0;
+ uint8_t complete = 0;
+ uint8_t VhvSettings = 0;
+ uint8_t PhaseCal = 0;
+ uint32_t refSpadCount_int = 0;
+ uint8_t isApertureSpads_int = 0;
+
+ /*
+ * The reference SPAD initialization procedure determines the minimum
+ * amount of reference spads to be enables to achieve a target reference
+ * signal rate and should be performed once during initialization.
+ *
+ * Either aperture or non-aperture spads are applied but never both.
+ * Firstly non-aperture spads are set, begining with 5 spads, and
+ * increased one spad at a time until the closest measurement to the
+ * target rate is achieved.
+ *
+ * If the target rate is exceeded when 5 non-aperture spads are enabled,
+ * initialization is performed instead with aperture spads.
+ *
+ * When setting spads, a 'Good Spad Map' is applied.
+ *
+ * This procedure operates within a SPAD window of interest of a maximum
+ * 44 spads.
+ * The start point is currently fixed to 180, which lies towards the end
+ * of the non-aperture quadrant and runs in to the adjacent aperture
+ * quadrant.
+ */
+
+
+ targetRefRate = PALDevDataGet(Dev, targetRefRate);
+
+ /*
+ * Initialize Spad arrays.
+ * Currently the good spad map is initialised to 'All good'.
+ * This is a short term implementation. The good spad map will be
+ * provided as an input.
+ * Note that there are 6 bytes. Only the first 44 bits will be used to
+ * represent spads.
+ */
+ for (index = 0; index < spadArraySize; index++)
+ Dev->Data.SpadData.RefSpadEnables[index] = 0;
+
+
+ Status = VL53L0X_WrByte(Dev, 0xFF, 0x01);
+
+ if (Status == VL53L0X_ERROR_NONE)
+ Status = VL53L0X_WrByte(Dev,
+ VL53L0X_REG_DYNAMIC_SPAD_REF_EN_START_OFFSET, 0x00);
+
+ if (Status == VL53L0X_ERROR_NONE)
+ Status = VL53L0X_WrByte(Dev,
+ VL53L0X_REG_DYNAMIC_SPAD_NUM_REQUESTED_REF_SPAD, 0x2C);
+
+ if (Status == VL53L0X_ERROR_NONE)
+ Status = VL53L0X_WrByte(Dev, 0xFF, 0x00);
+
+ if (Status == VL53L0X_ERROR_NONE)
+ Status = VL53L0X_WrByte(Dev,
+ VL53L0X_REG_GLOBAL_CONFIG_REF_EN_START_SELECT,
+ startSelect);
+
+
+ if (Status == VL53L0X_ERROR_NONE)
+ Status = VL53L0X_WrByte(Dev,
+ VL53L0X_REG_POWER_MANAGEMENT_GO1_POWER_FORCE, 0);
+
+ /* Perform ref calibration */
+ if (Status == VL53L0X_ERROR_NONE)
+ Status = VL53L0X_perform_ref_calibration(Dev, &VhvSettings,
+ &PhaseCal, 0);
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ /* Enable Minimum NON-APERTURE Spads */
+ currentSpadIndex = 0;
+ lastSpadIndex = currentSpadIndex;
+ needAptSpads = 0;
+ Status = enable_ref_spads(Dev,
+ needAptSpads,
+ Dev->Data.SpadData.RefGoodSpadMap,
+ Dev->Data.SpadData.RefSpadEnables,
+ spadArraySize,
+ startSelect,
+ currentSpadIndex,
+ minimumSpadCount,
+ &lastSpadIndex);
+ }
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ currentSpadIndex = lastSpadIndex;
+
+ Status = perform_ref_signal_measurement(Dev,
+ &peakSignalRateRef);
+ if ((Status == VL53L0X_ERROR_NONE) &&
+ (peakSignalRateRef > targetRefRate)) {
+ /* Signal rate measurement too high,
+ * switch to APERTURE SPADs */
+
+ for (index = 0; index < spadArraySize; index++)
+ Dev->Data.SpadData.RefSpadEnables[index] = 0;
+
+
+ /* Increment to the first APERTURE spad */
+ while ((is_aperture(startSelect + currentSpadIndex)
+ == 0) && (currentSpadIndex < maxSpadCount)) {
+ currentSpadIndex++;
+ }
+
+ needAptSpads = 1;
+
+ Status = enable_ref_spads(Dev,
+ needAptSpads,
+ Dev->Data.SpadData.RefGoodSpadMap,
+ Dev->Data.SpadData.RefSpadEnables,
+ spadArraySize,
+ startSelect,
+ currentSpadIndex,
+ minimumSpadCount,
+ &lastSpadIndex);
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ currentSpadIndex = lastSpadIndex;
+ Status = perform_ref_signal_measurement(Dev,
+ &peakSignalRateRef);
+
+ if ((Status == VL53L0X_ERROR_NONE) &&
+ (peakSignalRateRef > targetRefRate)) {
+ /* Signal rate still too high after
+ * setting the minimum number of
+ * APERTURE spads. Can do no more
+ * therefore set the min number of
+ * aperture spads as the result.
+ */
+ isApertureSpads_int = 1;
+ refSpadCount_int = minimumSpadCount;
+ }
+ }
+ } else {
+ needAptSpads = 0;
+ }
+ }
+
+ if ((Status == VL53L0X_ERROR_NONE) &&
+ (peakSignalRateRef < targetRefRate)) {
+ /* At this point, the minimum number of either aperture
+ * or non-aperture spads have been set. Proceed to add
+ * spads and perform measurements until the target
+ * reference is reached.
+ */
+ isApertureSpads_int = needAptSpads;
+ refSpadCount_int = minimumSpadCount;
+
+ memcpy(lastSpadArray, Dev->Data.SpadData.RefSpadEnables,
+ spadArraySize);
+ lastSignalRateDiff = abs(peakSignalRateRef -
+ targetRefRate);
+ complete = 0;
+
+ while (!complete) {
+ get_next_good_spad(
+ Dev->Data.SpadData.RefGoodSpadMap,
+ spadArraySize, currentSpadIndex,
+ &nextGoodSpad);
+
+ if (nextGoodSpad == -1) {
+ Status = VL53L0X_ERROR_REF_SPAD_INIT;
+ break;
+ }
+
+ /* Cannot combine Aperture and Non-Aperture spads, so
+ * ensure the current spad is of the correct type.
+ */
+ if (is_aperture((uint32_t)startSelect + nextGoodSpad) !=
+ needAptSpads) {
+ /* At this point we have enabled the maximum
+ * number of Aperture spads.
+ */
+ complete = 1;
+ break;
+ }
+
+ (refSpadCount_int)++;
+
+ currentSpadIndex = nextGoodSpad;
+ Status = enable_spad_bit(
+ Dev->Data.SpadData.RefSpadEnables,
+ spadArraySize, currentSpadIndex);
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ currentSpadIndex++;
+ /* Proceed to apply the additional spad and
+ * perform measurement. */
+ Status = set_ref_spad_map(Dev,
+ Dev->Data.SpadData.RefSpadEnables);
+ }
+
+ if (Status != VL53L0X_ERROR_NONE)
+ break;
+
+ Status = perform_ref_signal_measurement(Dev,
+ &peakSignalRateRef);
+
+ if (Status != VL53L0X_ERROR_NONE)
+ break;
+
+ signalRateDiff = abs(peakSignalRateRef - targetRefRate);
+
+ if (peakSignalRateRef > targetRefRate) {
+ /* Select the spad map that provides the
+ * measurement closest to the target rate,
+ * either above or below it.
+ */
+ if (signalRateDiff > lastSignalRateDiff) {
+ /* Previous spad map produced a closer
+ * measurement, so choose this. */
+ Status = set_ref_spad_map(Dev,
+ lastSpadArray);
+ memcpy(
+ Dev->Data.SpadData.RefSpadEnables,
+ lastSpadArray, spadArraySize);
+
+ (refSpadCount_int)--;
+ }
+ complete = 1;
+ } else {
+ /* Continue to add spads */
+ lastSignalRateDiff = signalRateDiff;
+ memcpy(lastSpadArray,
+ Dev->Data.SpadData.RefSpadEnables,
+ spadArraySize);
+ }
+
+ } /* while */
+ }
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ *refSpadCount = refSpadCount_int;
+ *isApertureSpads = isApertureSpads_int;
+
+ VL53L0X_SETDEVICESPECIFICPARAMETER(Dev, RefSpadsInitialised, 1);
+ VL53L0X_SETDEVICESPECIFICPARAMETER(Dev,
+ ReferenceSpadCount, (uint8_t)(*refSpadCount));
+ VL53L0X_SETDEVICESPECIFICPARAMETER(Dev,
+ ReferenceSpadType, *isApertureSpads);
+ }
+
+ return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_set_reference_spads(VL53L0X_DEV Dev,
+ uint32_t count, uint8_t isApertureSpads)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ uint32_t currentSpadIndex = 0;
+ uint8_t startSelect = 0xB4;
+ uint32_t spadArraySize = 6;
+ uint32_t maxSpadCount = 44;
+ uint32_t lastSpadIndex;
+ uint32_t index;
+
+ /*
+ * This function applies a requested number of reference spads, either
+ * aperture or
+ * non-aperture, as requested.
+ * The good spad map will be applied.
+ */
+
+ Status = VL53L0X_WrByte(Dev, 0xFF, 0x01);
+
+ if (Status == VL53L0X_ERROR_NONE)
+ Status = VL53L0X_WrByte(Dev,
+ VL53L0X_REG_DYNAMIC_SPAD_REF_EN_START_OFFSET, 0x00);
+
+ if (Status == VL53L0X_ERROR_NONE)
+ Status = VL53L0X_WrByte(Dev,
+ VL53L0X_REG_DYNAMIC_SPAD_NUM_REQUESTED_REF_SPAD, 0x2C);
+
+ if (Status == VL53L0X_ERROR_NONE)
+ Status = VL53L0X_WrByte(Dev, 0xFF, 0x00);
+
+ if (Status == VL53L0X_ERROR_NONE)
+ Status = VL53L0X_WrByte(Dev,
+ VL53L0X_REG_GLOBAL_CONFIG_REF_EN_START_SELECT,
+ startSelect);
+
+ for (index = 0; index < spadArraySize; index++)
+ Dev->Data.SpadData.RefSpadEnables[index] = 0;
+
+ if (isApertureSpads) {
+ /* Increment to the first APERTURE spad */
+ while ((is_aperture(startSelect + currentSpadIndex) == 0) &&
+ (currentSpadIndex < maxSpadCount)) {
+ currentSpadIndex++;
+ }
+ }
+ Status = enable_ref_spads(Dev,
+ isApertureSpads,
+ Dev->Data.SpadData.RefGoodSpadMap,
+ Dev->Data.SpadData.RefSpadEnables,
+ spadArraySize,
+ startSelect,
+ currentSpadIndex,
+ count,
+ &lastSpadIndex);
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ VL53L0X_SETDEVICESPECIFICPARAMETER(Dev, RefSpadsInitialised, 1);
+ VL53L0X_SETDEVICESPECIFICPARAMETER(Dev,
+ ReferenceSpadCount, (uint8_t)(count));
+ VL53L0X_SETDEVICESPECIFICPARAMETER(Dev,
+ ReferenceSpadType, isApertureSpads);
+ }
+
+ return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_WaitDeviceBooted(VL53L0X_DEV Dev)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NOT_IMPLEMENTED;
+ LOG_FUNCTION_START("");
+
+ /* not implemented on VL53L0X */
+
+ LOG_FUNCTION_END(Status);
+ return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_PerformRefCalibration(VL53L0X_DEV Dev, uint8_t *pVhvSettings,
+ uint8_t *pPhaseCal)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ LOG_FUNCTION_START("");
+
+ Status = VL53L0X_perform_ref_calibration(Dev, pVhvSettings,
+ pPhaseCal, 1);
+
+ LOG_FUNCTION_END(Status);
+ return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_PerformRefSpadManagement(VL53L0X_DEV Dev,
+ uint32_t *refSpadCount, uint8_t *isApertureSpads)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ LOG_FUNCTION_START("");
+
+ Status = VL53L0X_perform_ref_spad_management(Dev, refSpadCount,
+ isApertureSpads);
+
+ LOG_FUNCTION_END(Status);
+
+ return Status;
+}
+
+/* Group PAL Init Functions */
+VL53L0X_Error VL53L0X::VL53L0X_SetDeviceAddress(VL53L0X_DEV Dev, uint8_t DeviceAddress)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ LOG_FUNCTION_START("");
+
+ Status = VL53L0X_WrByte(Dev, VL53L0X_REG_I2C_SLAVE_DEVICE_ADDRESS,
+ DeviceAddress / 2);
+
+ LOG_FUNCTION_END(Status);
+ return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_SetGpioConfig(VL53L0X_DEV Dev, uint8_t Pin,
+ VL53L0X_DeviceModes DeviceMode, VL53L0X_GpioFunctionality Functionality,
+ VL53L0X_InterruptPolarity Polarity)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ uint8_t data;
+
+ LOG_FUNCTION_START("");
+
+ if (Pin != 0) {
+ Status = VL53L0X_ERROR_GPIO_NOT_EXISTING;
+ } else if (DeviceMode == VL53L0X_DEVICEMODE_GPIO_DRIVE) {
+ if (Polarity == VL53L0X_INTERRUPTPOLARITY_LOW)
+ data = 0x10;
+ else
+ data = 1;
+
+ Status = VL53L0X_WrByte(Dev,
+ VL53L0X_REG_GPIO_HV_MUX_ACTIVE_HIGH, data);
+
+ } else if (DeviceMode == VL53L0X_DEVICEMODE_GPIO_OSC) {
+
+ Status |= VL53L0X_WrByte(Dev, 0xff, 0x01);
+ Status |= VL53L0X_WrByte(Dev, 0x00, 0x00);
+
+ Status |= VL53L0X_WrByte(Dev, 0xff, 0x00);
+ Status |= VL53L0X_WrByte(Dev, 0x80, 0x01);
+ Status |= VL53L0X_WrByte(Dev, 0x85, 0x02);
+
+ Status |= VL53L0X_WrByte(Dev, 0xff, 0x04);
+ Status |= VL53L0X_WrByte(Dev, 0xcd, 0x00);
+ Status |= VL53L0X_WrByte(Dev, 0xcc, 0x11);
+
+ Status |= VL53L0X_WrByte(Dev, 0xff, 0x07);
+ Status |= VL53L0X_WrByte(Dev, 0xbe, 0x00);
+
+ Status |= VL53L0X_WrByte(Dev, 0xff, 0x06);
+ Status |= VL53L0X_WrByte(Dev, 0xcc, 0x09);
+
+ Status |= VL53L0X_WrByte(Dev, 0xff, 0x00);
+ Status |= VL53L0X_WrByte(Dev, 0xff, 0x01);
+ Status |= VL53L0X_WrByte(Dev, 0x00, 0x00);
+
+ } else {
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ switch (Functionality) {
+ case VL53L0X_GPIOFUNCTIONALITY_OFF:
+ data = 0x00;
+ break;
+ case VL53L0X_GPIOFUNCTIONALITY_THRESHOLD_CROSSED_LOW:
+ data = 0x01;
+ break;
+ case VL53L0X_GPIOFUNCTIONALITY_THRESHOLD_CROSSED_HIGH:
+ data = 0x02;
+ break;
+ case VL53L0X_GPIOFUNCTIONALITY_THRESHOLD_CROSSED_OUT:
+ data = 0x03;
+ break;
+ case VL53L0X_GPIOFUNCTIONALITY_NEW_MEASURE_READY:
+ data = 0x04;
+ break;
+ default:
+ Status =
+ VL53L0X_ERROR_GPIO_FUNCTIONALITY_NOT_SUPPORTED;
+ }
+ }
+
+ if (Status == VL53L0X_ERROR_NONE)
+ Status = VL53L0X_WrByte(Dev,
+ VL53L0X_REG_SYSTEM_INTERRUPT_CONFIG_GPIO, data);
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ if (Polarity == VL53L0X_INTERRUPTPOLARITY_LOW)
+ data = 0;
+ else
+ data = (uint8_t)(1 << 4);
+
+ Status = VL53L0X_UpdateByte(Dev,
+ VL53L0X_REG_GPIO_HV_MUX_ACTIVE_HIGH, 0xEF, data);
+ }
+
+ if (Status == VL53L0X_ERROR_NONE)
+ VL53L0X_SETDEVICESPECIFICPARAMETER(Dev,
+ Pin0GpioFunctionality, Functionality);
+
+ if (Status == VL53L0X_ERROR_NONE)
+ Status = VL53L0X_ClearInterruptMask(Dev, 0);
+
+ }
+
+ LOG_FUNCTION_END(Status);
+ return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_GetFractionEnable(VL53L0X_DEV Dev, uint8_t *pEnabled)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ LOG_FUNCTION_START("");
+
+ Status = VL53L0X_RdByte(Dev, VL53L0X_REG_SYSTEM_RANGE_CONFIG, pEnabled);
+
+ if (Status == VL53L0X_ERROR_NONE)
+ *pEnabled = (*pEnabled & 1);
+
+ LOG_FUNCTION_END(Status);
+ return Status;
+}
+
+uint16_t VL53L0X::VL53L0X_encode_timeout(uint32_t timeout_macro_clks)
+{
+ /*!
+ * Encode timeout in macro periods in (LSByte * 2^MSByte) + 1 format
+ */
+
+ uint16_t encoded_timeout = 0;
+ uint32_t ls_byte = 0;
+ uint16_t ms_byte = 0;
+
+ if (timeout_macro_clks > 0) {
+ ls_byte = timeout_macro_clks - 1;
+
+ while ((ls_byte & 0xFFFFFF00) > 0) {
+ ls_byte = ls_byte >> 1;
+ ms_byte++;
+ }
+
+ encoded_timeout = (ms_byte << 8)
+ + (uint16_t) (ls_byte & 0x000000FF);
+ }
+
+ return encoded_timeout;
+
+}
+
+VL53L0X_Error VL53L0X::set_sequence_step_timeout(VL53L0X_DEV Dev,
+ VL53L0X_SequenceStepId SequenceStepId,
+ uint32_t TimeOutMicroSecs)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ uint8_t CurrentVCSELPulsePeriodPClk;
+ uint8_t MsrcEncodedTimeOut;
+ uint16_t PreRangeEncodedTimeOut;
+ uint16_t PreRangeTimeOutMClks;
+ uint16_t MsrcRangeTimeOutMClks;
+ uint32_t FinalRangeTimeOutMClks;
+ uint16_t FinalRangeEncodedTimeOut;
+ VL53L0X_SchedulerSequenceSteps_t SchedulerSequenceSteps;
+
+ if ((SequenceStepId == VL53L0X_SEQUENCESTEP_TCC) ||
+ (SequenceStepId == VL53L0X_SEQUENCESTEP_DSS) ||
+ (SequenceStepId == VL53L0X_SEQUENCESTEP_MSRC)) {
+
+ Status = VL53L0X_GetVcselPulsePeriod(Dev,
+ VL53L0X_VCSEL_PERIOD_PRE_RANGE,
+ &CurrentVCSELPulsePeriodPClk);
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ MsrcRangeTimeOutMClks = VL53L0X_calc_timeout_mclks(Dev,
+ TimeOutMicroSecs,
+ (uint8_t)CurrentVCSELPulsePeriodPClk);
+
+ if (MsrcRangeTimeOutMClks > 256)
+ MsrcEncodedTimeOut = 255;
+ else
+ MsrcEncodedTimeOut =
+ (uint8_t)MsrcRangeTimeOutMClks - 1;
+
+ VL53L0X_SETDEVICESPECIFICPARAMETER(Dev,
+ LastEncodedTimeout,
+ MsrcEncodedTimeOut);
+ }
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ Status = VL53L0X_WrByte(Dev,
+ VL53L0X_REG_MSRC_CONFIG_TIMEOUT_MACROP,
+ MsrcEncodedTimeOut);
+ }
+ } else {
+
+ if (SequenceStepId == VL53L0X_SEQUENCESTEP_PRE_RANGE) {
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ Status = VL53L0X_GetVcselPulsePeriod(Dev,
+ VL53L0X_VCSEL_PERIOD_PRE_RANGE,
+ &CurrentVCSELPulsePeriodPClk);
+ PreRangeTimeOutMClks =
+ VL53L0X_calc_timeout_mclks(Dev,
+ TimeOutMicroSecs,
+ (uint8_t)CurrentVCSELPulsePeriodPClk);
+ PreRangeEncodedTimeOut = VL53L0X_encode_timeout(
+ PreRangeTimeOutMClks);
+
+ VL53L0X_SETDEVICESPECIFICPARAMETER(Dev,
+ LastEncodedTimeout,
+ PreRangeEncodedTimeOut);
+ }
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ Status = VL53L0X_WrWord(Dev,
+ VL53L0X_REG_PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI,
+ PreRangeEncodedTimeOut);
+ }
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ VL53L0X_SETDEVICESPECIFICPARAMETER(
+ Dev,
+ PreRangeTimeoutMicroSecs,
+ TimeOutMicroSecs);
+ }
+ } else if (SequenceStepId == VL53L0X_SEQUENCESTEP_FINAL_RANGE) {
+
+ /* For the final range timeout, the pre-range timeout
+ * must be added. To do this both final and pre-range
+ * timeouts must be expressed in macro periods MClks
+ * because they have different vcsel periods.
+ */
+
+ VL53L0X_GetSequenceStepEnables(Dev,
+ &SchedulerSequenceSteps);
+ PreRangeTimeOutMClks = 0;
+ if (SchedulerSequenceSteps.PreRangeOn) {
+
+ /* Retrieve PRE-RANGE VCSEL Period */
+ Status = VL53L0X_GetVcselPulsePeriod(Dev,
+ VL53L0X_VCSEL_PERIOD_PRE_RANGE,
+ &CurrentVCSELPulsePeriodPClk);
+
+ /* Retrieve PRE-RANGE Timeout in Macro periods
+ * (MCLKS) */
+ if (Status == VL53L0X_ERROR_NONE) {
+ Status = VL53L0X_RdWord(Dev, 0x51,
+ &PreRangeEncodedTimeOut);
+ PreRangeTimeOutMClks =
+ VL53L0X_decode_timeout(
+ PreRangeEncodedTimeOut);
+ }
+ }
+
+ /* Calculate FINAL RANGE Timeout in Macro Periods
+ * (MCLKS) and add PRE-RANGE value
+ */
+ if (Status == VL53L0X_ERROR_NONE) {
+
+ Status = VL53L0X_GetVcselPulsePeriod(Dev,
+ VL53L0X_VCSEL_PERIOD_FINAL_RANGE,
+ &CurrentVCSELPulsePeriodPClk);
+ }
+ if (Status == VL53L0X_ERROR_NONE) {
+
+ FinalRangeTimeOutMClks =
+ VL53L0X_calc_timeout_mclks(Dev,
+ TimeOutMicroSecs,
+ (uint8_t) CurrentVCSELPulsePeriodPClk);
+
+ FinalRangeTimeOutMClks += PreRangeTimeOutMClks;
+
+ FinalRangeEncodedTimeOut =
+ VL53L0X_encode_timeout(FinalRangeTimeOutMClks);
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ Status = VL53L0X_WrWord(Dev, 0x71,
+ FinalRangeEncodedTimeOut);
+ }
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ VL53L0X_SETDEVICESPECIFICPARAMETER(
+ Dev,
+ FinalRangeTimeoutMicroSecs,
+ TimeOutMicroSecs);
+ }
+ }
+ } else
+ Status = VL53L0X_ERROR_INVALID_PARAMS;
+
+ }
+ return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_set_measurement_timing_budget_micro_seconds(VL53L0X_DEV Dev,
+ uint32_t MeasurementTimingBudgetMicroSeconds)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ uint32_t FinalRangeTimingBudgetMicroSeconds;
+ VL53L0X_SchedulerSequenceSteps_t SchedulerSequenceSteps;
+ uint32_t MsrcDccTccTimeoutMicroSeconds = 2000;
+ uint32_t StartOverheadMicroSeconds = 1910;
+ uint32_t EndOverheadMicroSeconds = 960;
+ uint32_t MsrcOverheadMicroSeconds = 660;
+ uint32_t TccOverheadMicroSeconds = 590;
+ uint32_t DssOverheadMicroSeconds = 690;
+ uint32_t PreRangeOverheadMicroSeconds = 660;
+ uint32_t FinalRangeOverheadMicroSeconds = 550;
+ uint32_t PreRangeTimeoutMicroSeconds = 0;
+ uint32_t cMinTimingBudgetMicroSeconds = 20000;
+ uint32_t SubTimeout = 0;
+
+ LOG_FUNCTION_START("");
+
+ if (MeasurementTimingBudgetMicroSeconds
+ < cMinTimingBudgetMicroSeconds) {
+ Status = VL53L0X_ERROR_INVALID_PARAMS;
+ return Status;
+ }
+
+ FinalRangeTimingBudgetMicroSeconds =
+ MeasurementTimingBudgetMicroSeconds -
+ (StartOverheadMicroSeconds + EndOverheadMicroSeconds);
+
+ Status = VL53L0X_GetSequenceStepEnables(Dev, &SchedulerSequenceSteps);
+
+ if (Status == VL53L0X_ERROR_NONE &&
+ (SchedulerSequenceSteps.TccOn ||
+ SchedulerSequenceSteps.MsrcOn ||
+ SchedulerSequenceSteps.DssOn)) {
+
+ /* TCC, MSRC and DSS all share the same timeout */
+ Status = get_sequence_step_timeout(Dev,
+ VL53L0X_SEQUENCESTEP_MSRC,
+ &MsrcDccTccTimeoutMicroSeconds);
+
+ /* Subtract the TCC, MSRC and DSS timeouts if they are
+ * enabled. */
+
+ if (Status != VL53L0X_ERROR_NONE)
+ return Status;
+
+ /* TCC */
+ if (SchedulerSequenceSteps.TccOn) {
+
+ SubTimeout = MsrcDccTccTimeoutMicroSeconds
+ + TccOverheadMicroSeconds;
+
+ if (SubTimeout <
+ FinalRangeTimingBudgetMicroSeconds) {
+ FinalRangeTimingBudgetMicroSeconds -=
+ SubTimeout;
+ } else {
+ /* Requested timeout too big. */
+ Status = VL53L0X_ERROR_INVALID_PARAMS;
+ }
+ }
+
+ if (Status != VL53L0X_ERROR_NONE) {
+ LOG_FUNCTION_END(Status);
+ return Status;
+ }
+
+ /* DSS */
+ if (SchedulerSequenceSteps.DssOn) {
+
+ SubTimeout = 2 * (MsrcDccTccTimeoutMicroSeconds +
+ DssOverheadMicroSeconds);
+
+ if (SubTimeout < FinalRangeTimingBudgetMicroSeconds) {
+ FinalRangeTimingBudgetMicroSeconds
+ -= SubTimeout;
+ } else {
+ /* Requested timeout too big. */
+ Status = VL53L0X_ERROR_INVALID_PARAMS;
+ }
+ } else if (SchedulerSequenceSteps.MsrcOn) {
+ /* MSRC */
+ SubTimeout = MsrcDccTccTimeoutMicroSeconds +
+ MsrcOverheadMicroSeconds;
+
+ if (SubTimeout < FinalRangeTimingBudgetMicroSeconds) {
+ FinalRangeTimingBudgetMicroSeconds
+ -= SubTimeout;
+ } else {
+ /* Requested timeout too big. */
+ Status = VL53L0X_ERROR_INVALID_PARAMS;
+ }
+ }
+
+ }
+
+ if (Status != VL53L0X_ERROR_NONE) {
+ LOG_FUNCTION_END(Status);
+ return Status;
+ }
+
+ if (SchedulerSequenceSteps.PreRangeOn) {
+
+ /* Subtract the Pre-range timeout if enabled. */
+
+ Status = get_sequence_step_timeout(Dev,
+ VL53L0X_SEQUENCESTEP_PRE_RANGE,
+ &PreRangeTimeoutMicroSeconds);
+
+ SubTimeout = PreRangeTimeoutMicroSeconds +
+ PreRangeOverheadMicroSeconds;
+
+ if (SubTimeout < FinalRangeTimingBudgetMicroSeconds) {
+ FinalRangeTimingBudgetMicroSeconds -= SubTimeout;
+ } else {
+ /* Requested timeout too big. */
+ Status = VL53L0X_ERROR_INVALID_PARAMS;
+ }
+ }
+
+
+ if (Status == VL53L0X_ERROR_NONE &&
+ SchedulerSequenceSteps.FinalRangeOn) {
+
+ FinalRangeTimingBudgetMicroSeconds -=
+ FinalRangeOverheadMicroSeconds;
+
+ /* Final Range Timeout
+ * Note that the final range timeout is determined by the timing
+ * budget and the sum of all other timeouts within the sequence.
+ * If there is no room for the final range timeout, then an error
+ * will be set. Otherwise the remaining time will be applied to
+ * the final range.
+ */
+ Status = set_sequence_step_timeout(Dev,
+ VL53L0X_SEQUENCESTEP_FINAL_RANGE,
+ FinalRangeTimingBudgetMicroSeconds);
+
+ VL53L0X_SETPARAMETERFIELD(Dev,
+ MeasurementTimingBudgetMicroSeconds,
+ MeasurementTimingBudgetMicroSeconds);
+ }
+
+ LOG_FUNCTION_END(Status);
+
+ return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_SetMeasurementTimingBudgetMicroSeconds(VL53L0X_DEV Dev,
+ uint32_t MeasurementTimingBudgetMicroSeconds)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ LOG_FUNCTION_START("");
+
+ Status = VL53L0X_set_measurement_timing_budget_micro_seconds(Dev,
+ MeasurementTimingBudgetMicroSeconds);
+
+ LOG_FUNCTION_END(Status);
+
+ return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_SetSequenceStepEnable(VL53L0X_DEV Dev,
+ VL53L0X_SequenceStepId SequenceStepId, uint8_t SequenceStepEnabled)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ uint8_t SequenceConfig = 0;
+ uint8_t SequenceConfigNew = 0;
+ uint32_t MeasurementTimingBudgetMicroSeconds;
+ LOG_FUNCTION_START("");
+
+ Status = VL53L0X_RdByte(Dev, VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG,
+ &SequenceConfig);
+
+ SequenceConfigNew = SequenceConfig;
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ if (SequenceStepEnabled == 1) {
+
+ /* Enable requested sequence step
+ */
+ switch (SequenceStepId) {
+ case VL53L0X_SEQUENCESTEP_TCC:
+ SequenceConfigNew |= 0x10;
+ break;
+ case VL53L0X_SEQUENCESTEP_DSS:
+ SequenceConfigNew |= 0x28;
+ break;
+ case VL53L0X_SEQUENCESTEP_MSRC:
+ SequenceConfigNew |= 0x04;
+ break;
+ case VL53L0X_SEQUENCESTEP_PRE_RANGE:
+ SequenceConfigNew |= 0x40;
+ break;
+ case VL53L0X_SEQUENCESTEP_FINAL_RANGE:
+ SequenceConfigNew |= 0x80;
+ break;
+ default:
+ Status = VL53L0X_ERROR_INVALID_PARAMS;
+ }
+ } else {
+ /* Disable requested sequence step
+ */
+ switch (SequenceStepId) {
+ case VL53L0X_SEQUENCESTEP_TCC:
+ SequenceConfigNew &= 0xef;
+ break;
+ case VL53L0X_SEQUENCESTEP_DSS:
+ SequenceConfigNew &= 0xd7;
+ break;
+ case VL53L0X_SEQUENCESTEP_MSRC:
+ SequenceConfigNew &= 0xfb;
+ break;
+ case VL53L0X_SEQUENCESTEP_PRE_RANGE:
+ SequenceConfigNew &= 0xbf;
+ break;
+ case VL53L0X_SEQUENCESTEP_FINAL_RANGE:
+ SequenceConfigNew &= 0x7f;
+ break;
+ default:
+ Status = VL53L0X_ERROR_INVALID_PARAMS;
+ }
+ }
+ }
+
+ if (SequenceConfigNew != SequenceConfig) {
+ /* Apply New Setting */
+ if (Status == VL53L0X_ERROR_NONE) {
+ Status = VL53L0X_WrByte(Dev,
+ VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG, SequenceConfigNew);
+ }
+ if (Status == VL53L0X_ERROR_NONE)
+ PALDevDataSet(Dev, SequenceConfig, SequenceConfigNew);
+
+
+ /* Recalculate timing budget */
+ if (Status == VL53L0X_ERROR_NONE) {
+ VL53L0X_GETPARAMETERFIELD(Dev,
+ MeasurementTimingBudgetMicroSeconds,
+ MeasurementTimingBudgetMicroSeconds);
+
+ VL53L0X_SetMeasurementTimingBudgetMicroSeconds(Dev,
+ MeasurementTimingBudgetMicroSeconds);
+ }
+ }
+
+ LOG_FUNCTION_END(Status);
+
+ return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_SetLimitCheckEnable(VL53L0X_DEV Dev, uint16_t LimitCheckId,
+ uint8_t LimitCheckEnable)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ FixPoint1616_t TempFix1616 = 0;
+ uint8_t LimitCheckEnableInt = 0;
+ uint8_t LimitCheckDisable = 0;
+ uint8_t Temp8;
+
+ LOG_FUNCTION_START("");
+
+ if (LimitCheckId >= VL53L0X_CHECKENABLE_NUMBER_OF_CHECKS) {
+ Status = VL53L0X_ERROR_INVALID_PARAMS;
+ } else {
+ if (LimitCheckEnable == 0) {
+ TempFix1616 = 0;
+ LimitCheckEnableInt = 0;
+ LimitCheckDisable = 1;
+
+ } else {
+ VL53L0X_GETARRAYPARAMETERFIELD(Dev, LimitChecksValue,
+ LimitCheckId, TempFix1616);
+ LimitCheckDisable = 0;
+ /* this to be sure to have either 0 or 1 */
+ LimitCheckEnableInt = 1;
+ }
+
+ switch (LimitCheckId) {
+
+ case VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE:
+ /* internal computation: */
+ VL53L0X_SETARRAYPARAMETERFIELD(Dev, LimitChecksEnable,
+ VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE,
+ LimitCheckEnableInt);
+
+ break;
+
+ case VL53L0X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE:
+
+ Status = VL53L0X_WrWord(Dev,
+ VL53L0X_REG_FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT,
+ VL53L0X_FIXPOINT1616TOFIXPOINT97(TempFix1616));
+
+ break;
+
+ case VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP:
+
+ /* internal computation: */
+ VL53L0X_SETARRAYPARAMETERFIELD(Dev, LimitChecksEnable,
+ VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP,
+ LimitCheckEnableInt);
+
+ break;
+
+ case VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD:
+
+ /* internal computation: */
+ VL53L0X_SETARRAYPARAMETERFIELD(Dev, LimitChecksEnable,
+ VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD,
+ LimitCheckEnableInt);
+
+ break;
+
+ case VL53L0X_CHECKENABLE_SIGNAL_RATE_MSRC:
+
+ Temp8 = (uint8_t)(LimitCheckDisable << 1);
+ Status = VL53L0X_UpdateByte(Dev,
+ VL53L0X_REG_MSRC_CONFIG_CONTROL,
+ 0xFE, Temp8);
+
+ break;
+
+ case VL53L0X_CHECKENABLE_SIGNAL_RATE_PRE_RANGE:
+
+ Temp8 = (uint8_t)(LimitCheckDisable << 4);
+ Status = VL53L0X_UpdateByte(Dev,
+ VL53L0X_REG_MSRC_CONFIG_CONTROL,
+ 0xEF, Temp8);
+
+ break;
+
+
+ default:
+ Status = VL53L0X_ERROR_INVALID_PARAMS;
+
+ }
+
+ }
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ if (LimitCheckEnable == 0) {
+ VL53L0X_SETARRAYPARAMETERFIELD(Dev, LimitChecksEnable,
+ LimitCheckId, 0);
+ } else {
+ VL53L0X_SETARRAYPARAMETERFIELD(Dev, LimitChecksEnable,
+ LimitCheckId, 1);
+ }
+ }
+
+ LOG_FUNCTION_END(Status);
+ return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_StaticInit(VL53L0X_DEV Dev)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ VL53L0X_DeviceParameters_t CurrentParameters = {0};
+ uint8_t *pTuningSettingBuffer;
+ uint16_t tempword = 0;
+ uint8_t tempbyte = 0;
+ uint8_t UseInternalTuningSettings = 0;
+ uint32_t count = 0;
+ uint8_t isApertureSpads = 0;
+ uint32_t refSpadCount = 0;
+ uint8_t ApertureSpads = 0;
+ uint8_t vcselPulsePeriodPCLK;
+ uint32_t seqTimeoutMicroSecs;
+
+ LOG_FUNCTION_START("");
+
+ Status = VL53L0X_get_info_from_device(Dev, 1);
+
+ /* set the ref spad from NVM */
+ count = (uint32_t)VL53L0X_GETDEVICESPECIFICPARAMETER(Dev,
+ ReferenceSpadCount);
+ ApertureSpads = VL53L0X_GETDEVICESPECIFICPARAMETER(Dev,
+ ReferenceSpadType);
+
+ /* NVM value invalid */
+ if ((ApertureSpads > 1) ||
+ ((ApertureSpads == 1) && (count > 32)) ||
+ ((ApertureSpads == 0) && (count > 12)))
+ Status = VL53L0X_perform_ref_spad_management(Dev, &refSpadCount,
+ &isApertureSpads);
+ else
+ Status = VL53L0X_set_reference_spads(Dev, count, ApertureSpads);
+
+
+ /* Initialize tuning settings buffer to prevent compiler warning. */
+ pTuningSettingBuffer = DefaultTuningSettings;
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ UseInternalTuningSettings = PALDevDataGet(Dev,
+ UseInternalTuningSettings);
+
+ if (UseInternalTuningSettings == 0)
+ pTuningSettingBuffer = PALDevDataGet(Dev,
+ pTuningSettingsPointer);
+ else
+ pTuningSettingBuffer = DefaultTuningSettings;
+
+ }
+
+ if (Status == VL53L0X_ERROR_NONE)
+ Status = VL53L0X_load_tuning_settings(Dev, pTuningSettingBuffer);
+
+
+ /* Set interrupt config to new sample ready */
+ if (Status == VL53L0X_ERROR_NONE) {
+ Status = VL53L0X_SetGpioConfig(Dev, 0, 0,
+ VL53L0X_REG_SYSTEM_INTERRUPT_GPIO_NEW_SAMPLE_READY,
+ VL53L0X_INTERRUPTPOLARITY_LOW);
+ }
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ Status = VL53L0X_WrByte(Dev, 0xFF, 0x01);
+ Status |= VL53L0X_RdWord(Dev, 0x84, &tempword);
+ Status |= VL53L0X_WrByte(Dev, 0xFF, 0x00);
+ }
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ VL53L0X_SETDEVICESPECIFICPARAMETER(Dev, OscFrequencyMHz,
+ VL53L0X_FIXPOINT412TOFIXPOINT1616(tempword));
+ }
+
+ /* After static init, some device parameters may be changed,
+ * so update them */
+ if (Status == VL53L0X_ERROR_NONE)
+ Status = VL53L0X_GetDeviceParameters(Dev, &CurrentParameters);
+
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ Status = VL53L0X_GetFractionEnable(Dev, &tempbyte);
+ if (Status == VL53L0X_ERROR_NONE)
+ PALDevDataSet(Dev, RangeFractionalEnable, tempbyte);
+
+ }
+
+ if (Status == VL53L0X_ERROR_NONE)
+ PALDevDataSet(Dev, CurrentParameters, CurrentParameters);
+
+
+ /* read the sequence config and save it */
+ if (Status == VL53L0X_ERROR_NONE) {
+ Status = VL53L0X_RdByte(Dev,
+ VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG, &tempbyte);
+ if (Status == VL53L0X_ERROR_NONE)
+ PALDevDataSet(Dev, SequenceConfig, tempbyte);
+
+ }
+
+ /* Disable MSRC and TCC by default */
+ if (Status == VL53L0X_ERROR_NONE)
+ Status = VL53L0X_SetSequenceStepEnable(Dev,
+ VL53L0X_SEQUENCESTEP_TCC, 0);
+
+
+ if (Status == VL53L0X_ERROR_NONE)
+ Status = VL53L0X_SetSequenceStepEnable(Dev,
+ VL53L0X_SEQUENCESTEP_MSRC, 0);
+
+
+ /* Set PAL State to standby */
+ if (Status == VL53L0X_ERROR_NONE)
+ PALDevDataSet(Dev, PalState, VL53L0X_STATE_IDLE);
+
+
+
+ /* Store pre-range vcsel period */
+ if (Status == VL53L0X_ERROR_NONE) {
+ Status = VL53L0X_GetVcselPulsePeriod(
+ Dev,
+ VL53L0X_VCSEL_PERIOD_PRE_RANGE,
+ &vcselPulsePeriodPCLK);
+ }
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ VL53L0X_SETDEVICESPECIFICPARAMETER(
+ Dev,
+ PreRangeVcselPulsePeriod,
+ vcselPulsePeriodPCLK);
+ }
+
+ /* Store final-range vcsel period */
+ if (Status == VL53L0X_ERROR_NONE) {
+ Status = VL53L0X_GetVcselPulsePeriod(
+ Dev,
+ VL53L0X_VCSEL_PERIOD_FINAL_RANGE,
+ &vcselPulsePeriodPCLK);
+ }
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ VL53L0X_SETDEVICESPECIFICPARAMETER(
+ Dev,
+ FinalRangeVcselPulsePeriod,
+ vcselPulsePeriodPCLK);
+ }
+
+ /* Store pre-range timeout */
+ if (Status == VL53L0X_ERROR_NONE) {
+ Status = get_sequence_step_timeout(
+ Dev,
+ VL53L0X_SEQUENCESTEP_PRE_RANGE,
+ &seqTimeoutMicroSecs);
+ }
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ VL53L0X_SETDEVICESPECIFICPARAMETER(
+ Dev,
+ PreRangeTimeoutMicroSecs,
+ seqTimeoutMicroSecs);
+ }
+
+ /* Store final-range timeout */
+ if (Status == VL53L0X_ERROR_NONE) {
+ Status = get_sequence_step_timeout(
+ Dev,
+ VL53L0X_SEQUENCESTEP_FINAL_RANGE,
+ &seqTimeoutMicroSecs);
+ }
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ VL53L0X_SETDEVICESPECIFICPARAMETER(
+ Dev,
+ FinalRangeTimeoutMicroSecs,
+ seqTimeoutMicroSecs);
+ }
+
+ LOG_FUNCTION_END(Status);
+ return Status;
+}
+
+
+VL53L0X_Error VL53L0X::VL53L0X_StopMeasurement(VL53L0X_DEV Dev)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ LOG_FUNCTION_START("");
+
+ Status = VL53L0X_WrByte(Dev, VL53L0X_REG_SYSRANGE_START,
+ VL53L0X_REG_SYSRANGE_MODE_SINGLESHOT);
+
+ Status = VL53L0X_WrByte(Dev, 0xFF, 0x01);
+ Status = VL53L0X_WrByte(Dev, 0x00, 0x00);
+ Status = VL53L0X_WrByte(Dev, 0x91, 0x00);
+ Status = VL53L0X_WrByte(Dev, 0x00, 0x01);
+ Status = VL53L0X_WrByte(Dev, 0xFF, 0x00);
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ /* Set PAL State to Idle */
+ PALDevDataSet(Dev, PalState, VL53L0X_STATE_IDLE);
+ }
+
+ /* Check if need to apply interrupt settings */
+ if (Status == VL53L0X_ERROR_NONE)
+ Status = VL53L0X_CheckAndLoadInterruptSettings(Dev, 0);
+
+ LOG_FUNCTION_END(Status);
+ return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_GetStopCompletedStatus(VL53L0X_DEV Dev,
+ uint32_t *pStopStatus)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ uint8_t Byte = 0;
+ LOG_FUNCTION_START("");
+
+ Status = VL53L0X_WrByte(Dev, 0xFF, 0x01);
+
+ if (Status == VL53L0X_ERROR_NONE)
+ Status = VL53L0X_RdByte(Dev, 0x04, &Byte);
+
+ if (Status == VL53L0X_ERROR_NONE)
+ Status = VL53L0X_WrByte(Dev, 0xFF, 0x0);
+
+ *pStopStatus = Byte;
+
+ if (Byte == 0) {
+ Status = VL53L0X_WrByte(Dev, 0x80, 0x01);
+ Status = VL53L0X_WrByte(Dev, 0xFF, 0x01);
+ Status = VL53L0X_WrByte(Dev, 0x00, 0x00);
+ Status = VL53L0X_WrByte(Dev, 0x91,
+ PALDevDataGet(Dev, StopVariable));
+ Status = VL53L0X_WrByte(Dev, 0x00, 0x01);
+ Status = VL53L0X_WrByte(Dev, 0xFF, 0x00);
+ Status = VL53L0X_WrByte(Dev, 0x80, 0x00);
+ }
+
+ LOG_FUNCTION_END(Status);
+ return Status;
+}
+
+/****************** Write and read functions from I2C *************************/
+
+VL53L0X_Error VL53L0X::VL53L0X_WriteMulti(VL53L0X_DEV Dev, uint8_t index, uint8_t *pdata, uint32_t count)
+{
+ int status;
+
+ status = VL53L0X_I2CWrite(Dev->I2cDevAddr, index, pdata, (uint16_t)count);
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_ReadMulti(VL53L0X_DEV Dev, uint8_t index, uint8_t *pdata, uint32_t count)
+{
+ int status;
+
+ if (count>=VL53L0X_MAX_I2C_XFER_SIZE){
+ status = VL53L0X_ERROR_INVALID_PARAMS;
+ }
+
+ status = VL53L0X_I2CRead(Dev->I2cDevAddr, index, pdata, (uint16_t)count);
+
+ return status;
+}
+
+
+VL53L0X_Error VL53L0X::VL53L0X_WrByte(VL53L0X_DEV Dev, uint8_t index, uint8_t data)
+{
+ int status;
+
+ status=VL53L0X_I2CWrite(Dev->I2cDevAddr, index, &data, 1);
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_WrWord(VL53L0X_DEV Dev, uint8_t index, uint16_t data)
+{
+ int status;
+ uint8_t buffer[2];
+
+ buffer[0] = data >> 8;
+ buffer[1] = data & 0x00FF;
+ status=VL53L0X_I2CWrite(Dev->I2cDevAddr, index, (uint8_t *)buffer, 2);
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_WrDWord(VL53L0X_DEV Dev, uint8_t index, uint32_t data)
+{
+ int status;
+ uint8_t buffer[4];
+
+ buffer[0] = (data >> 24) & 0xFF;
+ buffer[1] = (data >> 16) & 0xFF;
+ buffer[2] = (data >> 8) & 0xFF;
+ buffer[3] = (data >> 0) & 0xFF;
+ status=VL53L0X_I2CWrite(Dev->I2cDevAddr, index, (uint8_t *)buffer, 4);
+ return status;
+}
+
+
+VL53L0X_Error VL53L0X::VL53L0X_RdByte(VL53L0X_DEV Dev, uint8_t index, uint8_t *data)
+{
+ int status;
+
+ status = VL53L0X_I2CRead(Dev->I2cDevAddr, index, data, 1);
+
+ if(status)
+ return -1;
+
+ return 0;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_RdWord(VL53L0X_DEV Dev, uint8_t index, uint16_t *data)
+{
+ int status;
+ uint8_t buffer[2] = {0,0};
+
+ status = VL53L0X_I2CRead(Dev->I2cDevAddr, index, buffer, 2);
+ if (!status)
+ {
+ *data = (buffer[0] << 8) + buffer[1];
+ }
+ return status;
+
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_RdDWord(VL53L0X_DEV Dev, uint8_t index, uint32_t *data)
+{
+ int status;
+ uint8_t buffer[4] = {0,0,0,0};
+
+ status = VL53L0X_I2CRead(Dev->I2cDevAddr, index, buffer, 4);
+ if(!status)
+ {
+ *data = (buffer[0] << 24) + (buffer[1] << 16) + (buffer[2] << 8) + buffer[3];
+ }
+ return status;
+
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_UpdateByte(VL53L0X_DEV Dev, uint8_t index, uint8_t AndData, uint8_t OrData)
+{
+ int status;
+ uint8_t buffer = 0;
+
+ /* read data direct onto buffer */
+ status = VL53L0X_I2CRead(Dev->I2cDevAddr, index, &buffer,1);
+ if (!status)
+ {
+ buffer = (buffer & AndData) | OrData;
+ status = VL53L0X_I2CWrite(Dev->I2cDevAddr, index, &buffer, (uint8_t)1);
+ }
+ return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_I2CWrite(uint8_t DeviceAddr, uint8_t RegisterAddr, uint8_t* pBuffer, uint16_t NumByteToWrite)
+{
+ int ret;
+
+ ret = dev_i2c.i2c_write(pBuffer, DeviceAddr, RegisterAddr, NumByteToWrite);
+
+ if(ret)
+ return -1;
+ return 0;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_I2CRead(uint8_t DeviceAddr, uint8_t RegisterAddr, uint8_t* pBuffer, uint16_t NumByteToRead)
+{
+ int ret;
+
+ ret = dev_i2c.i2c_read(pBuffer, DeviceAddr, RegisterAddr, NumByteToRead);
+
+ if(ret)
+ return -1;
+ return 0;
+}
+
+
+int VL53L0X::ReadID()
+{
+ int status = 0;
+ uint16_t rl_id=0;
+
+ status = VL53L0X_RdWord(Device, VL53L0X_REG_IDENTIFICATION_MODEL_ID, &rl_id);
+ if (rl_id == 0xEEAA)
+ return status;
+
+ return -1;
+}
+
+
+VL53L0X_Error VL53L0X::WaitMeasurementDataReady(VL53L0X_DEV Dev)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ uint8_t NewDatReady=0;
+ uint32_t LoopNb;
+
+ // Wait until it finished
+ // use timeout to avoid deadlock
+ if (Status == VL53L0X_ERROR_NONE) {
+ LoopNb = 0;
+ do {
+ Status = VL53L0X_GetMeasurementDataReady(Dev, &NewDatReady);
+ if ((NewDatReady == 0x01) || Status != VL53L0X_ERROR_NONE) {
+ break;
+ }
+ LoopNb = LoopNb + 1;
+ VL53L0X_PollingDelay(Dev);
+ } while (LoopNb < VL53L0X_DEFAULT_MAX_LOOP);
+
+ if (LoopNb >= VL53L0X_DEFAULT_MAX_LOOP) {
+ Status = VL53L0X_ERROR_TIME_OUT;
+ }
+ }
+
+ return Status;
+}
+
+VL53L0X_Error VL53L0X::WaitStopCompleted(VL53L0X_DEV Dev)
+{
+ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+ uint32_t StopCompleted=0;
+ uint32_t LoopNb;
+
+ // Wait until it finished
+ // use timeout to avoid deadlock
+ if (Status == VL53L0X_ERROR_NONE) {
+ LoopNb = 0;
+ do {
+ Status = VL53L0X_GetStopCompletedStatus(Dev, &StopCompleted);
+ if ((StopCompleted == 0x00) || Status != VL53L0X_ERROR_NONE) {
+ break;
+ }
+ LoopNb = LoopNb + 1;
+ VL53L0X_PollingDelay(Dev);
+ } while (LoopNb < VL53L0X_DEFAULT_MAX_LOOP);
+
+ if (LoopNb >= VL53L0X_DEFAULT_MAX_LOOP) {
+ Status = VL53L0X_ERROR_TIME_OUT;
+ }
+
+ }
+
+ return Status;
+}
+
+
+int VL53L0X::InitSensor(uint8_t NewAddr)
+{
+ int status;
+
+ VL53L0X_Off();
+ VL53L0X_On();
+
+// status=VL53L0X_WaitDeviceBooted(Device);
+// if(status)
+// printf("WaitDeviceBooted fail\n\r");
+ status=IsPresent();
+ if(!status)
+ {
+ status=Init();
+ if(status != VL53L0X_ERROR_NONE)
+ {
+ printf("Failed to init VL53L0X sensor!\n\r");
+ return status;
+ }
+
+ // deduce silicon version
+ status = VL53L0X_GetDeviceInfo(&MyDevice, &DeviceInfo);
+
+
+ status=Prepare();
+ if(status != VL53L0X_ERROR_NONE)
+ {
+ printf("Failed to prepare VL53L0X!\n\r");
+ return status;
+ }
+
+/*
+ if(NewAddr!=DEFAULT_DEVICE_ADDRESS)
+ {
+ status=SetDeviceAddress(NewAddr);
+ if(status)
+ {
+ printf("Failed to change I2C address!\n\r");
+ return status;
+ }
+ }
+ else
+ {
+ printf("Invalid new address!\n\r");
+ return VL53L0X_ERROR_INVALID_PARAMS;
+ }
+*/
+// Device->Ready=1;
+ }
+ return status;
+}
+
+
+
+
+
+int VL53L0X::StartMeasurement(OperatingMode operating_mode, void (*fptr)(void))
+{
+ int Status = VL53L0X_ERROR_NONE;
+
+ uint8_t VhvSettings;
+ uint8_t PhaseCal;
+ // *** from mass market cube expansion v1.1, ranging with satellites.
+ // default settings, for normal range.
+ FixPoint1616_t signalLimit = (FixPoint1616_t)(0.25*65536);
+ FixPoint1616_t sigmaLimit = (FixPoint1616_t)(18*65536);
+ uint32_t timingBudget = 33000;
+ uint8_t preRangeVcselPeriod = 14;
+ uint8_t finalRangeVcselPeriod = 10;
+
+
+ if (operating_mode == range_single_shot_polling)
+ {
+ // singelshot, polled ranging
+ if(Status == VL53L0X_ERROR_NONE)
+ {
+ // no need to do this when we use VL53L0X_PerformSingleRangingMeasurement
+ Status = VL53L0X_SetDeviceMode(Device, VL53L0X_DEVICEMODE_SINGLE_RANGING); // Setup in single ranging mode
+ }
+
+ // Enable/Disable Sigma and Signal check
+ if (Status == VL53L0X_ERROR_NONE) {
+ Status = VL53L0X_SetLimitCheckEnable(Device,
+ VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE, 1);
+ }
+ if (Status == VL53L0X_ERROR_NONE) {
+ Status = VL53L0X_SetLimitCheckEnable(Device,
+ VL53L0X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE, 1);
+ }
+
+// *** from mass market cube expansion v1.1, ranging with satellites.
+ /* Ranging configuration */
+//*
+// switch(rangingConfig) {
+// case LONG_RANGE:
+ signalLimit = (FixPoint1616_t)(0.1*65536);
+ sigmaLimit = (FixPoint1616_t)(60*65536);
+ timingBudget = 33000;
+ preRangeVcselPeriod = 18;
+ finalRangeVcselPeriod = 14;
+/* break;
+ case HIGH_ACCURACY:
+ signalLimit = (FixPoint1616_t)(0.25*65536);
+ sigmaLimit = (FixPoint1616_t)(18*65536);
+ timingBudget = 200000;
+ preRangeVcselPeriod = 14;
+ finalRangeVcselPeriod = 10;
+ break;
+ case HIGH_SPEED:
+ signalLimit = (FixPoint1616_t)(0.25*65536);
+ sigmaLimit = (FixPoint1616_t)(32*65536);
+ timingBudget = 20000;
+ preRangeVcselPeriod = 14;
+ finalRangeVcselPeriod = 10;
+ break;
+ default:
+ debug_printf("Not Supported");
+ }
+*/
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ Status = VL53L0X_SetLimitCheckValue(Device,
+ VL53L0X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE, signalLimit);
+ }
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ Status = VL53L0X_SetLimitCheckValue(Device,
+ VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE, sigmaLimit);
+ }
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ Status = VL53L0X_SetMeasurementTimingBudgetMicroSeconds(Device, timingBudget);
+ }
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ Status = VL53L0X_SetVcselPulsePeriod(Device,
+ VL53L0X_VCSEL_PERIOD_PRE_RANGE, preRangeVcselPeriod);
+ }
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ Status = VL53L0X_SetVcselPulsePeriod(Device,
+ VL53L0X_VCSEL_PERIOD_FINAL_RANGE, finalRangeVcselPeriod);
+ }
+
+ if (Status == VL53L0X_ERROR_NONE) {
+ Status = VL53L0X_PerformRefCalibration(Device, &VhvSettings, &PhaseCal);
+ }
+
+ }
+
+ if (operating_mode == range_continuous_polling)
+ {
+ if(Status == VL53L0X_ERROR_NONE)
+ {
+ printf ("Call of VL53L0X_SetDeviceMode\n");
+ Status = VL53L0X_SetDeviceMode(Device, VL53L0X_DEVICEMODE_CONTINUOUS_RANGING); // Setup in continuous ranging mode
+ }
+
+ if(Status == VL53L0X_ERROR_NONE)
+ {
+ printf ("Call of VL53L0X_StartMeasurement\n");
+ Status = VL53L0X_StartMeasurement(Device);
+ }
+ }
+
+ return Status;
+}
+
+
+int VL53L0X::GetMeasurement(OperatingMode operating_mode, VL53L0X_RangingMeasurementData_t *Data)
+{
+ int Status = VL53L0X_ERROR_NONE;
+
+ if (operating_mode == range_single_shot_polling)
+ {
+ Status = VL53L0X_PerformSingleRangingMeasurement(Device, Data);
+ }
+
+ if (operating_mode == range_continuous_polling)
+ {
+ if (Status == VL53L0X_ERROR_NONE)
+ Status = VL53L0X_measurement_poll_for_completion(Device);
+
+ if(Status == VL53L0X_ERROR_NONE)
+ {
+ Status = VL53L0X_GetRangingMeasurementData(Device, Data);
+
+ // Clear the interrupt
+ VL53L0X_ClearInterruptMask(Device, VL53L0X_REG_SYSTEM_INTERRUPT_GPIO_NEW_SAMPLE_READY);
+ VL53L0X_PollingDelay(Device);
+ }
+ }
+
+
+ return Status;
+}
+
+
+int VL53L0X::StopMeasurement(OperatingMode operating_mode)
+{
+ int status = VL53L0X_ERROR_NONE;
+
+
+ // don't need to stop for a singleshot range!
+ if (operating_mode==range_single_shot_polling)
+ {
+ }
+
+ if (operating_mode==range_continuous_interrupt || operating_mode==range_continuous_polling)
+ {
+ // continuous mode
+ if(status == VL53L0X_ERROR_NONE)
+ {
+ printf ("Call of VL53L0X_StopMeasurement\n");
+ status = VL53L0X_StopMeasurement(Device);
+ }
+
+ if(status == VL53L0X_ERROR_NONE)
+ {
+ printf ("Wait Stop to be competed\n");
+ status = WaitStopCompleted(Device);
+ }
+
+ if(status == VL53L0X_ERROR_NONE)
+ status = VL53L0X_ClearInterruptMask(Device,
+ VL53L0X_REG_SYSTEM_INTERRUPT_GPIO_NEW_SAMPLE_READY);
+ }
+
+ return status;
+}
+
+
+int VL53L0X::HandleIRQ(OperatingMode operating_mode, VL53L0X_RangingMeasurementData_t *Data)
+{
+ int status;
+
+ EnableInterruptMeasureDetectionIRQ();
+ status=GetMeasurement(operating_mode, Data);
+ return status;
+}
+
+
+
+/******************************************************************************/
+
+
+

X-NUCLEO-53L0A1 Ranging Sensor Expansion Board