Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: ST_INTERFACES X_NUCLEO_COMMON
Dependents: ConcorsoFinal HelloWorld_IHM01A1 m3pi_BT m3pi_LIDAR ... more
Fork of X_NUCLEO_53L0A1 by
X-NUCLEO-53L0A1 Proximity Sensor Expansion Board Firmware Package
Introduction
This firmware package includes Component Device Drivers and the Board Support Package for STMicroelectronics' X-NUCLEO-53L0A1 Proximity sensor expansion board based on VL53L0X.
Firmware Library
Class X_NUCLEO_53L0A1 is intended to represent the Proximity sensor expansion board with the same name.
The expansion board provides support for the following components:
- on-board VL53L0X proximity sensor,
- up to two additional VL53L0X Satellites,
- on-board 4-digit display
It is intentionally implemented as a singleton because only one X-NUCLEO-VL53L0A1 may be deployed at a time in a HW component stack. In order to get the singleton instance you have to call class method `Instance()`, e.g.:
// Sensors expansion board singleton instance static X_NUCLEO_53L0A1 *board = X_NUCLEO_53L0A1::Instance(device_i2c, A2, D8, D2);
Example Applications
- Hello World 53L0
- Display 53L0A1
- Display 53L0A1 Interrupts
- Display 53L0A1 with satellites
- 53L0A1 Satellites with Interrupts
- 53L0A1_HandGestureRecognition
The library and sample application code were tested against mbed revision 143, dated 26th May 2017.
Components/VL53L0X/vl53l0x_class.cpp
- Committer:
- johnAlexander
- Date:
- 2017-06-15
- Revision:
- 13:615f7e38568c
- Parent:
- 12:f6e2bad00dc7
- Child:
- 14:8320b5ff96fa
File content as of revision 13:615f7e38568c:
/**
******************************************************************************
* @file vl53l0x_class.cpp
* @author IMG
* @version V0.0.1
* @date 28-June-2016
* @brief Implementation file for the VL53L0X driver class
******************************************************************************
* @attention
*
* <h2><center>© COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes */
#include <stdlib.h>
#include "vl53l0x_class.h"
//#include "vl53l0x_api_core.h"
//#include "vl53l0x_api_calibration.h"
//#include "vl53l0x_api_strings.h"
#include "vl53l0x_interrupt_threshold_settings.h"
#include "vl53l0x_tuning.h"
#include "vl53l0x_types.h"
/****************** define for i2c configuration *******************************/
#define TEMP_BUF_SIZE 64
/** Maximum buffer size to be used in i2c */
#define VL53L0X_MAX_I2C_XFER_SIZE 64 /* Maximum buffer size to be used in i2c */
#define VL53L0X_I2C_USER_VAR /* none but could be for a flag var to get/pass to mutex interruptible return flags and try again */
#define LOG_FUNCTION_START(fmt, ...) \
_LOG_FUNCTION_START(TRACE_MODULE_API, fmt, ##__VA_ARGS__)
#define LOG_FUNCTION_END(status, ...) \
_LOG_FUNCTION_END(TRACE_MODULE_API, status, ##__VA_ARGS__)
#define LOG_FUNCTION_END_FMT(status, fmt, ...) \
_LOG_FUNCTION_END_FMT(TRACE_MODULE_API, status, fmt, ##__VA_ARGS__)
#ifdef VL53L0X_LOG_ENABLE
#define trace_print(level, ...) trace_print_module_function(TRACE_MODULE_API, \
level, TRACE_FUNCTION_NONE, ##__VA_ARGS__)
#endif
#define REF_ARRAY_SPAD_0 0
#define REF_ARRAY_SPAD_5 5
#define REF_ARRAY_SPAD_10 10
uint32_t refArrayQuadrants[4] = {REF_ARRAY_SPAD_10, REF_ARRAY_SPAD_5,
REF_ARRAY_SPAD_0, REF_ARRAY_SPAD_5 };
VL53L0X_Error VL53L0X::VL53L0X_device_read_strobe(VL53L0X_DEV Dev)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
uint8_t strobe;
uint32_t LoopNb;
LOG_FUNCTION_START("");
Status |= VL53L0X_WrByte(Dev, 0x83, 0x00);
/* polling
* use timeout to avoid deadlock*/
if (Status == VL53L0X_ERROR_NONE) {
LoopNb = 0;
do {
Status = VL53L0X_RdByte(Dev, 0x83, &strobe);
if ((strobe != 0x00) || Status != VL53L0X_ERROR_NONE)
break;
LoopNb = LoopNb + 1;
} while (LoopNb < VL53L0X_DEFAULT_MAX_LOOP);
if (LoopNb >= VL53L0X_DEFAULT_MAX_LOOP)
Status = VL53L0X_ERROR_TIME_OUT;
}
Status |= VL53L0X_WrByte(Dev, 0x83, 0x01);
LOG_FUNCTION_END(Status);
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_get_info_from_device(VL53L0X_DEV Dev, uint8_t option)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
uint8_t byte;
uint32_t TmpDWord;
uint8_t ModuleId;
uint8_t Revision;
uint8_t ReferenceSpadCount = 0;
uint8_t ReferenceSpadType = 0;
uint32_t PartUIDUpper = 0;
uint32_t PartUIDLower = 0;
uint32_t OffsetFixed1104_mm = 0;
int16_t OffsetMicroMeters = 0;
uint32_t DistMeasTgtFixed1104_mm = 400 << 4;
uint32_t DistMeasFixed1104_400_mm = 0;
uint32_t SignalRateMeasFixed1104_400_mm = 0;
char ProductId[19];
char *ProductId_tmp;
uint8_t ReadDataFromDeviceDone;
FixPoint1616_t SignalRateMeasFixed400mmFix = 0;
uint8_t NvmRefGoodSpadMap[VL53L0X_REF_SPAD_BUFFER_SIZE];
int i;
LOG_FUNCTION_START("");
ReadDataFromDeviceDone = VL53L0X_GETDEVICESPECIFICPARAMETER(Dev,
ReadDataFromDeviceDone);
/* This access is done only once after that a GetDeviceInfo or
* datainit is done*/
if (ReadDataFromDeviceDone != 7) {
Status |= VL53L0X_WrByte(Dev, 0x80, 0x01);
Status |= VL53L0X_WrByte(Dev, 0xFF, 0x01);
Status |= VL53L0X_WrByte(Dev, 0x00, 0x00);
Status |= VL53L0X_WrByte(Dev, 0xFF, 0x06);
Status |= VL53L0X_RdByte(Dev, 0x83, &byte);
Status |= VL53L0X_WrByte(Dev, 0x83, byte|4);
Status |= VL53L0X_WrByte(Dev, 0xFF, 0x07);
Status |= VL53L0X_WrByte(Dev, 0x81, 0x01);
Status |= VL53L0X_PollingDelay(Dev);
Status |= VL53L0X_WrByte(Dev, 0x80, 0x01);
if (((option & 1) == 1) &&
((ReadDataFromDeviceDone & 1) == 0)) {
Status |= VL53L0X_WrByte(Dev, 0x94, 0x6b);
Status |= VL53L0X_device_read_strobe(Dev);
Status |= VL53L0X_RdDWord(Dev, 0x90, &TmpDWord);
ReferenceSpadCount = (uint8_t)((TmpDWord >> 8) & 0x07f);
ReferenceSpadType = (uint8_t)((TmpDWord >> 15) & 0x01);
Status |= VL53L0X_WrByte(Dev, 0x94, 0x24);
Status |= VL53L0X_device_read_strobe(Dev);
Status |= VL53L0X_RdDWord(Dev, 0x90, &TmpDWord);
NvmRefGoodSpadMap[0] = (uint8_t)((TmpDWord >> 24)
& 0xff);
NvmRefGoodSpadMap[1] = (uint8_t)((TmpDWord >> 16)
& 0xff);
NvmRefGoodSpadMap[2] = (uint8_t)((TmpDWord >> 8)
& 0xff);
NvmRefGoodSpadMap[3] = (uint8_t)(TmpDWord & 0xff);
Status |= VL53L0X_WrByte(Dev, 0x94, 0x25);
Status |= VL53L0X_device_read_strobe(Dev);
Status |= VL53L0X_RdDWord(Dev, 0x90, &TmpDWord);
NvmRefGoodSpadMap[4] = (uint8_t)((TmpDWord >> 24)
& 0xff);
NvmRefGoodSpadMap[5] = (uint8_t)((TmpDWord >> 16)
& 0xff);
}
if (((option & 2) == 2) &&
((ReadDataFromDeviceDone & 2) == 0)) {
Status |= VL53L0X_WrByte(Dev, 0x94, 0x02);
Status |= VL53L0X_device_read_strobe(Dev);
Status |= VL53L0X_RdByte(Dev, 0x90, &ModuleId);
Status |= VL53L0X_WrByte(Dev, 0x94, 0x7B);
Status |= VL53L0X_device_read_strobe(Dev);
Status |= VL53L0X_RdByte(Dev, 0x90, &Revision);
Status |= VL53L0X_WrByte(Dev, 0x94, 0x77);
Status |= VL53L0X_device_read_strobe(Dev);
Status |= VL53L0X_RdDWord(Dev, 0x90, &TmpDWord);
ProductId[0] = (char)((TmpDWord >> 25) & 0x07f);
ProductId[1] = (char)((TmpDWord >> 18) & 0x07f);
ProductId[2] = (char)((TmpDWord >> 11) & 0x07f);
ProductId[3] = (char)((TmpDWord >> 4) & 0x07f);
byte = (uint8_t)((TmpDWord & 0x00f) << 3);
Status |= VL53L0X_WrByte(Dev, 0x94, 0x78);
Status |= VL53L0X_device_read_strobe(Dev);
Status |= VL53L0X_RdDWord(Dev, 0x90, &TmpDWord);
ProductId[4] = (char)(byte +
((TmpDWord >> 29) & 0x07f));
ProductId[5] = (char)((TmpDWord >> 22) & 0x07f);
ProductId[6] = (char)((TmpDWord >> 15) & 0x07f);
ProductId[7] = (char)((TmpDWord >> 8) & 0x07f);
ProductId[8] = (char)((TmpDWord >> 1) & 0x07f);
byte = (uint8_t)((TmpDWord & 0x001) << 6);
Status |= VL53L0X_WrByte(Dev, 0x94, 0x79);
Status |= VL53L0X_device_read_strobe(Dev);
Status |= VL53L0X_RdDWord(Dev, 0x90, &TmpDWord);
ProductId[9] = (char)(byte +
((TmpDWord >> 26) & 0x07f));
ProductId[10] = (char)((TmpDWord >> 19) & 0x07f);
ProductId[11] = (char)((TmpDWord >> 12) & 0x07f);
ProductId[12] = (char)((TmpDWord >> 5) & 0x07f);
byte = (uint8_t)((TmpDWord & 0x01f) << 2);
Status |= VL53L0X_WrByte(Dev, 0x94, 0x7A);
Status |= VL53L0X_device_read_strobe(Dev);
Status |= VL53L0X_RdDWord(Dev, 0x90, &TmpDWord);
ProductId[13] = (char)(byte +
((TmpDWord >> 30) & 0x07f));
ProductId[14] = (char)((TmpDWord >> 23) & 0x07f);
ProductId[15] = (char)((TmpDWord >> 16) & 0x07f);
ProductId[16] = (char)((TmpDWord >> 9) & 0x07f);
ProductId[17] = (char)((TmpDWord >> 2) & 0x07f);
ProductId[18] = '\0';
}
if (((option & 4) == 4) &&
((ReadDataFromDeviceDone & 4) == 0)) {
Status |= VL53L0X_WrByte(Dev, 0x94, 0x7B);
Status |= VL53L0X_device_read_strobe(Dev);
Status |= VL53L0X_RdDWord(Dev, 0x90, &PartUIDUpper);
Status |= VL53L0X_WrByte(Dev, 0x94, 0x7C);
Status |= VL53L0X_device_read_strobe(Dev);
Status |= VL53L0X_RdDWord(Dev, 0x90, &PartUIDLower);
Status |= VL53L0X_WrByte(Dev, 0x94, 0x73);
Status |= VL53L0X_device_read_strobe(Dev);
Status |= VL53L0X_RdDWord(Dev, 0x90, &TmpDWord);
SignalRateMeasFixed1104_400_mm = (TmpDWord &
0x0000000ff) << 8;
Status |= VL53L0X_WrByte(Dev, 0x94, 0x74);
Status |= VL53L0X_device_read_strobe(Dev);
Status |= VL53L0X_RdDWord(Dev, 0x90, &TmpDWord);
SignalRateMeasFixed1104_400_mm |= ((TmpDWord &
0xff000000) >> 24);
Status |= VL53L0X_WrByte(Dev, 0x94, 0x75);
Status |= VL53L0X_device_read_strobe(Dev);
Status |= VL53L0X_RdDWord(Dev, 0x90, &TmpDWord);
DistMeasFixed1104_400_mm = (TmpDWord & 0x0000000ff)
<< 8;
Status |= VL53L0X_WrByte(Dev, 0x94, 0x76);
Status |= VL53L0X_device_read_strobe(Dev);
Status |= VL53L0X_RdDWord(Dev, 0x90, &TmpDWord);
DistMeasFixed1104_400_mm |= ((TmpDWord & 0xff000000)
>> 24);
}
Status |= VL53L0X_WrByte(Dev, 0x81, 0x00);
Status |= VL53L0X_WrByte(Dev, 0xFF, 0x06);
Status |= VL53L0X_RdByte(Dev, 0x83, &byte);
Status |= VL53L0X_WrByte(Dev, 0x83, byte&0xfb);
Status |= VL53L0X_WrByte(Dev, 0xFF, 0x01);
Status |= VL53L0X_WrByte(Dev, 0x00, 0x01);
Status |= VL53L0X_WrByte(Dev, 0xFF, 0x00);
Status |= VL53L0X_WrByte(Dev, 0x80, 0x00);
}
if ((Status == VL53L0X_ERROR_NONE) &&
(ReadDataFromDeviceDone != 7)) {
/* Assign to variable if status is ok */
if (((option & 1) == 1) &&
((ReadDataFromDeviceDone & 1) == 0)) {
VL53L0X_SETDEVICESPECIFICPARAMETER(Dev,
ReferenceSpadCount, ReferenceSpadCount);
VL53L0X_SETDEVICESPECIFICPARAMETER(Dev,
ReferenceSpadType, ReferenceSpadType);
for (i = 0; i < VL53L0X_REF_SPAD_BUFFER_SIZE; i++) {
Dev->Data.SpadData.RefGoodSpadMap[i] =
NvmRefGoodSpadMap[i];
}
}
if (((option & 2) == 2) &&
((ReadDataFromDeviceDone & 2) == 0)) {
VL53L0X_SETDEVICESPECIFICPARAMETER(Dev,
ModuleId, ModuleId);
VL53L0X_SETDEVICESPECIFICPARAMETER(Dev,
Revision, Revision);
ProductId_tmp = VL53L0X_GETDEVICESPECIFICPARAMETER(Dev,
ProductId);
VL53L0X_COPYSTRING(ProductId_tmp, ProductId);
}
if (((option & 4) == 4) &&
((ReadDataFromDeviceDone & 4) == 0)) {
VL53L0X_SETDEVICESPECIFICPARAMETER(Dev,
PartUIDUpper, PartUIDUpper);
VL53L0X_SETDEVICESPECIFICPARAMETER(Dev,
PartUIDLower, PartUIDLower);
SignalRateMeasFixed400mmFix =
VL53L0X_FIXPOINT97TOFIXPOINT1616(
SignalRateMeasFixed1104_400_mm);
VL53L0X_SETDEVICESPECIFICPARAMETER(Dev,
SignalRateMeasFixed400mm,
SignalRateMeasFixed400mmFix);
OffsetMicroMeters = 0;
if (DistMeasFixed1104_400_mm != 0) {
OffsetFixed1104_mm =
DistMeasFixed1104_400_mm -
DistMeasTgtFixed1104_mm;
OffsetMicroMeters = (OffsetFixed1104_mm
* 1000) >> 4;
OffsetMicroMeters *= -1;
}
PALDevDataSet(Dev,
Part2PartOffsetAdjustmentNVMMicroMeter,
OffsetMicroMeters);
}
byte = (uint8_t)(ReadDataFromDeviceDone|option);
VL53L0X_SETDEVICESPECIFICPARAMETER(Dev, ReadDataFromDeviceDone,
byte);
}
LOG_FUNCTION_END(Status);
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_get_offset_calibration_data_micro_meter(VL53L0X_DEV Dev,
int32_t *pOffsetCalibrationDataMicroMeter)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
uint16_t RangeOffsetRegister;
int16_t cMaxOffset = 2047;
int16_t cOffsetRange = 4096;
/* Note that offset has 10.2 format */
Status = VL53L0X_RdWord(Dev,
VL53L0X_REG_ALGO_PART_TO_PART_RANGE_OFFSET_MM,
&RangeOffsetRegister);
if (Status == VL53L0X_ERROR_NONE) {
RangeOffsetRegister = (RangeOffsetRegister & 0x0fff);
/* Apply 12 bit 2's compliment conversion */
if (RangeOffsetRegister > cMaxOffset)
*pOffsetCalibrationDataMicroMeter =
(int16_t)(RangeOffsetRegister - cOffsetRange)
* 250;
else
*pOffsetCalibrationDataMicroMeter =
(int16_t)RangeOffsetRegister * 250;
}
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_GetOffsetCalibrationDataMicroMeter(VL53L0X_DEV Dev,
int32_t *pOffsetCalibrationDataMicroMeter)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
LOG_FUNCTION_START("");
Status = VL53L0X_get_offset_calibration_data_micro_meter(Dev,
pOffsetCalibrationDataMicroMeter);
LOG_FUNCTION_END(Status);
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_set_offset_calibration_data_micro_meter(VL53L0X_DEV Dev,
int32_t OffsetCalibrationDataMicroMeter)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
int32_t cMaxOffsetMicroMeter = 511000;
int32_t cMinOffsetMicroMeter = -512000;
int16_t cOffsetRange = 4096;
uint32_t encodedOffsetVal;
LOG_FUNCTION_START("");
if (OffsetCalibrationDataMicroMeter > cMaxOffsetMicroMeter)
OffsetCalibrationDataMicroMeter = cMaxOffsetMicroMeter;
else if (OffsetCalibrationDataMicroMeter < cMinOffsetMicroMeter)
OffsetCalibrationDataMicroMeter = cMinOffsetMicroMeter;
/* The offset register is 10.2 format and units are mm
* therefore conversion is applied by a division of
* 250.
*/
if (OffsetCalibrationDataMicroMeter >= 0) {
encodedOffsetVal =
OffsetCalibrationDataMicroMeter/250;
} else {
encodedOffsetVal =
cOffsetRange +
OffsetCalibrationDataMicroMeter/250;
}
Status = VL53L0X_WrWord(Dev,
VL53L0X_REG_ALGO_PART_TO_PART_RANGE_OFFSET_MM,
encodedOffsetVal);
LOG_FUNCTION_END(Status);
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_SetOffsetCalibrationDataMicroMeter(VL53L0X_DEV Dev,
int32_t OffsetCalibrationDataMicroMeter)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
LOG_FUNCTION_START("");
Status = VL53L0X_set_offset_calibration_data_micro_meter(Dev,
OffsetCalibrationDataMicroMeter);
LOG_FUNCTION_END(Status);
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_apply_offset_adjustment(VL53L0X_DEV Dev)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
int32_t CorrectedOffsetMicroMeters;
int32_t CurrentOffsetMicroMeters;
/* if we run on this function we can read all the NVM info
* used by the API */
Status = VL53L0X_get_info_from_device(Dev, 7);
/* Read back current device offset */
if (Status == VL53L0X_ERROR_NONE) {
Status = VL53L0X_GetOffsetCalibrationDataMicroMeter(Dev,
&CurrentOffsetMicroMeters);
}
/* Apply Offset Adjustment derived from 400mm measurements */
if (Status == VL53L0X_ERROR_NONE) {
/* Store initial device offset */
PALDevDataSet(Dev, Part2PartOffsetNVMMicroMeter,
CurrentOffsetMicroMeters);
CorrectedOffsetMicroMeters = CurrentOffsetMicroMeters +
(int32_t)PALDevDataGet(Dev,
Part2PartOffsetAdjustmentNVMMicroMeter);
Status = VL53L0X_SetOffsetCalibrationDataMicroMeter(Dev,
CorrectedOffsetMicroMeters);
/* store current, adjusted offset */
if (Status == VL53L0X_ERROR_NONE) {
VL53L0X_SETPARAMETERFIELD(Dev, RangeOffsetMicroMeters,
CorrectedOffsetMicroMeters);
}
}
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_GetDeviceMode(VL53L0X_DEV Dev,
VL53L0X_DeviceModes *pDeviceMode)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
LOG_FUNCTION_START("");
VL53L0X_GETPARAMETERFIELD(Dev, DeviceMode, *pDeviceMode);
LOG_FUNCTION_END(Status);
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_GetInterMeasurementPeriodMilliSeconds(VL53L0X_DEV Dev,
uint32_t *pInterMeasurementPeriodMilliSeconds)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
uint16_t osc_calibrate_val;
uint32_t IMPeriodMilliSeconds;
LOG_FUNCTION_START("");
Status = VL53L0X_RdWord(Dev, VL53L0X_REG_OSC_CALIBRATE_VAL,
&osc_calibrate_val);
if (Status == VL53L0X_ERROR_NONE) {
Status = VL53L0X_RdDWord(Dev,
VL53L0X_REG_SYSTEM_INTERMEASUREMENT_PERIOD,
&IMPeriodMilliSeconds);
}
if (Status == VL53L0X_ERROR_NONE) {
if (osc_calibrate_val != 0) {
*pInterMeasurementPeriodMilliSeconds =
IMPeriodMilliSeconds / osc_calibrate_val;
}
VL53L0X_SETPARAMETERFIELD(Dev,
InterMeasurementPeriodMilliSeconds,
*pInterMeasurementPeriodMilliSeconds);
}
LOG_FUNCTION_END(Status);
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_GetXTalkCompensationRateMegaCps(VL53L0X_DEV Dev,
FixPoint1616_t *pXTalkCompensationRateMegaCps)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
uint16_t Value;
FixPoint1616_t TempFix1616;
LOG_FUNCTION_START("");
Status = VL53L0X_RdWord(Dev,
VL53L0X_REG_CROSSTALK_COMPENSATION_PEAK_RATE_MCPS, (uint16_t *)&Value);
if (Status == VL53L0X_ERROR_NONE) {
if (Value == 0) {
/* the Xtalk is disabled return value from memory */
VL53L0X_GETPARAMETERFIELD(Dev,
XTalkCompensationRateMegaCps, TempFix1616);
*pXTalkCompensationRateMegaCps = TempFix1616;
VL53L0X_SETPARAMETERFIELD(Dev, XTalkCompensationEnable,
0);
} else {
TempFix1616 = VL53L0X_FIXPOINT313TOFIXPOINT1616(Value);
*pXTalkCompensationRateMegaCps = TempFix1616;
VL53L0X_SETPARAMETERFIELD(Dev,
XTalkCompensationRateMegaCps, TempFix1616);
VL53L0X_SETPARAMETERFIELD(Dev, XTalkCompensationEnable,
1);
}
}
LOG_FUNCTION_END(Status);
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_GetLimitCheckValue(VL53L0X_DEV Dev, uint16_t LimitCheckId,
FixPoint1616_t *pLimitCheckValue)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
uint8_t EnableZeroValue = 0;
uint16_t Temp16;
FixPoint1616_t TempFix1616;
LOG_FUNCTION_START("");
switch (LimitCheckId) {
case VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE:
/* internal computation: */
VL53L0X_GETARRAYPARAMETERFIELD(Dev, LimitChecksValue,
VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE, TempFix1616);
EnableZeroValue = 0;
break;
case VL53L0X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE:
Status = VL53L0X_RdWord(Dev,
VL53L0X_REG_FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT,
&Temp16);
if (Status == VL53L0X_ERROR_NONE)
TempFix1616 = VL53L0X_FIXPOINT97TOFIXPOINT1616(Temp16);
EnableZeroValue = 1;
break;
case VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP:
/* internal computation: */
VL53L0X_GETARRAYPARAMETERFIELD(Dev, LimitChecksValue,
VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP, TempFix1616);
EnableZeroValue = 0;
break;
case VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD:
/* internal computation: */
VL53L0X_GETARRAYPARAMETERFIELD(Dev, LimitChecksValue,
VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD, TempFix1616);
EnableZeroValue = 0;
break;
case VL53L0X_CHECKENABLE_SIGNAL_RATE_MSRC:
case VL53L0X_CHECKENABLE_SIGNAL_RATE_PRE_RANGE:
Status = VL53L0X_RdWord(Dev,
VL53L0X_REG_PRE_RANGE_MIN_COUNT_RATE_RTN_LIMIT,
&Temp16);
if (Status == VL53L0X_ERROR_NONE)
TempFix1616 = VL53L0X_FIXPOINT97TOFIXPOINT1616(Temp16);
EnableZeroValue = 0;
break;
default:
Status = VL53L0X_ERROR_INVALID_PARAMS;
}
if (Status == VL53L0X_ERROR_NONE) {
if (EnableZeroValue == 1) {
if (TempFix1616 == 0) {
/* disabled: return value from memory */
VL53L0X_GETARRAYPARAMETERFIELD(Dev,
LimitChecksValue, LimitCheckId,
TempFix1616);
*pLimitCheckValue = TempFix1616;
VL53L0X_SETARRAYPARAMETERFIELD(Dev,
LimitChecksEnable, LimitCheckId, 0);
} else {
*pLimitCheckValue = TempFix1616;
VL53L0X_SETARRAYPARAMETERFIELD(Dev,
LimitChecksValue, LimitCheckId,
TempFix1616);
VL53L0X_SETARRAYPARAMETERFIELD(Dev,
LimitChecksEnable, LimitCheckId, 1);
}
} else {
*pLimitCheckValue = TempFix1616;
}
}
LOG_FUNCTION_END(Status);
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_GetLimitCheckEnable(VL53L0X_DEV Dev, uint16_t LimitCheckId,
uint8_t *pLimitCheckEnable)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
uint8_t Temp8;
LOG_FUNCTION_START("");
if (LimitCheckId >= VL53L0X_CHECKENABLE_NUMBER_OF_CHECKS) {
Status = VL53L0X_ERROR_INVALID_PARAMS;
*pLimitCheckEnable = 0;
} else {
VL53L0X_GETARRAYPARAMETERFIELD(Dev, LimitChecksEnable,
LimitCheckId, Temp8);
*pLimitCheckEnable = Temp8;
}
LOG_FUNCTION_END(Status);
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_GetWrapAroundCheckEnable(VL53L0X_DEV Dev,
uint8_t *pWrapAroundCheckEnable)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
uint8_t data;
LOG_FUNCTION_START("");
Status = VL53L0X_RdByte(Dev, VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG, &data);
if (Status == VL53L0X_ERROR_NONE) {
PALDevDataSet(Dev, SequenceConfig, data);
if (data & (0x01 << 7))
*pWrapAroundCheckEnable = 0x01;
else
*pWrapAroundCheckEnable = 0x00;
}
if (Status == VL53L0X_ERROR_NONE) {
VL53L0X_SETPARAMETERFIELD(Dev, WrapAroundCheckEnable,
*pWrapAroundCheckEnable);
}
LOG_FUNCTION_END(Status);
return Status;
}
VL53L0X_Error VL53L0X::sequence_step_enabled(VL53L0X_DEV Dev,
VL53L0X_SequenceStepId SequenceStepId, uint8_t SequenceConfig,
uint8_t *pSequenceStepEnabled)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
*pSequenceStepEnabled = 0;
LOG_FUNCTION_START("");
switch (SequenceStepId) {
case VL53L0X_SEQUENCESTEP_TCC:
*pSequenceStepEnabled = (SequenceConfig & 0x10) >> 4;
break;
case VL53L0X_SEQUENCESTEP_DSS:
*pSequenceStepEnabled = (SequenceConfig & 0x08) >> 3;
break;
case VL53L0X_SEQUENCESTEP_MSRC:
*pSequenceStepEnabled = (SequenceConfig & 0x04) >> 2;
break;
case VL53L0X_SEQUENCESTEP_PRE_RANGE:
*pSequenceStepEnabled = (SequenceConfig & 0x40) >> 6;
break;
case VL53L0X_SEQUENCESTEP_FINAL_RANGE:
*pSequenceStepEnabled = (SequenceConfig & 0x80) >> 7;
break;
default:
Status = VL53L0X_ERROR_INVALID_PARAMS;
}
LOG_FUNCTION_END(Status);
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_GetSequenceStepEnables(VL53L0X_DEV Dev,
VL53L0X_SchedulerSequenceSteps_t *pSchedulerSequenceSteps)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
uint8_t SequenceConfig = 0;
LOG_FUNCTION_START("");
Status = VL53L0X_RdByte(Dev, VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG,
&SequenceConfig);
if (Status == VL53L0X_ERROR_NONE) {
Status = sequence_step_enabled(Dev,
VL53L0X_SEQUENCESTEP_TCC, SequenceConfig,
&pSchedulerSequenceSteps->TccOn);
}
if (Status == VL53L0X_ERROR_NONE) {
Status = sequence_step_enabled(Dev,
VL53L0X_SEQUENCESTEP_DSS, SequenceConfig,
&pSchedulerSequenceSteps->DssOn);
}
if (Status == VL53L0X_ERROR_NONE) {
Status = sequence_step_enabled(Dev,
VL53L0X_SEQUENCESTEP_MSRC, SequenceConfig,
&pSchedulerSequenceSteps->MsrcOn);
}
if (Status == VL53L0X_ERROR_NONE) {
Status = sequence_step_enabled(Dev,
VL53L0X_SEQUENCESTEP_PRE_RANGE, SequenceConfig,
&pSchedulerSequenceSteps->PreRangeOn);
}
if (Status == VL53L0X_ERROR_NONE) {
Status = sequence_step_enabled(Dev,
VL53L0X_SEQUENCESTEP_FINAL_RANGE, SequenceConfig,
&pSchedulerSequenceSteps->FinalRangeOn);
}
LOG_FUNCTION_END(Status);
return Status;
}
uint8_t VL53L0X::VL53L0X_decode_vcsel_period(uint8_t vcsel_period_reg)
{
/*!
* Converts the encoded VCSEL period register value into the real
* period in PLL clocks
*/
uint8_t vcsel_period_pclks = 0;
vcsel_period_pclks = (vcsel_period_reg + 1) << 1;
return vcsel_period_pclks;
}
uint8_t VL53L0X::VL53L0X_encode_vcsel_period(uint8_t vcsel_period_pclks)
{
/*!
* Converts the encoded VCSEL period register value into the real period
* in PLL clocks
*/
uint8_t vcsel_period_reg = 0;
vcsel_period_reg = (vcsel_period_pclks >> 1) - 1;
return vcsel_period_reg;
}
VL53L0X_Error VL53L0X::VL53L0X_set_vcsel_pulse_period(VL53L0X_DEV Dev,
VL53L0X_VcselPeriod VcselPeriodType, uint8_t VCSELPulsePeriodPCLK)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
uint8_t vcsel_period_reg;
uint8_t MinPreVcselPeriodPCLK = 12;
uint8_t MaxPreVcselPeriodPCLK = 18;
uint8_t MinFinalVcselPeriodPCLK = 8;
uint8_t MaxFinalVcselPeriodPCLK = 14;
uint32_t MeasurementTimingBudgetMicroSeconds;
uint32_t FinalRangeTimeoutMicroSeconds;
uint32_t PreRangeTimeoutMicroSeconds;
uint32_t MsrcTimeoutMicroSeconds;
uint8_t PhaseCalInt = 0;
/* Check if valid clock period requested */
if ((VCSELPulsePeriodPCLK % 2) != 0) {
/* Value must be an even number */
Status = VL53L0X_ERROR_INVALID_PARAMS;
} else if (VcselPeriodType == VL53L0X_VCSEL_PERIOD_PRE_RANGE &&
(VCSELPulsePeriodPCLK < MinPreVcselPeriodPCLK ||
VCSELPulsePeriodPCLK > MaxPreVcselPeriodPCLK)) {
Status = VL53L0X_ERROR_INVALID_PARAMS;
} else if (VcselPeriodType == VL53L0X_VCSEL_PERIOD_FINAL_RANGE &&
(VCSELPulsePeriodPCLK < MinFinalVcselPeriodPCLK ||
VCSELPulsePeriodPCLK > MaxFinalVcselPeriodPCLK)) {
Status = VL53L0X_ERROR_INVALID_PARAMS;
}
/* Apply specific settings for the requested clock period */
if (Status != VL53L0X_ERROR_NONE)
return Status;
if (VcselPeriodType == VL53L0X_VCSEL_PERIOD_PRE_RANGE) {
/* Set phase check limits */
if (VCSELPulsePeriodPCLK == 12) {
Status = VL53L0X_WrByte(Dev,
VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_HIGH,
0x18);
Status = VL53L0X_WrByte(Dev,
VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_LOW,
0x08);
} else if (VCSELPulsePeriodPCLK == 14) {
Status = VL53L0X_WrByte(Dev,
VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_HIGH,
0x30);
Status = VL53L0X_WrByte(Dev,
VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_LOW,
0x08);
} else if (VCSELPulsePeriodPCLK == 16) {
Status = VL53L0X_WrByte(Dev,
VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_HIGH,
0x40);
Status = VL53L0X_WrByte(Dev,
VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_LOW,
0x08);
} else if (VCSELPulsePeriodPCLK == 18) {
Status = VL53L0X_WrByte(Dev,
VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_HIGH,
0x50);
Status = VL53L0X_WrByte(Dev,
VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_LOW,
0x08);
}
} else if (VcselPeriodType == VL53L0X_VCSEL_PERIOD_FINAL_RANGE) {
if (VCSELPulsePeriodPCLK == 8) {
Status = VL53L0X_WrByte(Dev,
VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_HIGH,
0x10);
Status = VL53L0X_WrByte(Dev,
VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_LOW,
0x08);
Status |= VL53L0X_WrByte(Dev,
VL53L0X_REG_GLOBAL_CONFIG_VCSEL_WIDTH, 0x02);
Status |= VL53L0X_WrByte(Dev,
VL53L0X_REG_ALGO_PHASECAL_CONFIG_TIMEOUT, 0x0C);
Status |= VL53L0X_WrByte(Dev, 0xff, 0x01);
Status |= VL53L0X_WrByte(Dev,
VL53L0X_REG_ALGO_PHASECAL_LIM,
0x30);
Status |= VL53L0X_WrByte(Dev, 0xff, 0x00);
} else if (VCSELPulsePeriodPCLK == 10) {
Status = VL53L0X_WrByte(Dev,
VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_HIGH,
0x28);
Status = VL53L0X_WrByte(Dev,
VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_LOW,
0x08);
Status |= VL53L0X_WrByte(Dev,
VL53L0X_REG_GLOBAL_CONFIG_VCSEL_WIDTH, 0x03);
Status |= VL53L0X_WrByte(Dev,
VL53L0X_REG_ALGO_PHASECAL_CONFIG_TIMEOUT, 0x09);
Status |= VL53L0X_WrByte(Dev, 0xff, 0x01);
Status |= VL53L0X_WrByte(Dev,
VL53L0X_REG_ALGO_PHASECAL_LIM,
0x20);
Status |= VL53L0X_WrByte(Dev, 0xff, 0x00);
} else if (VCSELPulsePeriodPCLK == 12) {
Status = VL53L0X_WrByte(Dev,
VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_HIGH,
0x38);
Status = VL53L0X_WrByte(Dev,
VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_LOW,
0x08);
Status |= VL53L0X_WrByte(Dev,
VL53L0X_REG_GLOBAL_CONFIG_VCSEL_WIDTH, 0x03);
Status |= VL53L0X_WrByte(Dev,
VL53L0X_REG_ALGO_PHASECAL_CONFIG_TIMEOUT, 0x08);
Status |= VL53L0X_WrByte(Dev, 0xff, 0x01);
Status |= VL53L0X_WrByte(Dev,
VL53L0X_REG_ALGO_PHASECAL_LIM,
0x20);
Status |= VL53L0X_WrByte(Dev, 0xff, 0x00);
} else if (VCSELPulsePeriodPCLK == 14) {
Status = VL53L0X_WrByte(Dev,
VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_HIGH,
0x048);
Status = VL53L0X_WrByte(Dev,
VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_LOW,
0x08);
Status |= VL53L0X_WrByte(Dev,
VL53L0X_REG_GLOBAL_CONFIG_VCSEL_WIDTH, 0x03);
Status |= VL53L0X_WrByte(Dev,
VL53L0X_REG_ALGO_PHASECAL_CONFIG_TIMEOUT, 0x07);
Status |= VL53L0X_WrByte(Dev, 0xff, 0x01);
Status |= VL53L0X_WrByte(Dev,
VL53L0X_REG_ALGO_PHASECAL_LIM,
0x20);
Status |= VL53L0X_WrByte(Dev, 0xff, 0x00);
}
}
/* Re-calculate and apply timeouts, in macro periods */
if (Status == VL53L0X_ERROR_NONE) {
vcsel_period_reg = VL53L0X_encode_vcsel_period((uint8_t)
VCSELPulsePeriodPCLK);
/* When the VCSEL period for the pre or final range is changed,
* the corresponding timeout must be read from the device using
* the current VCSEL period, then the new VCSEL period can be
* applied. The timeout then must be written back to the device
* using the new VCSEL period.
*
* For the MSRC timeout, the same applies - this timeout being
* dependant on the pre-range vcsel period.
*/
switch (VcselPeriodType) {
case VL53L0X_VCSEL_PERIOD_PRE_RANGE:
Status = get_sequence_step_timeout(Dev,
VL53L0X_SEQUENCESTEP_PRE_RANGE,
&PreRangeTimeoutMicroSeconds);
if (Status == VL53L0X_ERROR_NONE)
Status = get_sequence_step_timeout(Dev,
VL53L0X_SEQUENCESTEP_MSRC,
&MsrcTimeoutMicroSeconds);
if (Status == VL53L0X_ERROR_NONE)
Status = VL53L0X_WrByte(Dev,
VL53L0X_REG_PRE_RANGE_CONFIG_VCSEL_PERIOD,
vcsel_period_reg);
if (Status == VL53L0X_ERROR_NONE)
Status = set_sequence_step_timeout(Dev,
VL53L0X_SEQUENCESTEP_PRE_RANGE,
PreRangeTimeoutMicroSeconds);
if (Status == VL53L0X_ERROR_NONE)
Status = set_sequence_step_timeout(Dev,
VL53L0X_SEQUENCESTEP_MSRC,
MsrcTimeoutMicroSeconds);
VL53L0X_SETDEVICESPECIFICPARAMETER(
Dev,
PreRangeVcselPulsePeriod,
VCSELPulsePeriodPCLK);
break;
case VL53L0X_VCSEL_PERIOD_FINAL_RANGE:
Status = get_sequence_step_timeout(Dev,
VL53L0X_SEQUENCESTEP_FINAL_RANGE,
&FinalRangeTimeoutMicroSeconds);
if (Status == VL53L0X_ERROR_NONE)
Status = VL53L0X_WrByte(Dev,
VL53L0X_REG_FINAL_RANGE_CONFIG_VCSEL_PERIOD,
vcsel_period_reg);
if (Status == VL53L0X_ERROR_NONE)
Status = set_sequence_step_timeout(Dev,
VL53L0X_SEQUENCESTEP_FINAL_RANGE,
FinalRangeTimeoutMicroSeconds);
VL53L0X_SETDEVICESPECIFICPARAMETER(
Dev,
FinalRangeVcselPulsePeriod,
VCSELPulsePeriodPCLK);
break;
default:
Status = VL53L0X_ERROR_INVALID_PARAMS;
}
}
/* Finally, the timing budget must be re-applied */
if (Status == VL53L0X_ERROR_NONE) {
VL53L0X_GETPARAMETERFIELD(Dev,
MeasurementTimingBudgetMicroSeconds,
MeasurementTimingBudgetMicroSeconds);
Status = VL53L0X_SetMeasurementTimingBudgetMicroSeconds(Dev,
MeasurementTimingBudgetMicroSeconds);
}
/* Perform the phase calibration. This is needed after changing on
* vcsel period.
* get_data_enable = 0, restore_config = 1 */
if (Status == VL53L0X_ERROR_NONE)
Status = VL53L0X_perform_phase_calibration(
Dev, &PhaseCalInt, 0, 1);
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_SetVcselPulsePeriod(VL53L0X_DEV Dev,
VL53L0X_VcselPeriod VcselPeriodType, uint8_t VCSELPulsePeriodPCLK)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
LOG_FUNCTION_START("");
Status = VL53L0X_set_vcsel_pulse_period(Dev, VcselPeriodType,
VCSELPulsePeriodPCLK);
LOG_FUNCTION_END(Status);
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_get_vcsel_pulse_period(VL53L0X_DEV Dev,
VL53L0X_VcselPeriod VcselPeriodType, uint8_t *pVCSELPulsePeriodPCLK)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
uint8_t vcsel_period_reg;
switch (VcselPeriodType) {
case VL53L0X_VCSEL_PERIOD_PRE_RANGE:
Status = VL53L0X_RdByte(Dev,
VL53L0X_REG_PRE_RANGE_CONFIG_VCSEL_PERIOD,
&vcsel_period_reg);
break;
case VL53L0X_VCSEL_PERIOD_FINAL_RANGE:
Status = VL53L0X_RdByte(Dev,
VL53L0X_REG_FINAL_RANGE_CONFIG_VCSEL_PERIOD,
&vcsel_period_reg);
break;
default:
Status = VL53L0X_ERROR_INVALID_PARAMS;
}
if (Status == VL53L0X_ERROR_NONE)
*pVCSELPulsePeriodPCLK =
VL53L0X_decode_vcsel_period(vcsel_period_reg);
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_GetVcselPulsePeriod(VL53L0X_DEV Dev,
VL53L0X_VcselPeriod VcselPeriodType, uint8_t *pVCSELPulsePeriodPCLK)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
LOG_FUNCTION_START("");
Status = VL53L0X_get_vcsel_pulse_period(Dev, VcselPeriodType,
pVCSELPulsePeriodPCLK);
LOG_FUNCTION_END(Status);
return Status;
}
uint32_t VL53L0X::VL53L0X_decode_timeout(uint16_t encoded_timeout)
{
/*!
* Decode 16-bit timeout register value - format (LSByte * 2^MSByte) + 1
*/
uint32_t timeout_macro_clks = 0;
timeout_macro_clks = ((uint32_t) (encoded_timeout & 0x00FF)
<< (uint32_t) ((encoded_timeout & 0xFF00) >> 8)) + 1;
return timeout_macro_clks;
}
uint32_t VL53L0X::VL53L0X_calc_macro_period_ps(VL53L0X_DEV Dev, uint8_t vcsel_period_pclks)
{
uint64_t PLL_period_ps;
uint32_t macro_period_vclks;
uint32_t macro_period_ps;
LOG_FUNCTION_START("");
/* The above calculation will produce rounding errors,
therefore set fixed value
*/
PLL_period_ps = 1655;
macro_period_vclks = 2304;
macro_period_ps = (uint32_t)(macro_period_vclks
* vcsel_period_pclks * PLL_period_ps);
LOG_FUNCTION_END("");
return macro_period_ps;
}
/* To convert register value into us */
uint32_t VL53L0X::VL53L0X_calc_timeout_us(VL53L0X_DEV Dev,
uint16_t timeout_period_mclks,
uint8_t vcsel_period_pclks)
{
uint32_t macro_period_ps;
uint32_t macro_period_ns;
uint32_t actual_timeout_period_us = 0;
macro_period_ps = VL53L0X_calc_macro_period_ps(Dev, vcsel_period_pclks);
macro_period_ns = (macro_period_ps + 500) / 1000;
actual_timeout_period_us =
((timeout_period_mclks * macro_period_ns) + 500) / 1000;
return actual_timeout_period_us;
}
VL53L0X_Error VL53L0X::get_sequence_step_timeout(VL53L0X_DEV Dev,
VL53L0X_SequenceStepId SequenceStepId,
uint32_t *pTimeOutMicroSecs)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
uint8_t CurrentVCSELPulsePeriodPClk;
uint8_t EncodedTimeOutByte = 0;
uint32_t TimeoutMicroSeconds = 0;
uint16_t PreRangeEncodedTimeOut = 0;
uint16_t MsrcTimeOutMClks;
uint16_t PreRangeTimeOutMClks;
uint16_t FinalRangeTimeOutMClks = 0;
uint16_t FinalRangeEncodedTimeOut;
VL53L0X_SchedulerSequenceSteps_t SchedulerSequenceSteps;
if ((SequenceStepId == VL53L0X_SEQUENCESTEP_TCC) ||
(SequenceStepId == VL53L0X_SEQUENCESTEP_DSS) ||
(SequenceStepId == VL53L0X_SEQUENCESTEP_MSRC)) {
Status = VL53L0X_GetVcselPulsePeriod(Dev,
VL53L0X_VCSEL_PERIOD_PRE_RANGE,
&CurrentVCSELPulsePeriodPClk);
if (Status == VL53L0X_ERROR_NONE) {
Status = VL53L0X_RdByte(Dev,
VL53L0X_REG_MSRC_CONFIG_TIMEOUT_MACROP,
&EncodedTimeOutByte);
}
MsrcTimeOutMClks = VL53L0X_decode_timeout(EncodedTimeOutByte);
TimeoutMicroSeconds = VL53L0X_calc_timeout_us(Dev,
MsrcTimeOutMClks,
CurrentVCSELPulsePeriodPClk);
} else if (SequenceStepId == VL53L0X_SEQUENCESTEP_PRE_RANGE) {
/* Retrieve PRE-RANGE VCSEL Period */
Status = VL53L0X_GetVcselPulsePeriod(Dev,
VL53L0X_VCSEL_PERIOD_PRE_RANGE,
&CurrentVCSELPulsePeriodPClk);
/* Retrieve PRE-RANGE Timeout in Macro periods (MCLKS) */
if (Status == VL53L0X_ERROR_NONE) {
/* Retrieve PRE-RANGE VCSEL Period */
Status = VL53L0X_GetVcselPulsePeriod(Dev,
VL53L0X_VCSEL_PERIOD_PRE_RANGE,
&CurrentVCSELPulsePeriodPClk);
if (Status == VL53L0X_ERROR_NONE) {
Status = VL53L0X_RdWord(Dev,
VL53L0X_REG_PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI,
&PreRangeEncodedTimeOut);
}
PreRangeTimeOutMClks = VL53L0X_decode_timeout(
PreRangeEncodedTimeOut);
TimeoutMicroSeconds = VL53L0X_calc_timeout_us(Dev,
PreRangeTimeOutMClks,
CurrentVCSELPulsePeriodPClk);
}
} else if (SequenceStepId == VL53L0X_SEQUENCESTEP_FINAL_RANGE) {
VL53L0X_GetSequenceStepEnables(Dev, &SchedulerSequenceSteps);
PreRangeTimeOutMClks = 0;
if (SchedulerSequenceSteps.PreRangeOn) {
/* Retrieve PRE-RANGE VCSEL Period */
Status = VL53L0X_GetVcselPulsePeriod(Dev,
VL53L0X_VCSEL_PERIOD_PRE_RANGE,
&CurrentVCSELPulsePeriodPClk);
/* Retrieve PRE-RANGE Timeout in Macro periods
* (MCLKS) */
if (Status == VL53L0X_ERROR_NONE) {
Status = VL53L0X_RdWord(Dev,
VL53L0X_REG_PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI,
&PreRangeEncodedTimeOut);
PreRangeTimeOutMClks = VL53L0X_decode_timeout(
PreRangeEncodedTimeOut);
}
}
if (Status == VL53L0X_ERROR_NONE) {
/* Retrieve FINAL-RANGE VCSEL Period */
Status = VL53L0X_GetVcselPulsePeriod(Dev,
VL53L0X_VCSEL_PERIOD_FINAL_RANGE,
&CurrentVCSELPulsePeriodPClk);
}
/* Retrieve FINAL-RANGE Timeout in Macro periods (MCLKS) */
if (Status == VL53L0X_ERROR_NONE) {
Status = VL53L0X_RdWord(Dev,
VL53L0X_REG_FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI,
&FinalRangeEncodedTimeOut);
FinalRangeTimeOutMClks = VL53L0X_decode_timeout(
FinalRangeEncodedTimeOut);
}
FinalRangeTimeOutMClks -= PreRangeTimeOutMClks;
TimeoutMicroSeconds = VL53L0X_calc_timeout_us(Dev,
FinalRangeTimeOutMClks,
CurrentVCSELPulsePeriodPClk);
}
*pTimeOutMicroSecs = TimeoutMicroSeconds;
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_get_measurement_timing_budget_micro_seconds(VL53L0X_DEV Dev,
uint32_t *pMeasurementTimingBudgetMicroSeconds)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
VL53L0X_SchedulerSequenceSteps_t SchedulerSequenceSteps;
uint32_t FinalRangeTimeoutMicroSeconds;
uint32_t MsrcDccTccTimeoutMicroSeconds = 2000;
uint32_t StartOverheadMicroSeconds = 1910;
uint32_t EndOverheadMicroSeconds = 960;
uint32_t MsrcOverheadMicroSeconds = 660;
uint32_t TccOverheadMicroSeconds = 590;
uint32_t DssOverheadMicroSeconds = 690;
uint32_t PreRangeOverheadMicroSeconds = 660;
uint32_t FinalRangeOverheadMicroSeconds = 550;
uint32_t PreRangeTimeoutMicroSeconds = 0;
LOG_FUNCTION_START("");
/* Start and end overhead times always present */
*pMeasurementTimingBudgetMicroSeconds
= StartOverheadMicroSeconds + EndOverheadMicroSeconds;
Status = VL53L0X_GetSequenceStepEnables(Dev, &SchedulerSequenceSteps);
if (Status != VL53L0X_ERROR_NONE) {
LOG_FUNCTION_END(Status);
return Status;
}
if (SchedulerSequenceSteps.TccOn ||
SchedulerSequenceSteps.MsrcOn ||
SchedulerSequenceSteps.DssOn) {
Status = get_sequence_step_timeout(Dev,
VL53L0X_SEQUENCESTEP_MSRC,
&MsrcDccTccTimeoutMicroSeconds);
if (Status == VL53L0X_ERROR_NONE) {
if (SchedulerSequenceSteps.TccOn) {
*pMeasurementTimingBudgetMicroSeconds +=
MsrcDccTccTimeoutMicroSeconds +
TccOverheadMicroSeconds;
}
if (SchedulerSequenceSteps.DssOn) {
*pMeasurementTimingBudgetMicroSeconds +=
2 * (MsrcDccTccTimeoutMicroSeconds +
DssOverheadMicroSeconds);
} else if (SchedulerSequenceSteps.MsrcOn) {
*pMeasurementTimingBudgetMicroSeconds +=
MsrcDccTccTimeoutMicroSeconds +
MsrcOverheadMicroSeconds;
}
}
}
if (Status == VL53L0X_ERROR_NONE) {
if (SchedulerSequenceSteps.PreRangeOn) {
Status = get_sequence_step_timeout(Dev,
VL53L0X_SEQUENCESTEP_PRE_RANGE,
&PreRangeTimeoutMicroSeconds);
*pMeasurementTimingBudgetMicroSeconds +=
PreRangeTimeoutMicroSeconds +
PreRangeOverheadMicroSeconds;
}
}
if (Status == VL53L0X_ERROR_NONE) {
if (SchedulerSequenceSteps.FinalRangeOn) {
Status = get_sequence_step_timeout(Dev,
VL53L0X_SEQUENCESTEP_FINAL_RANGE,
&FinalRangeTimeoutMicroSeconds);
*pMeasurementTimingBudgetMicroSeconds +=
(FinalRangeTimeoutMicroSeconds +
FinalRangeOverheadMicroSeconds);
}
}
if (Status == VL53L0X_ERROR_NONE) {
VL53L0X_SETPARAMETERFIELD(Dev,
MeasurementTimingBudgetMicroSeconds,
*pMeasurementTimingBudgetMicroSeconds);
}
LOG_FUNCTION_END(Status);
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_GetMeasurementTimingBudgetMicroSeconds(VL53L0X_DEV Dev,
uint32_t *pMeasurementTimingBudgetMicroSeconds)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
LOG_FUNCTION_START("");
Status = VL53L0X_get_measurement_timing_budget_micro_seconds(Dev,
pMeasurementTimingBudgetMicroSeconds);
LOG_FUNCTION_END(Status);
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_GetDeviceParameters(VL53L0X_DEV Dev,
VL53L0X_DeviceParameters_t *pDeviceParameters)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
int i;
LOG_FUNCTION_START("");
Status = VL53L0X_GetDeviceMode(Dev, &(pDeviceParameters->DeviceMode));
if (Status == VL53L0X_ERROR_NONE)
Status = VL53L0X_GetInterMeasurementPeriodMilliSeconds(Dev,
&(pDeviceParameters->InterMeasurementPeriodMilliSeconds));
if (Status == VL53L0X_ERROR_NONE)
pDeviceParameters->XTalkCompensationEnable = 0;
if (Status == VL53L0X_ERROR_NONE)
Status = VL53L0X_GetXTalkCompensationRateMegaCps(Dev,
&(pDeviceParameters->XTalkCompensationRateMegaCps));
if (Status == VL53L0X_ERROR_NONE)
Status = VL53L0X_GetOffsetCalibrationDataMicroMeter(Dev,
&(pDeviceParameters->RangeOffsetMicroMeters));
if (Status == VL53L0X_ERROR_NONE) {
for (i = 0; i < VL53L0X_CHECKENABLE_NUMBER_OF_CHECKS; i++) {
/* get first the values, then the enables.
* VL53L0X_GetLimitCheckValue will modify the enable
* flags
*/
if (Status == VL53L0X_ERROR_NONE) {
Status |= VL53L0X_GetLimitCheckValue(Dev, i,
&(pDeviceParameters->LimitChecksValue[i]));
} else {
break;
}
if (Status == VL53L0X_ERROR_NONE) {
Status |= VL53L0X_GetLimitCheckEnable(Dev, i,
&(pDeviceParameters->LimitChecksEnable[i]));
} else {
break;
}
}
}
if (Status == VL53L0X_ERROR_NONE) {
Status = VL53L0X_GetWrapAroundCheckEnable(Dev,
&(pDeviceParameters->WrapAroundCheckEnable));
}
/* Need to be done at the end as it uses VCSELPulsePeriod */
if (Status == VL53L0X_ERROR_NONE) {
Status = VL53L0X_GetMeasurementTimingBudgetMicroSeconds(Dev,
&(pDeviceParameters->MeasurementTimingBudgetMicroSeconds));
}
LOG_FUNCTION_END(Status);
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_SetLimitCheckValue(VL53L0X_DEV Dev, uint16_t LimitCheckId,
FixPoint1616_t LimitCheckValue)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
uint8_t Temp8;
LOG_FUNCTION_START("");
VL53L0X_GETARRAYPARAMETERFIELD(Dev, LimitChecksEnable, LimitCheckId,
Temp8);
if (Temp8 == 0) { /* disabled write only internal value */
VL53L0X_SETARRAYPARAMETERFIELD(Dev, LimitChecksValue,
LimitCheckId, LimitCheckValue);
} else {
switch (LimitCheckId) {
case VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE:
/* internal computation: */
VL53L0X_SETARRAYPARAMETERFIELD(Dev, LimitChecksValue,
VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE,
LimitCheckValue);
break;
case VL53L0X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE:
Status = VL53L0X_WrWord(Dev,
VL53L0X_REG_FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT,
VL53L0X_FIXPOINT1616TOFIXPOINT97(
LimitCheckValue));
break;
case VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP:
/* internal computation: */
VL53L0X_SETARRAYPARAMETERFIELD(Dev, LimitChecksValue,
VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP,
LimitCheckValue);
break;
case VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD:
/* internal computation: */
VL53L0X_SETARRAYPARAMETERFIELD(Dev, LimitChecksValue,
VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD,
LimitCheckValue);
break;
case VL53L0X_CHECKENABLE_SIGNAL_RATE_MSRC:
case VL53L0X_CHECKENABLE_SIGNAL_RATE_PRE_RANGE:
Status = VL53L0X_WrWord(Dev,
VL53L0X_REG_PRE_RANGE_MIN_COUNT_RATE_RTN_LIMIT,
VL53L0X_FIXPOINT1616TOFIXPOINT97(
LimitCheckValue));
break;
default:
Status = VL53L0X_ERROR_INVALID_PARAMS;
}
if (Status == VL53L0X_ERROR_NONE) {
VL53L0X_SETARRAYPARAMETERFIELD(Dev, LimitChecksValue,
LimitCheckId, LimitCheckValue);
}
}
LOG_FUNCTION_END(Status);
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_DataInit(VL53L0X_DEV Dev)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
VL53L0X_DeviceParameters_t CurrentParameters;
int i;
uint8_t StopVariable;
LOG_FUNCTION_START("");
/* by default the I2C is running at 1V8 if you want to change it you
* need to include this define at compilation level. */
#ifdef USE_I2C_2V8
Status = VL53L0X_UpdateByte(Dev,
VL53L0X_REG_VHV_CONFIG_PAD_SCL_SDA__EXTSUP_HV,
0xFE,
0x01);
#endif
/* Set I2C standard mode */
if (Status == VL53L0X_ERROR_NONE)
Status = VL53L0X_WrByte(Dev, 0x88, 0x00);
VL53L0X_SETDEVICESPECIFICPARAMETER(Dev, ReadDataFromDeviceDone, 0);
#ifdef USE_IQC_STATION
if (Status == VL53L0X_ERROR_NONE)
Status = VL53L0X_apply_offset_adjustment(Dev);
#endif
/* Default value is 1000 for Linearity Corrective Gain */
PALDevDataSet(Dev, LinearityCorrectiveGain, 1000);
/* Dmax default Parameter */
PALDevDataSet(Dev, DmaxCalRangeMilliMeter, 400);
PALDevDataSet(Dev, DmaxCalSignalRateRtnMegaCps,
(FixPoint1616_t)((0x00016B85))); /* 1.42 No Cover Glass*/
/* Set Default static parameters
*set first temporary values 9.44MHz * 65536 = 618660 */
VL53L0X_SETDEVICESPECIFICPARAMETER(Dev, OscFrequencyMHz, 618660);
/* Set Default XTalkCompensationRateMegaCps to 0 */
VL53L0X_SETPARAMETERFIELD(Dev, XTalkCompensationRateMegaCps, 0);
/* Get default parameters */
Status = VL53L0X_GetDeviceParameters(Dev, &CurrentParameters);
if (Status == VL53L0X_ERROR_NONE) {
/* initialize PAL values */
CurrentParameters.DeviceMode = VL53L0X_DEVICEMODE_SINGLE_RANGING;
CurrentParameters.HistogramMode = VL53L0X_HISTOGRAMMODE_DISABLED;
PALDevDataSet(Dev, CurrentParameters, CurrentParameters);
}
/* Sigma estimator variable */
PALDevDataSet(Dev, SigmaEstRefArray, 100);
PALDevDataSet(Dev, SigmaEstEffPulseWidth, 900);
PALDevDataSet(Dev, SigmaEstEffAmbWidth, 500);
PALDevDataSet(Dev, targetRefRate, 0x0A00); /* 20 MCPS in 9:7 format */
/* Use internal default settings */
PALDevDataSet(Dev, UseInternalTuningSettings, 1);
Status |= VL53L0X_WrByte(Dev, 0x80, 0x01);
Status |= VL53L0X_WrByte(Dev, 0xFF, 0x01);
Status |= VL53L0X_WrByte(Dev, 0x00, 0x00);
Status |= VL53L0X_RdByte(Dev, 0x91, &StopVariable);
PALDevDataSet(Dev, StopVariable, StopVariable);
Status |= VL53L0X_WrByte(Dev, 0x00, 0x01);
Status |= VL53L0X_WrByte(Dev, 0xFF, 0x00);
Status |= VL53L0X_WrByte(Dev, 0x80, 0x00);
/* Enable all check */
for (i = 0; i < VL53L0X_CHECKENABLE_NUMBER_OF_CHECKS; i++) {
if (Status == VL53L0X_ERROR_NONE)
Status |= VL53L0X_SetLimitCheckEnable(Dev, i, 1);
else
break;
}
/* Disable the following checks */
if (Status == VL53L0X_ERROR_NONE)
Status = VL53L0X_SetLimitCheckEnable(Dev,
VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP, 0);
if (Status == VL53L0X_ERROR_NONE)
Status = VL53L0X_SetLimitCheckEnable(Dev,
VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD, 0);
if (Status == VL53L0X_ERROR_NONE)
Status = VL53L0X_SetLimitCheckEnable(Dev,
VL53L0X_CHECKENABLE_SIGNAL_RATE_MSRC, 0);
if (Status == VL53L0X_ERROR_NONE)
Status = VL53L0X_SetLimitCheckEnable(Dev,
VL53L0X_CHECKENABLE_SIGNAL_RATE_PRE_RANGE, 0);
/* Limit default values */
if (Status == VL53L0X_ERROR_NONE) {
Status = VL53L0X_SetLimitCheckValue(Dev,
VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE,
(FixPoint1616_t)(18 * 65536));
}
if (Status == VL53L0X_ERROR_NONE) {
Status = VL53L0X_SetLimitCheckValue(Dev,
VL53L0X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE,
(FixPoint1616_t)(25 * 65536 / 100));
/* 0.25 * 65536 */
}
if (Status == VL53L0X_ERROR_NONE) {
Status = VL53L0X_SetLimitCheckValue(Dev,
VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP,
(FixPoint1616_t)(35 * 65536));
}
if (Status == VL53L0X_ERROR_NONE) {
Status = VL53L0X_SetLimitCheckValue(Dev,
VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD,
(FixPoint1616_t)(0 * 65536));
}
if (Status == VL53L0X_ERROR_NONE) {
PALDevDataSet(Dev, SequenceConfig, 0xFF);
Status = VL53L0X_WrByte(Dev, VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG,
0xFF);
/* Set PAL state to tell that we are waiting for call to
* VL53L0X_StaticInit */
PALDevDataSet(Dev, PalState, VL53L0X_STATE_WAIT_STATICINIT);
}
if (Status == VL53L0X_ERROR_NONE)
VL53L0X_SETDEVICESPECIFICPARAMETER(Dev, RefSpadsInitialised, 0);
LOG_FUNCTION_END(Status);
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_check_part_used(VL53L0X_DEV Dev,
uint8_t *Revision,
VL53L0X_DeviceInfo_t *pVL53L0X_DeviceInfo)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
uint8_t ModuleIdInt;
char *ProductId_tmp;
LOG_FUNCTION_START("");
Status = VL53L0X_get_info_from_device(Dev, 2);
if (Status == VL53L0X_ERROR_NONE) {
ModuleIdInt = VL53L0X_GETDEVICESPECIFICPARAMETER(Dev, ModuleId);
if (ModuleIdInt == 0) {
*Revision = 0;
VL53L0X_COPYSTRING(pVL53L0X_DeviceInfo->ProductId, "");
} else {
*Revision = VL53L0X_GETDEVICESPECIFICPARAMETER(Dev, Revision);
ProductId_tmp = VL53L0X_GETDEVICESPECIFICPARAMETER(Dev,
ProductId);
VL53L0X_COPYSTRING(pVL53L0X_DeviceInfo->ProductId, ProductId_tmp);
}
}
LOG_FUNCTION_END(Status);
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_get_device_info(VL53L0X_DEV Dev,
VL53L0X_DeviceInfo_t *pVL53L0X_DeviceInfo)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
uint8_t revision_id;
uint8_t Revision;
Status = VL53L0X_check_part_used(Dev, &Revision, pVL53L0X_DeviceInfo);
if (Status == VL53L0X_ERROR_NONE) {
if (Revision == 0) {
VL53L0X_COPYSTRING(pVL53L0X_DeviceInfo->Name,
VL53L0X_STRING_DEVICE_INFO_NAME_TS0);
} else if ((Revision <= 34) && (Revision != 32)) {
VL53L0X_COPYSTRING(pVL53L0X_DeviceInfo->Name,
VL53L0X_STRING_DEVICE_INFO_NAME_TS1);
} else if (Revision < 39) {
VL53L0X_COPYSTRING(pVL53L0X_DeviceInfo->Name,
VL53L0X_STRING_DEVICE_INFO_NAME_TS2);
} else {
VL53L0X_COPYSTRING(pVL53L0X_DeviceInfo->Name,
VL53L0X_STRING_DEVICE_INFO_NAME_ES1);
}
VL53L0X_COPYSTRING(pVL53L0X_DeviceInfo->Type,
VL53L0X_STRING_DEVICE_INFO_TYPE);
}
if (Status == VL53L0X_ERROR_NONE) {
Status = VL53L0X_RdByte(Dev, VL53L0X_REG_IDENTIFICATION_MODEL_ID,
&pVL53L0X_DeviceInfo->ProductType);
}
if (Status == VL53L0X_ERROR_NONE) {
Status = VL53L0X_RdByte(Dev,
VL53L0X_REG_IDENTIFICATION_REVISION_ID,
&revision_id);
pVL53L0X_DeviceInfo->ProductRevisionMajor = 1;
pVL53L0X_DeviceInfo->ProductRevisionMinor =
(revision_id & 0xF0) >> 4;
}
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_GetDeviceInfo(VL53L0X_DEV Dev,
VL53L0X_DeviceInfo_t *pVL53L0X_DeviceInfo)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
LOG_FUNCTION_START("");
Status = VL53L0X_get_device_info(Dev, pVL53L0X_DeviceInfo);
LOG_FUNCTION_END(Status);
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_GetInterruptMaskStatus(VL53L0X_DEV Dev,
uint32_t *pInterruptMaskStatus)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
uint8_t Byte;
LOG_FUNCTION_START("");
Status = VL53L0X_RdByte(Dev, VL53L0X_REG_RESULT_INTERRUPT_STATUS, &Byte);
*pInterruptMaskStatus = Byte & 0x07;
if (Byte & 0x18)
Status = VL53L0X_ERROR_RANGE_ERROR;
LOG_FUNCTION_END(Status);
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_GetMeasurementDataReady(VL53L0X_DEV Dev,
uint8_t *pMeasurementDataReady)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
uint8_t SysRangeStatusRegister;
uint8_t InterruptConfig;
uint32_t InterruptMask;
LOG_FUNCTION_START("");
InterruptConfig = VL53L0X_GETDEVICESPECIFICPARAMETER(Dev,
Pin0GpioFunctionality);
if (InterruptConfig ==
VL53L0X_REG_SYSTEM_INTERRUPT_GPIO_NEW_SAMPLE_READY) {
Status = VL53L0X_GetInterruptMaskStatus(Dev, &InterruptMask);
if (InterruptMask ==
VL53L0X_REG_SYSTEM_INTERRUPT_GPIO_NEW_SAMPLE_READY)
*pMeasurementDataReady = 1;
else
*pMeasurementDataReady = 0;
} else {
Status = VL53L0X_RdByte(Dev, VL53L0X_REG_RESULT_RANGE_STATUS,
&SysRangeStatusRegister);
if (Status == VL53L0X_ERROR_NONE) {
if (SysRangeStatusRegister & 0x01)
*pMeasurementDataReady = 1;
else
*pMeasurementDataReady = 0;
}
}
LOG_FUNCTION_END(Status);
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_PollingDelay(VL53L0X_DEV Dev) {
VL53L0X_Error status = VL53L0X_ERROR_NONE;
// do nothing
VL53L0X_OsDelay();
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_measurement_poll_for_completion(VL53L0X_DEV Dev)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
uint8_t NewDataReady = 0;
uint32_t LoopNb;
LOG_FUNCTION_START("");
LoopNb = 0;
do {
Status = VL53L0X_GetMeasurementDataReady(Dev, &NewDataReady);
if (Status != 0)
break; /* the error is set */
if (NewDataReady == 1)
break; /* done note that status == 0 */
LoopNb++;
if (LoopNb >= VL53L0X_DEFAULT_MAX_LOOP) {
Status = VL53L0X_ERROR_TIME_OUT;
break;
}
VL53L0X_PollingDelay(Dev);
} while (1);
LOG_FUNCTION_END(Status);
return Status;
}
/* Group PAL Interrupt Functions */
VL53L0X_Error VL53L0X::VL53L0X_ClearInterruptMask(VL53L0X_DEV Dev, uint32_t InterruptMask)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
uint8_t LoopCount;
uint8_t Byte;
LOG_FUNCTION_START("");
/* clear bit 0 range interrupt, bit 1 error interrupt */
LoopCount = 0;
do {
Status = VL53L0X_WrByte(Dev,
VL53L0X_REG_SYSTEM_INTERRUPT_CLEAR, 0x01);
Status |= VL53L0X_WrByte(Dev,
VL53L0X_REG_SYSTEM_INTERRUPT_CLEAR, 0x00);
Status |= VL53L0X_RdByte(Dev,
VL53L0X_REG_RESULT_INTERRUPT_STATUS, &Byte);
LoopCount++;
} while (((Byte & 0x07) != 0x00)
&& (LoopCount < 3)
&& (Status == VL53L0X_ERROR_NONE));
if (LoopCount >= 3)
Status = VL53L0X_ERROR_INTERRUPT_NOT_CLEARED;
LOG_FUNCTION_END(Status);
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_perform_single_ref_calibration(VL53L0X_DEV Dev,
uint8_t vhv_init_byte)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
if (Status == VL53L0X_ERROR_NONE)
Status = VL53L0X_WrByte(Dev, VL53L0X_REG_SYSRANGE_START,
VL53L0X_REG_SYSRANGE_MODE_START_STOP |
vhv_init_byte);
if (Status == VL53L0X_ERROR_NONE)
Status = VL53L0X_measurement_poll_for_completion(Dev);
if (Status == VL53L0X_ERROR_NONE)
Status = VL53L0X_ClearInterruptMask(Dev, 0);
if (Status == VL53L0X_ERROR_NONE)
Status = VL53L0X_WrByte(Dev, VL53L0X_REG_SYSRANGE_START, 0x00);
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_ref_calibration_io(VL53L0X_DEV Dev, uint8_t read_not_write,
uint8_t VhvSettings, uint8_t PhaseCal,
uint8_t *pVhvSettings, uint8_t *pPhaseCal,
const uint8_t vhv_enable, const uint8_t phase_enable)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
uint8_t PhaseCalint = 0;
/* Read VHV from device */
Status |= VL53L0X_WrByte(Dev, 0xFF, 0x01);
Status |= VL53L0X_WrByte(Dev, 0x00, 0x00);
Status |= VL53L0X_WrByte(Dev, 0xFF, 0x00);
if (read_not_write) {
if (vhv_enable)
Status |= VL53L0X_RdByte(Dev, 0xCB, pVhvSettings);
if (phase_enable)
Status |= VL53L0X_RdByte(Dev, 0xEE, &PhaseCalint);
} else {
if (vhv_enable)
Status |= VL53L0X_WrByte(Dev, 0xCB, VhvSettings);
if (phase_enable)
Status |= VL53L0X_UpdateByte(Dev, 0xEE, 0x80, PhaseCal);
}
Status |= VL53L0X_WrByte(Dev, 0xFF, 0x01);
Status |= VL53L0X_WrByte(Dev, 0x00, 0x01);
Status |= VL53L0X_WrByte(Dev, 0xFF, 0x00);
*pPhaseCal = (uint8_t)(PhaseCalint&0xEF);
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_perform_vhv_calibration(VL53L0X_DEV Dev,
uint8_t *pVhvSettings, const uint8_t get_data_enable,
const uint8_t restore_config)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
uint8_t SequenceConfig = 0;
uint8_t VhvSettings = 0;
uint8_t PhaseCal = 0;
uint8_t PhaseCalInt = 0;
/* store the value of the sequence config,
* this will be reset before the end of the function
*/
if (restore_config)
SequenceConfig = PALDevDataGet(Dev, SequenceConfig);
/* Run VHV */
Status = VL53L0X_WrByte(Dev, VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG, 0x01);
if (Status == VL53L0X_ERROR_NONE)
Status = VL53L0X_perform_single_ref_calibration(Dev, 0x40);
/* Read VHV from device */
if ((Status == VL53L0X_ERROR_NONE) && (get_data_enable == 1)) {
Status = VL53L0X_ref_calibration_io(Dev, 1,
VhvSettings, PhaseCal, /* Not used here */
pVhvSettings, &PhaseCalInt,
1, 0);
} else
*pVhvSettings = 0;
if ((Status == VL53L0X_ERROR_NONE) && restore_config) {
/* restore the previous Sequence Config */
Status = VL53L0X_WrByte(Dev, VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG,
SequenceConfig);
if (Status == VL53L0X_ERROR_NONE)
PALDevDataSet(Dev, SequenceConfig, SequenceConfig);
}
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_perform_phase_calibration(VL53L0X_DEV Dev,
uint8_t *pPhaseCal, const uint8_t get_data_enable,
const uint8_t restore_config)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
uint8_t SequenceConfig = 0;
uint8_t VhvSettings = 0;
uint8_t PhaseCal = 0;
uint8_t VhvSettingsint;
/* store the value of the sequence config,
* this will be reset before the end of the function
*/
if (restore_config)
SequenceConfig = PALDevDataGet(Dev, SequenceConfig);
/* Run PhaseCal */
Status = VL53L0X_WrByte(Dev, VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG, 0x02);
if (Status == VL53L0X_ERROR_NONE)
Status = VL53L0X_perform_single_ref_calibration(Dev, 0x0);
/* Read PhaseCal from device */
if ((Status == VL53L0X_ERROR_NONE) && (get_data_enable == 1)) {
Status = VL53L0X_ref_calibration_io(Dev, 1,
VhvSettings, PhaseCal, /* Not used here */
&VhvSettingsint, pPhaseCal,
0, 1);
} else
*pPhaseCal = 0;
if ((Status == VL53L0X_ERROR_NONE) && restore_config) {
/* restore the previous Sequence Config */
Status = VL53L0X_WrByte(Dev, VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG,
SequenceConfig);
if (Status == VL53L0X_ERROR_NONE)
PALDevDataSet(Dev, SequenceConfig, SequenceConfig);
}
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_perform_ref_calibration(VL53L0X_DEV Dev,
uint8_t *pVhvSettings, uint8_t *pPhaseCal, uint8_t get_data_enable)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
uint8_t SequenceConfig = 0;
/* store the value of the sequence config,
* this will be reset before the end of the function
*/
SequenceConfig = PALDevDataGet(Dev, SequenceConfig);
/* In the following function we don't save the config to optimize
* writes on device. Config is saved and restored only once. */
Status = VL53L0X_perform_vhv_calibration(
Dev, pVhvSettings, get_data_enable, 0);
if (Status == VL53L0X_ERROR_NONE)
Status = VL53L0X_perform_phase_calibration(
Dev, pPhaseCal, get_data_enable, 0);
if (Status == VL53L0X_ERROR_NONE) {
/* restore the previous Sequence Config */
Status = VL53L0X_WrByte(Dev, VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG,
SequenceConfig);
if (Status == VL53L0X_ERROR_NONE)
PALDevDataSet(Dev, SequenceConfig, SequenceConfig);
}
return Status;
}
void VL53L0X::get_next_good_spad(uint8_t goodSpadArray[], uint32_t size,
uint32_t curr, int32_t *next)
{
uint32_t startIndex;
uint32_t fineOffset;
uint32_t cSpadsPerByte = 8;
uint32_t coarseIndex;
uint32_t fineIndex;
uint8_t dataByte;
uint8_t success = 0;
/*
* Starting with the current good spad, loop through the array to find
* the next. i.e. the next bit set in the sequence.
*
* The coarse index is the byte index of the array and the fine index is
* the index of the bit within each byte.
*/
*next = -1;
startIndex = curr / cSpadsPerByte;
fineOffset = curr % cSpadsPerByte;
for (coarseIndex = startIndex; ((coarseIndex < size) && !success);
coarseIndex++) {
fineIndex = 0;
dataByte = goodSpadArray[coarseIndex];
if (coarseIndex == startIndex) {
/* locate the bit position of the provided current
* spad bit before iterating */
dataByte >>= fineOffset;
fineIndex = fineOffset;
}
while (fineIndex < cSpadsPerByte) {
if ((dataByte & 0x1) == 1) {
success = 1;
*next = coarseIndex * cSpadsPerByte + fineIndex;
break;
}
dataByte >>= 1;
fineIndex++;
}
}
}
uint8_t VL53L0X::is_aperture(uint32_t spadIndex)
{
/*
* This function reports if a given spad index is an aperture SPAD by
* deriving the quadrant.
*/
uint32_t quadrant;
uint8_t isAperture = 1;
quadrant = spadIndex >> 6;
if (refArrayQuadrants[quadrant] == REF_ARRAY_SPAD_0)
isAperture = 0;
return isAperture;
}
VL53L0X_Error VL53L0X::enable_spad_bit(uint8_t spadArray[], uint32_t size,
uint32_t spadIndex)
{
VL53L0X_Error status = VL53L0X_ERROR_NONE;
uint32_t cSpadsPerByte = 8;
uint32_t coarseIndex;
uint32_t fineIndex;
coarseIndex = spadIndex / cSpadsPerByte;
fineIndex = spadIndex % cSpadsPerByte;
if (coarseIndex >= size)
status = VL53L0X_ERROR_REF_SPAD_INIT;
else
spadArray[coarseIndex] |= (1 << fineIndex);
return status;
}
VL53L0X_Error VL53L0X::set_ref_spad_map(VL53L0X_DEV Dev, uint8_t *refSpadArray)
{
VL53L0X_Error status = VL53L0X_WriteMulti(Dev,
VL53L0X_REG_GLOBAL_CONFIG_SPAD_ENABLES_REF_0,
refSpadArray, 6);
return status;
}
VL53L0X_Error VL53L0X::get_ref_spad_map(VL53L0X_DEV Dev, uint8_t *refSpadArray)
{
VL53L0X_Error status = VL53L0X_ReadMulti(Dev,
VL53L0X_REG_GLOBAL_CONFIG_SPAD_ENABLES_REF_0,
refSpadArray,
6);
// VL53L0X_Error status = VL53L0X_ERROR_NONE;
// uint8_t count=0;
// for (count = 0; count < 6; count++)
// status = VL53L0X_RdByte(Dev, (VL53L0X_REG_GLOBAL_CONFIG_SPAD_ENABLES_REF_0 + count), &refSpadArray[count]);
return status;
}
VL53L0X_Error VL53L0X::enable_ref_spads(VL53L0X_DEV Dev,
uint8_t apertureSpads,
uint8_t goodSpadArray[],
uint8_t spadArray[],
uint32_t size,
uint32_t start,
uint32_t offset,
uint32_t spadCount,
uint32_t *lastSpad)
{
VL53L0X_Error status = VL53L0X_ERROR_NONE;
uint32_t index;
uint32_t i;
int32_t nextGoodSpad = offset;
uint32_t currentSpad;
uint8_t checkSpadArray[6];
/*
* This function takes in a spad array which may or may not have SPADS
* already enabled and appends from a given offset a requested number
* of new SPAD enables. The 'good spad map' is applied to
* determine the next SPADs to enable.
*
* This function applies to only aperture or only non-aperture spads.
* Checks are performed to ensure this.
*/
currentSpad = offset;
for (index = 0; index < spadCount; index++) {
get_next_good_spad(goodSpadArray, size, currentSpad,
&nextGoodSpad);
if (nextGoodSpad == -1) {
status = VL53L0X_ERROR_REF_SPAD_INIT;
break;
}
/* Confirm that the next good SPAD is non-aperture */
if (is_aperture(start + nextGoodSpad) != apertureSpads) {
/* if we can't get the required number of good aperture
* spads from the current quadrant then this is an error
*/
status = VL53L0X_ERROR_REF_SPAD_INIT;
break;
}
currentSpad = (uint32_t)nextGoodSpad;
enable_spad_bit(spadArray, size, currentSpad);
currentSpad++;
}
*lastSpad = currentSpad;
if (status == VL53L0X_ERROR_NONE)
status = set_ref_spad_map(Dev, spadArray);
if (status == VL53L0X_ERROR_NONE) {
status = get_ref_spad_map(Dev, checkSpadArray);
i = 0;
/* Compare spad maps. If not equal report error. */
while (i < size) {
if (spadArray[i] != checkSpadArray[i]) {
status = VL53L0X_ERROR_REF_SPAD_INIT;
break;
}
i++;
}
}
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_SetDeviceMode(VL53L0X_DEV Dev, VL53L0X_DeviceModes DeviceMode)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
LOG_FUNCTION_START("%d", (int)DeviceMode);
switch (DeviceMode) {
case VL53L0X_DEVICEMODE_SINGLE_RANGING:
case VL53L0X_DEVICEMODE_CONTINUOUS_RANGING:
case VL53L0X_DEVICEMODE_CONTINUOUS_TIMED_RANGING:
case VL53L0X_DEVICEMODE_GPIO_DRIVE:
case VL53L0X_DEVICEMODE_GPIO_OSC:
/* Supported modes */
VL53L0X_SETPARAMETERFIELD(Dev, DeviceMode, DeviceMode);
break;
default:
/* Unsupported mode */
Status = VL53L0X_ERROR_MODE_NOT_SUPPORTED;
}
LOG_FUNCTION_END(Status);
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_SetInterruptThresholds(VL53L0X_DEV Dev,
VL53L0X_DeviceModes DeviceMode, FixPoint1616_t ThresholdLow,
FixPoint1616_t ThresholdHigh)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
uint16_t Threshold16;
LOG_FUNCTION_START("");
/* no dependency on DeviceMode for Ewok */
/* Need to divide by 2 because the FW will apply a x2 */
Threshold16 = (uint16_t)((ThresholdLow >> 17) & 0x00fff);
Status = VL53L0X_WrWord(Dev, VL53L0X_REG_SYSTEM_THRESH_LOW, Threshold16);
if (Status == VL53L0X_ERROR_NONE) {
/* Need to divide by 2 because the FW will apply a x2 */
Threshold16 = (uint16_t)((ThresholdHigh >> 17) & 0x00fff);
Status = VL53L0X_WrWord(Dev, VL53L0X_REG_SYSTEM_THRESH_HIGH,
Threshold16);
}
LOG_FUNCTION_END(Status);
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_GetInterruptThresholds(VL53L0X_DEV Dev,
VL53L0X_DeviceModes DeviceMode, FixPoint1616_t *pThresholdLow,
FixPoint1616_t *pThresholdHigh)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
uint16_t Threshold16;
LOG_FUNCTION_START("");
/* no dependency on DeviceMode for Ewok */
Status = VL53L0X_RdWord(Dev, VL53L0X_REG_SYSTEM_THRESH_LOW, &Threshold16);
/* Need to multiply by 2 because the FW will apply a x2 */
*pThresholdLow = (FixPoint1616_t)((0x00fff & Threshold16) << 17);
if (Status == VL53L0X_ERROR_NONE) {
Status = VL53L0X_RdWord(Dev, VL53L0X_REG_SYSTEM_THRESH_HIGH,
&Threshold16);
/* Need to multiply by 2 because the FW will apply a x2 */
*pThresholdHigh =
(FixPoint1616_t)((0x00fff & Threshold16) << 17);
}
LOG_FUNCTION_END(Status);
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_load_tuning_settings(VL53L0X_DEV Dev,
uint8_t *pTuningSettingBuffer)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
int i;
int Index;
uint8_t msb;
uint8_t lsb;
uint8_t SelectParam;
uint8_t NumberOfWrites;
uint8_t Address;
uint8_t localBuffer[4]; /* max */
uint16_t Temp16;
LOG_FUNCTION_START("");
Index = 0;
while ((*(pTuningSettingBuffer + Index) != 0) &&
(Status == VL53L0X_ERROR_NONE)) {
NumberOfWrites = *(pTuningSettingBuffer + Index);
Index++;
if (NumberOfWrites == 0xFF) {
/* internal parameters */
SelectParam = *(pTuningSettingBuffer + Index);
Index++;
switch (SelectParam) {
case 0: /* uint16_t SigmaEstRefArray -> 2 bytes */
msb = *(pTuningSettingBuffer + Index);
Index++;
lsb = *(pTuningSettingBuffer + Index);
Index++;
Temp16 = VL53L0X_MAKEUINT16(lsb, msb);
PALDevDataSet(Dev, SigmaEstRefArray, Temp16);
break;
case 1: /* uint16_t SigmaEstEffPulseWidth -> 2 bytes */
msb = *(pTuningSettingBuffer + Index);
Index++;
lsb = *(pTuningSettingBuffer + Index);
Index++;
Temp16 = VL53L0X_MAKEUINT16(lsb, msb);
PALDevDataSet(Dev, SigmaEstEffPulseWidth,
Temp16);
break;
case 2: /* uint16_t SigmaEstEffAmbWidth -> 2 bytes */
msb = *(pTuningSettingBuffer + Index);
Index++;
lsb = *(pTuningSettingBuffer + Index);
Index++;
Temp16 = VL53L0X_MAKEUINT16(lsb, msb);
PALDevDataSet(Dev, SigmaEstEffAmbWidth, Temp16);
break;
case 3: /* uint16_t targetRefRate -> 2 bytes */
msb = *(pTuningSettingBuffer + Index);
Index++;
lsb = *(pTuningSettingBuffer + Index);
Index++;
Temp16 = VL53L0X_MAKEUINT16(lsb, msb);
PALDevDataSet(Dev, targetRefRate, Temp16);
break;
default: /* invalid parameter */
Status = VL53L0X_ERROR_INVALID_PARAMS;
}
} else if (NumberOfWrites <= 4) {
Address = *(pTuningSettingBuffer + Index);
Index++;
for (i = 0; i < NumberOfWrites; i++) {
localBuffer[i] = *(pTuningSettingBuffer +
Index);
Index++;
}
Status = VL53L0X_WriteMulti(Dev, Address, localBuffer,
NumberOfWrites);
} else {
Status = VL53L0X_ERROR_INVALID_PARAMS;
}
}
LOG_FUNCTION_END(Status);
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_CheckAndLoadInterruptSettings(VL53L0X_DEV Dev,
uint8_t StartNotStopFlag)
{
uint8_t InterruptConfig;
FixPoint1616_t ThresholdLow;
FixPoint1616_t ThresholdHigh;
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
InterruptConfig = VL53L0X_GETDEVICESPECIFICPARAMETER(Dev,
Pin0GpioFunctionality);
if ((InterruptConfig ==
VL53L0X_GPIOFUNCTIONALITY_THRESHOLD_CROSSED_LOW) ||
(InterruptConfig ==
VL53L0X_GPIOFUNCTIONALITY_THRESHOLD_CROSSED_HIGH) ||
(InterruptConfig ==
VL53L0X_GPIOFUNCTIONALITY_THRESHOLD_CROSSED_OUT)) {
Status = VL53L0X_GetInterruptThresholds(Dev,
VL53L0X_DEVICEMODE_CONTINUOUS_RANGING,
&ThresholdLow, &ThresholdHigh);
if (((ThresholdLow > 255*65536) ||
(ThresholdHigh > 255*65536)) &&
(Status == VL53L0X_ERROR_NONE)) {
if (StartNotStopFlag != 0) {
Status = VL53L0X_load_tuning_settings(Dev,
InterruptThresholdSettings);
} else {
Status |= VL53L0X_WrByte(Dev, 0xFF, 0x04);
Status |= VL53L0X_WrByte(Dev, 0x70, 0x00);
Status |= VL53L0X_WrByte(Dev, 0xFF, 0x00);
Status |= VL53L0X_WrByte(Dev, 0x80, 0x00);
}
}
}
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_StartMeasurement(VL53L0X_DEV Dev)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
VL53L0X_DeviceModes DeviceMode;
uint8_t Byte;
uint8_t StartStopByte = VL53L0X_REG_SYSRANGE_MODE_START_STOP;
uint32_t LoopNb;
LOG_FUNCTION_START("");
/* Get Current DeviceMode */
VL53L0X_GetDeviceMode(Dev, &DeviceMode);
Status = VL53L0X_WrByte(Dev, 0x80, 0x01);
Status = VL53L0X_WrByte(Dev, 0xFF, 0x01);
Status = VL53L0X_WrByte(Dev, 0x00, 0x00);
Status = VL53L0X_WrByte(Dev, 0x91, PALDevDataGet(Dev, StopVariable));
Status = VL53L0X_WrByte(Dev, 0x00, 0x01);
Status = VL53L0X_WrByte(Dev, 0xFF, 0x00);
Status = VL53L0X_WrByte(Dev, 0x80, 0x00);
switch (DeviceMode) {
case VL53L0X_DEVICEMODE_SINGLE_RANGING:
Status = VL53L0X_WrByte(Dev, VL53L0X_REG_SYSRANGE_START, 0x01);
Byte = StartStopByte;
if (Status == VL53L0X_ERROR_NONE) {
/* Wait until start bit has been cleared */
LoopNb = 0;
do {
if (LoopNb > 0)
Status = VL53L0X_RdByte(Dev,
VL53L0X_REG_SYSRANGE_START, &Byte);
LoopNb = LoopNb + 1;
} while (((Byte & StartStopByte) == StartStopByte)
&& (Status == VL53L0X_ERROR_NONE)
&& (LoopNb < VL53L0X_DEFAULT_MAX_LOOP));
if (LoopNb >= VL53L0X_DEFAULT_MAX_LOOP)
Status = VL53L0X_ERROR_TIME_OUT;
}
break;
case VL53L0X_DEVICEMODE_CONTINUOUS_RANGING:
/* Back-to-back mode */
/* Check if need to apply interrupt settings */
if (Status == VL53L0X_ERROR_NONE)
Status = VL53L0X_CheckAndLoadInterruptSettings(Dev, 1);
Status = VL53L0X_WrByte(Dev,
VL53L0X_REG_SYSRANGE_START,
VL53L0X_REG_SYSRANGE_MODE_BACKTOBACK);
if (Status == VL53L0X_ERROR_NONE) {
/* Set PAL State to Running */
PALDevDataSet(Dev, PalState, VL53L0X_STATE_RUNNING);
}
break;
case VL53L0X_DEVICEMODE_CONTINUOUS_TIMED_RANGING:
/* Continuous mode */
/* Check if need to apply interrupt settings */
if (Status == VL53L0X_ERROR_NONE)
Status = VL53L0X_CheckAndLoadInterruptSettings(Dev, 1);
Status = VL53L0X_WrByte(Dev,
VL53L0X_REG_SYSRANGE_START,
VL53L0X_REG_SYSRANGE_MODE_TIMED);
if (Status == VL53L0X_ERROR_NONE) {
/* Set PAL State to Running */
PALDevDataSet(Dev, PalState, VL53L0X_STATE_RUNNING);
}
break;
default:
/* Selected mode not supported */
Status = VL53L0X_ERROR_MODE_NOT_SUPPORTED;
}
LOG_FUNCTION_END(Status);
return Status;
}
/* Group PAL Measurement Functions */
VL53L0X_Error VL53L0X::VL53L0X_PerformSingleMeasurement(VL53L0X_DEV Dev)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
VL53L0X_DeviceModes DeviceMode;
LOG_FUNCTION_START("");
/* Get Current DeviceMode */
Status = VL53L0X_GetDeviceMode(Dev, &DeviceMode);
/* Start immediately to run a single ranging measurement in case of
* single ranging or single histogram */
if (Status == VL53L0X_ERROR_NONE
&& DeviceMode == VL53L0X_DEVICEMODE_SINGLE_RANGING)
Status = VL53L0X_StartMeasurement(Dev);
if (Status == VL53L0X_ERROR_NONE)
Status = VL53L0X_measurement_poll_for_completion(Dev);
/* Change PAL State in case of single ranging or single histogram */
if (Status == VL53L0X_ERROR_NONE
&& DeviceMode == VL53L0X_DEVICEMODE_SINGLE_RANGING)
PALDevDataSet(Dev, PalState, VL53L0X_STATE_IDLE);
LOG_FUNCTION_END(Status);
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_GetXTalkCompensationEnable(VL53L0X_DEV Dev,
uint8_t *pXTalkCompensationEnable)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
uint8_t Temp8;
LOG_FUNCTION_START("");
VL53L0X_GETPARAMETERFIELD(Dev, XTalkCompensationEnable, Temp8);
*pXTalkCompensationEnable = Temp8;
LOG_FUNCTION_END(Status);
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_get_total_xtalk_rate(VL53L0X_DEV Dev,
VL53L0X_RangingMeasurementData_t *pRangingMeasurementData,
FixPoint1616_t *ptotal_xtalk_rate_mcps)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
uint8_t xtalkCompEnable;
FixPoint1616_t totalXtalkMegaCps;
FixPoint1616_t xtalkPerSpadMegaCps;
*ptotal_xtalk_rate_mcps = 0;
Status = VL53L0X_GetXTalkCompensationEnable(Dev, &xtalkCompEnable);
if (Status == VL53L0X_ERROR_NONE) {
if (xtalkCompEnable) {
VL53L0X_GETPARAMETERFIELD(
Dev,
XTalkCompensationRateMegaCps,
xtalkPerSpadMegaCps);
/* FixPoint1616 * FixPoint 8:8 = FixPoint0824 */
totalXtalkMegaCps =
pRangingMeasurementData->EffectiveSpadRtnCount *
xtalkPerSpadMegaCps;
/* FixPoint0824 >> 8 = FixPoint1616 */
*ptotal_xtalk_rate_mcps =
(totalXtalkMegaCps + 0x80) >> 8;
}
}
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_get_total_signal_rate(VL53L0X_DEV Dev,
VL53L0X_RangingMeasurementData_t *pRangingMeasurementData,
FixPoint1616_t *ptotal_signal_rate_mcps)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
FixPoint1616_t totalXtalkMegaCps;
LOG_FUNCTION_START("");
*ptotal_signal_rate_mcps =
pRangingMeasurementData->SignalRateRtnMegaCps;
Status = VL53L0X_get_total_xtalk_rate(
Dev, pRangingMeasurementData, &totalXtalkMegaCps);
if (Status == VL53L0X_ERROR_NONE)
*ptotal_signal_rate_mcps += totalXtalkMegaCps;
return Status;
}
/* To convert ms into register value */
uint32_t VL53L0X::VL53L0X_calc_timeout_mclks(VL53L0X_DEV Dev,
uint32_t timeout_period_us,
uint8_t vcsel_period_pclks)
{
uint32_t macro_period_ps;
uint32_t macro_period_ns;
uint32_t timeout_period_mclks = 0;
macro_period_ps = VL53L0X_calc_macro_period_ps(Dev, vcsel_period_pclks);
macro_period_ns = (macro_period_ps + 500) / 1000;
timeout_period_mclks =
(uint32_t) (((timeout_period_us * 1000)
+ (macro_period_ns / 2)) / macro_period_ns);
return timeout_period_mclks;
}
uint32_t VL53L0X::VL53L0X_isqrt(uint32_t num)
{
/*
* Implements an integer square root
*
* From: http://en.wikipedia.org/wiki/Methods_of_computing_square_roots
*/
uint32_t res = 0;
uint32_t bit = 1 << 30;
/* The second-to-top bit is set:
* 1 << 14 for 16-bits, 1 << 30 for 32 bits */
/* "bit" starts at the highest power of four <= the argument. */
while (bit > num)
bit >>= 2;
while (bit != 0) {
if (num >= res + bit) {
num -= res + bit;
res = (res >> 1) + bit;
} else
res >>= 1;
bit >>= 2;
}
return res;
}
VL53L0X_Error VL53L0X::VL53L0X_calc_dmax(
VL53L0X_DEV Dev,
FixPoint1616_t totalSignalRate_mcps,
FixPoint1616_t totalCorrSignalRate_mcps,
FixPoint1616_t pwMult,
uint32_t sigmaEstimateP1,
FixPoint1616_t sigmaEstimateP2,
uint32_t peakVcselDuration_us,
uint32_t *pdmax_mm)
{
const uint32_t cSigmaLimit = 18;
const FixPoint1616_t cSignalLimit = 0x4000; /* 0.25 */
const FixPoint1616_t cSigmaEstRef = 0x00000042; /* 0.001 */
const uint32_t cAmbEffWidthSigmaEst_ns = 6;
const uint32_t cAmbEffWidthDMax_ns = 7;
uint32_t dmaxCalRange_mm;
FixPoint1616_t dmaxCalSignalRateRtn_mcps;
FixPoint1616_t minSignalNeeded;
FixPoint1616_t minSignalNeeded_p1;
FixPoint1616_t minSignalNeeded_p2;
FixPoint1616_t minSignalNeeded_p3;
FixPoint1616_t minSignalNeeded_p4;
FixPoint1616_t sigmaLimitTmp;
FixPoint1616_t sigmaEstSqTmp;
FixPoint1616_t signalLimitTmp;
FixPoint1616_t SignalAt0mm;
FixPoint1616_t dmaxDark;
FixPoint1616_t dmaxAmbient;
FixPoint1616_t dmaxDarkTmp;
FixPoint1616_t sigmaEstP2Tmp;
uint32_t signalRateTemp_mcps;
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
LOG_FUNCTION_START("");
dmaxCalRange_mm =
PALDevDataGet(Dev, DmaxCalRangeMilliMeter);
dmaxCalSignalRateRtn_mcps =
PALDevDataGet(Dev, DmaxCalSignalRateRtnMegaCps);
/* uint32 * FixPoint1616 = FixPoint1616 */
SignalAt0mm = dmaxCalRange_mm * dmaxCalSignalRateRtn_mcps;
/* FixPoint1616 >> 8 = FixPoint2408 */
SignalAt0mm = (SignalAt0mm + 0x80) >> 8;
SignalAt0mm *= dmaxCalRange_mm;
minSignalNeeded_p1 = 0;
if (totalCorrSignalRate_mcps > 0) {
/* Shift by 10 bits to increase resolution prior to the
* division */
signalRateTemp_mcps = totalSignalRate_mcps << 10;
/* Add rounding value prior to division */
minSignalNeeded_p1 = signalRateTemp_mcps +
(totalCorrSignalRate_mcps/2);
/* FixPoint0626/FixPoint1616 = FixPoint2210 */
minSignalNeeded_p1 /= totalCorrSignalRate_mcps;
/* Apply a factored version of the speed of light.
Correction to be applied at the end */
minSignalNeeded_p1 *= 3;
/* FixPoint2210 * FixPoint2210 = FixPoint1220 */
minSignalNeeded_p1 *= minSignalNeeded_p1;
/* FixPoint1220 >> 16 = FixPoint2804 */
minSignalNeeded_p1 = (minSignalNeeded_p1 + 0x8000) >> 16;
}
minSignalNeeded_p2 = pwMult * sigmaEstimateP1;
/* FixPoint1616 >> 16 = uint32 */
minSignalNeeded_p2 = (minSignalNeeded_p2 + 0x8000) >> 16;
/* uint32 * uint32 = uint32 */
minSignalNeeded_p2 *= minSignalNeeded_p2;
/* Check sigmaEstimateP2
* If this value is too high there is not enough signal rate
* to calculate dmax value so set a suitable value to ensure
* a very small dmax.
*/
sigmaEstP2Tmp = (sigmaEstimateP2 + 0x8000) >> 16;
sigmaEstP2Tmp = (sigmaEstP2Tmp + cAmbEffWidthSigmaEst_ns/2)/
cAmbEffWidthSigmaEst_ns;
sigmaEstP2Tmp *= cAmbEffWidthDMax_ns;
if (sigmaEstP2Tmp > 0xffff) {
minSignalNeeded_p3 = 0xfff00000;
} else {
/* DMAX uses a different ambient width from sigma, so apply
* correction.
* Perform division before multiplication to prevent overflow.
*/
sigmaEstimateP2 = (sigmaEstimateP2 + cAmbEffWidthSigmaEst_ns/2)/
cAmbEffWidthSigmaEst_ns;
sigmaEstimateP2 *= cAmbEffWidthDMax_ns;
/* FixPoint1616 >> 16 = uint32 */
minSignalNeeded_p3 = (sigmaEstimateP2 + 0x8000) >> 16;
minSignalNeeded_p3 *= minSignalNeeded_p3;
}
/* FixPoint1814 / uint32 = FixPoint1814 */
sigmaLimitTmp = ((cSigmaLimit << 14) + 500) / 1000;
/* FixPoint1814 * FixPoint1814 = FixPoint3628 := FixPoint0428 */
sigmaLimitTmp *= sigmaLimitTmp;
/* FixPoint1616 * FixPoint1616 = FixPoint3232 */
sigmaEstSqTmp = cSigmaEstRef * cSigmaEstRef;
/* FixPoint3232 >> 4 = FixPoint0428 */
sigmaEstSqTmp = (sigmaEstSqTmp + 0x08) >> 4;
/* FixPoint0428 - FixPoint0428 = FixPoint0428 */
sigmaLimitTmp -= sigmaEstSqTmp;
/* uint32_t * FixPoint0428 = FixPoint0428 */
minSignalNeeded_p4 = 4 * 12 * sigmaLimitTmp;
/* FixPoint0428 >> 14 = FixPoint1814 */
minSignalNeeded_p4 = (minSignalNeeded_p4 + 0x2000) >> 14;
/* uint32 + uint32 = uint32 */
minSignalNeeded = (minSignalNeeded_p2 + minSignalNeeded_p3);
/* uint32 / uint32 = uint32 */
minSignalNeeded += (peakVcselDuration_us/2);
minSignalNeeded /= peakVcselDuration_us;
/* uint32 << 14 = FixPoint1814 */
minSignalNeeded <<= 14;
/* FixPoint1814 / FixPoint1814 = uint32 */
minSignalNeeded += (minSignalNeeded_p4/2);
minSignalNeeded /= minSignalNeeded_p4;
/* FixPoint3200 * FixPoint2804 := FixPoint2804*/
minSignalNeeded *= minSignalNeeded_p1;
/* Apply correction by dividing by 1000000.
* This assumes 10E16 on the numerator of the equation
* and 10E-22 on the denominator.
* We do this because 32bit fix point calculation can't
* handle the larger and smaller elements of this equation,
* i.e. speed of light and pulse widths.
*/
minSignalNeeded = (minSignalNeeded + 500) / 1000;
minSignalNeeded <<= 4;
minSignalNeeded = (minSignalNeeded + 500) / 1000;
/* FixPoint1616 >> 8 = FixPoint2408 */
signalLimitTmp = (cSignalLimit + 0x80) >> 8;
/* FixPoint2408/FixPoint2408 = uint32 */
if (signalLimitTmp != 0)
dmaxDarkTmp = (SignalAt0mm + (signalLimitTmp / 2))
/ signalLimitTmp;
else
dmaxDarkTmp = 0;
dmaxDark = VL53L0X_isqrt(dmaxDarkTmp);
/* FixPoint2408/FixPoint2408 = uint32 */
if (minSignalNeeded != 0)
dmaxAmbient = (SignalAt0mm + minSignalNeeded/2)
/ minSignalNeeded;
else
dmaxAmbient = 0;
dmaxAmbient = VL53L0X_isqrt(dmaxAmbient);
*pdmax_mm = dmaxDark;
if (dmaxDark > dmaxAmbient)
*pdmax_mm = dmaxAmbient;
LOG_FUNCTION_END(Status);
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_calc_sigma_estimate(VL53L0X_DEV Dev,
VL53L0X_RangingMeasurementData_t *pRangingMeasurementData,
FixPoint1616_t *pSigmaEstimate,
uint32_t *pDmax_mm)
{
/* Expressed in 100ths of a ns, i.e. centi-ns */
const uint32_t cPulseEffectiveWidth_centi_ns = 800;
/* Expressed in 100ths of a ns, i.e. centi-ns */
const uint32_t cAmbientEffectiveWidth_centi_ns = 600;
const FixPoint1616_t cDfltFinalRangeIntegrationTimeMilliSecs = 0x00190000; /* 25ms */
const uint32_t cVcselPulseWidth_ps = 4700; /* pico secs */
const FixPoint1616_t cSigmaEstMax = 0x028F87AE;
const FixPoint1616_t cSigmaEstRtnMax = 0xF000;
const FixPoint1616_t cAmbToSignalRatioMax = 0xF0000000/
cAmbientEffectiveWidth_centi_ns;
/* Time Of Flight per mm (6.6 pico secs) */
const FixPoint1616_t cTOF_per_mm_ps = 0x0006999A;
const uint32_t c16BitRoundingParam = 0x00008000;
const FixPoint1616_t cMaxXTalk_kcps = 0x00320000;
const uint32_t cPllPeriod_ps = 1655;
uint32_t vcselTotalEventsRtn;
uint32_t finalRangeTimeoutMicroSecs;
uint32_t preRangeTimeoutMicroSecs;
uint32_t finalRangeIntegrationTimeMilliSecs;
FixPoint1616_t sigmaEstimateP1;
FixPoint1616_t sigmaEstimateP2;
FixPoint1616_t sigmaEstimateP3;
FixPoint1616_t deltaT_ps;
FixPoint1616_t pwMult;
FixPoint1616_t sigmaEstRtn;
FixPoint1616_t sigmaEstimate;
FixPoint1616_t xTalkCorrection;
FixPoint1616_t ambientRate_kcps;
FixPoint1616_t peakSignalRate_kcps;
FixPoint1616_t xTalkCompRate_mcps;
uint32_t xTalkCompRate_kcps;
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
FixPoint1616_t diff1_mcps;
FixPoint1616_t diff2_mcps;
FixPoint1616_t sqr1;
FixPoint1616_t sqr2;
FixPoint1616_t sqrSum;
FixPoint1616_t sqrtResult_centi_ns;
FixPoint1616_t sqrtResult;
FixPoint1616_t totalSignalRate_mcps;
FixPoint1616_t correctedSignalRate_mcps;
FixPoint1616_t sigmaEstRef;
uint32_t vcselWidth;
uint32_t finalRangeMacroPCLKS;
uint32_t preRangeMacroPCLKS;
uint32_t peakVcselDuration_us;
uint8_t finalRangeVcselPCLKS;
uint8_t preRangeVcselPCLKS;
/*! \addtogroup calc_sigma_estimate
* @{
*
* Estimates the range sigma
*/
LOG_FUNCTION_START("");
VL53L0X_GETPARAMETERFIELD(Dev, XTalkCompensationRateMegaCps,
xTalkCompRate_mcps);
/*
* We work in kcps rather than mcps as this helps keep within the
* confines of the 32 Fix1616 type.
*/
ambientRate_kcps =
(pRangingMeasurementData->AmbientRateRtnMegaCps * 1000) >> 16;
correctedSignalRate_mcps =
pRangingMeasurementData->SignalRateRtnMegaCps;
Status = VL53L0X_get_total_signal_rate(
Dev, pRangingMeasurementData, &totalSignalRate_mcps);
Status = VL53L0X_get_total_xtalk_rate(
Dev, pRangingMeasurementData, &xTalkCompRate_mcps);
/* Signal rate measurement provided by device is the
* peak signal rate, not average.
*/
peakSignalRate_kcps = (totalSignalRate_mcps * 1000);
peakSignalRate_kcps = (peakSignalRate_kcps + 0x8000) >> 16;
xTalkCompRate_kcps = xTalkCompRate_mcps * 1000;
if (xTalkCompRate_kcps > cMaxXTalk_kcps)
xTalkCompRate_kcps = cMaxXTalk_kcps;
if (Status == VL53L0X_ERROR_NONE) {
/* Calculate final range macro periods */
finalRangeTimeoutMicroSecs = VL53L0X_GETDEVICESPECIFICPARAMETER(
Dev, FinalRangeTimeoutMicroSecs);
finalRangeVcselPCLKS = VL53L0X_GETDEVICESPECIFICPARAMETER(
Dev, FinalRangeVcselPulsePeriod);
finalRangeMacroPCLKS = VL53L0X_calc_timeout_mclks(
Dev, finalRangeTimeoutMicroSecs, finalRangeVcselPCLKS);
/* Calculate pre-range macro periods */
preRangeTimeoutMicroSecs = VL53L0X_GETDEVICESPECIFICPARAMETER(
Dev, PreRangeTimeoutMicroSecs);
preRangeVcselPCLKS = VL53L0X_GETDEVICESPECIFICPARAMETER(
Dev, PreRangeVcselPulsePeriod);
preRangeMacroPCLKS = VL53L0X_calc_timeout_mclks(
Dev, preRangeTimeoutMicroSecs, preRangeVcselPCLKS);
vcselWidth = 3;
if (finalRangeVcselPCLKS == 8)
vcselWidth = 2;
peakVcselDuration_us = vcselWidth * 2048 *
(preRangeMacroPCLKS + finalRangeMacroPCLKS);
peakVcselDuration_us = (peakVcselDuration_us + 500)/1000;
peakVcselDuration_us *= cPllPeriod_ps;
peakVcselDuration_us = (peakVcselDuration_us + 500)/1000;
/* Fix1616 >> 8 = Fix2408 */
totalSignalRate_mcps = (totalSignalRate_mcps + 0x80) >> 8;
/* Fix2408 * uint32 = Fix2408 */
vcselTotalEventsRtn = totalSignalRate_mcps *
peakVcselDuration_us;
/* Fix2408 >> 8 = uint32 */
vcselTotalEventsRtn = (vcselTotalEventsRtn + 0x80) >> 8;
/* Fix2408 << 8 = Fix1616 = */
totalSignalRate_mcps <<= 8;
}
if (Status != VL53L0X_ERROR_NONE) {
LOG_FUNCTION_END(Status);
return Status;
}
if (peakSignalRate_kcps == 0) {
*pSigmaEstimate = cSigmaEstMax;
PALDevDataSet(Dev, SigmaEstimate, cSigmaEstMax);
*pDmax_mm = 0;
} else {
if (vcselTotalEventsRtn < 1)
vcselTotalEventsRtn = 1;
sigmaEstimateP1 = cPulseEffectiveWidth_centi_ns;
/* ((FixPoint1616 << 16)* uint32)/uint32 = FixPoint1616 */
sigmaEstimateP2 = (ambientRate_kcps << 16)/peakSignalRate_kcps;
if (sigmaEstimateP2 > cAmbToSignalRatioMax) {
/* Clip to prevent overflow. Will ensure safe
* max result. */
sigmaEstimateP2 = cAmbToSignalRatioMax;
}
sigmaEstimateP2 *= cAmbientEffectiveWidth_centi_ns;
sigmaEstimateP3 = 2 * VL53L0X_isqrt(vcselTotalEventsRtn * 12);
/* uint32 * FixPoint1616 = FixPoint1616 */
deltaT_ps = pRangingMeasurementData->RangeMilliMeter *
cTOF_per_mm_ps;
/*
* vcselRate - xtalkCompRate
* (uint32 << 16) - FixPoint1616 = FixPoint1616.
* Divide result by 1000 to convert to mcps.
* 500 is added to ensure rounding when integer division
* truncates.
*/
diff1_mcps = (((peakSignalRate_kcps << 16) -
2 * xTalkCompRate_kcps) + 500)/1000;
/* vcselRate + xtalkCompRate */
diff2_mcps = ((peakSignalRate_kcps << 16) + 500)/1000;
/* Shift by 8 bits to increase resolution prior to the
* division */
diff1_mcps <<= 8;
/* FixPoint0824/FixPoint1616 = FixPoint2408 */
// xTalkCorrection = abs(diff1_mcps/diff2_mcps);
// abs is causing compiler overloading isue in C++, but unsigned types. So, redundant call anyway!
xTalkCorrection = diff1_mcps/diff2_mcps;
/* FixPoint2408 << 8 = FixPoint1616 */
xTalkCorrection <<= 8;
if(pRangingMeasurementData->RangeStatus != 0){
pwMult = 1 << 16;
} else {
/* FixPoint1616/uint32 = FixPoint1616 */
pwMult = deltaT_ps/cVcselPulseWidth_ps; /* smaller than 1.0f */
/*
* FixPoint1616 * FixPoint1616 = FixPoint3232, however both
* values are small enough such that32 bits will not be
* exceeded.
*/
pwMult *= ((1 << 16) - xTalkCorrection);
/* (FixPoint3232 >> 16) = FixPoint1616 */
pwMult = (pwMult + c16BitRoundingParam) >> 16;
/* FixPoint1616 + FixPoint1616 = FixPoint1616 */
pwMult += (1 << 16);
/*
* At this point the value will be 1.xx, therefore if we square
* the value this will exceed 32 bits. To address this perform
* a single shift to the right before the multiplication.
*/
pwMult >>= 1;
/* FixPoint1715 * FixPoint1715 = FixPoint3430 */
pwMult = pwMult * pwMult;
/* (FixPoint3430 >> 14) = Fix1616 */
pwMult >>= 14;
}
/* FixPoint1616 * uint32 = FixPoint1616 */
sqr1 = pwMult * sigmaEstimateP1;
/* (FixPoint1616 >> 16) = FixPoint3200 */
sqr1 = (sqr1 + 0x8000) >> 16;
/* FixPoint3200 * FixPoint3200 = FixPoint6400 */
sqr1 *= sqr1;
sqr2 = sigmaEstimateP2;
/* (FixPoint1616 >> 16) = FixPoint3200 */
sqr2 = (sqr2 + 0x8000) >> 16;
/* FixPoint3200 * FixPoint3200 = FixPoint6400 */
sqr2 *= sqr2;
/* FixPoint64000 + FixPoint6400 = FixPoint6400 */
sqrSum = sqr1 + sqr2;
/* SQRT(FixPoin6400) = FixPoint3200 */
sqrtResult_centi_ns = VL53L0X_isqrt(sqrSum);
/* (FixPoint3200 << 16) = FixPoint1616 */
sqrtResult_centi_ns <<= 16;
/*
* Note that the Speed Of Light is expressed in um per 1E-10
* seconds (2997) Therefore to get mm/ns we have to divide by
* 10000
*/
sigmaEstRtn = (((sqrtResult_centi_ns+50)/100) /
sigmaEstimateP3);
sigmaEstRtn *= VL53L0X_SPEED_OF_LIGHT_IN_AIR;
/* Add 5000 before dividing by 10000 to ensure rounding. */
sigmaEstRtn += 5000;
sigmaEstRtn /= 10000;
if (sigmaEstRtn > cSigmaEstRtnMax) {
/* Clip to prevent overflow. Will ensure safe
* max result. */
sigmaEstRtn = cSigmaEstRtnMax;
}
finalRangeIntegrationTimeMilliSecs =
(finalRangeTimeoutMicroSecs + preRangeTimeoutMicroSecs + 500)/1000;
/* sigmaEstRef = 1mm * 25ms/final range integration time (inc pre-range)
* sqrt(FixPoint1616/int) = FixPoint2408)
*/
sigmaEstRef =
VL53L0X_isqrt((cDfltFinalRangeIntegrationTimeMilliSecs +
finalRangeIntegrationTimeMilliSecs/2)/
finalRangeIntegrationTimeMilliSecs);
/* FixPoint2408 << 8 = FixPoint1616 */
sigmaEstRef <<= 8;
sigmaEstRef = (sigmaEstRef + 500)/1000;
/* FixPoint1616 * FixPoint1616 = FixPoint3232 */
sqr1 = sigmaEstRtn * sigmaEstRtn;
/* FixPoint1616 * FixPoint1616 = FixPoint3232 */
sqr2 = sigmaEstRef * sigmaEstRef;
/* sqrt(FixPoint3232) = FixPoint1616 */
sqrtResult = VL53L0X_isqrt((sqr1 + sqr2));
/*
* Note that the Shift by 4 bits increases resolution prior to
* the sqrt, therefore the result must be shifted by 2 bits to
* the right to revert back to the FixPoint1616 format.
*/
sigmaEstimate = 1000 * sqrtResult;
if ((peakSignalRate_kcps < 1) || (vcselTotalEventsRtn < 1) ||
(sigmaEstimate > cSigmaEstMax)) {
sigmaEstimate = cSigmaEstMax;
}
*pSigmaEstimate = (uint32_t)(sigmaEstimate);
PALDevDataSet(Dev, SigmaEstimate, *pSigmaEstimate);
Status = VL53L0X_calc_dmax(
Dev,
totalSignalRate_mcps,
correctedSignalRate_mcps,
pwMult,
sigmaEstimateP1,
sigmaEstimateP2,
peakVcselDuration_us,
pDmax_mm);
}
LOG_FUNCTION_END(Status);
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_get_pal_range_status(VL53L0X_DEV Dev,
uint8_t DeviceRangeStatus,
FixPoint1616_t SignalRate,
uint16_t EffectiveSpadRtnCount,
VL53L0X_RangingMeasurementData_t *pRangingMeasurementData,
uint8_t *pPalRangeStatus)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
uint8_t NoneFlag;
uint8_t SigmaLimitflag = 0;
uint8_t SignalRefClipflag = 0;
uint8_t RangeIgnoreThresholdflag = 0;
uint8_t SigmaLimitCheckEnable = 0;
uint8_t SignalRateFinalRangeLimitCheckEnable = 0;
uint8_t SignalRefClipLimitCheckEnable = 0;
uint8_t RangeIgnoreThresholdLimitCheckEnable = 0;
FixPoint1616_t SigmaEstimate;
FixPoint1616_t SigmaLimitValue;
FixPoint1616_t SignalRefClipValue;
FixPoint1616_t RangeIgnoreThresholdValue;
FixPoint1616_t SignalRatePerSpad;
uint8_t DeviceRangeStatusInternal = 0;
uint16_t tmpWord = 0;
uint8_t Temp8;
uint32_t Dmax_mm = 0;
FixPoint1616_t LastSignalRefMcps;
LOG_FUNCTION_START("");
/*
* VL53L0X has a good ranging when the value of the
* DeviceRangeStatus = 11. This function will replace the value 0 with
* the value 11 in the DeviceRangeStatus.
* In addition, the SigmaEstimator is not included in the VL53L0X
* DeviceRangeStatus, this will be added in the PalRangeStatus.
*/
DeviceRangeStatusInternal = ((DeviceRangeStatus & 0x78) >> 3);
if (DeviceRangeStatusInternal == 0 ||
DeviceRangeStatusInternal == 5 ||
DeviceRangeStatusInternal == 7 ||
DeviceRangeStatusInternal == 12 ||
DeviceRangeStatusInternal == 13 ||
DeviceRangeStatusInternal == 14 ||
DeviceRangeStatusInternal == 15
) {
NoneFlag = 1;
} else {
NoneFlag = 0;
}
/*
* Check if Sigma limit is enabled, if yes then do comparison with limit
* value and put the result back into pPalRangeStatus.
*/
if (Status == VL53L0X_ERROR_NONE)
Status = VL53L0X_GetLimitCheckEnable(Dev,
VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE,
&SigmaLimitCheckEnable);
if ((SigmaLimitCheckEnable != 0) && (Status == VL53L0X_ERROR_NONE)) {
/*
* compute the Sigma and check with limit
*/
Status = VL53L0X_calc_sigma_estimate(
Dev,
pRangingMeasurementData,
&SigmaEstimate,
&Dmax_mm);
if (Status == VL53L0X_ERROR_NONE)
pRangingMeasurementData->RangeDMaxMilliMeter = Dmax_mm;
if (Status == VL53L0X_ERROR_NONE) {
Status = VL53L0X_GetLimitCheckValue(Dev,
VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE,
&SigmaLimitValue);
if ((SigmaLimitValue > 0) &&
(SigmaEstimate > SigmaLimitValue))
/* Limit Fail */
SigmaLimitflag = 1;
}
}
/*
* Check if Signal ref clip limit is enabled, if yes then do comparison
* with limit value and put the result back into pPalRangeStatus.
*/
if (Status == VL53L0X_ERROR_NONE)
Status = VL53L0X_GetLimitCheckEnable(Dev,
VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP,
&SignalRefClipLimitCheckEnable);
if ((SignalRefClipLimitCheckEnable != 0) &&
(Status == VL53L0X_ERROR_NONE)) {
Status = VL53L0X_GetLimitCheckValue(Dev,
VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP,
&SignalRefClipValue);
/* Read LastSignalRefMcps from device */
if (Status == VL53L0X_ERROR_NONE)
Status = VL53L0X_WrByte(Dev, 0xFF, 0x01);
if (Status == VL53L0X_ERROR_NONE)
Status = VL53L0X_RdWord(Dev,
VL53L0X_REG_RESULT_PEAK_SIGNAL_RATE_REF,
&tmpWord);
if (Status == VL53L0X_ERROR_NONE)
Status = VL53L0X_WrByte(Dev, 0xFF, 0x00);
LastSignalRefMcps = VL53L0X_FIXPOINT97TOFIXPOINT1616(tmpWord);
PALDevDataSet(Dev, LastSignalRefMcps, LastSignalRefMcps);
if ((SignalRefClipValue > 0) &&
(LastSignalRefMcps > SignalRefClipValue)) {
/* Limit Fail */
SignalRefClipflag = 1;
}
}
/*
* Check if Signal ref clip limit is enabled, if yes then do comparison
* with limit value and put the result back into pPalRangeStatus.
* EffectiveSpadRtnCount has a format 8.8
* If (Return signal rate < (1.5 x Xtalk x number of Spads)) : FAIL
*/
if (Status == VL53L0X_ERROR_NONE)
Status = VL53L0X_GetLimitCheckEnable(Dev,
VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD,
&RangeIgnoreThresholdLimitCheckEnable);
if ((RangeIgnoreThresholdLimitCheckEnable != 0) &&
(Status == VL53L0X_ERROR_NONE)) {
/* Compute the signal rate per spad */
if (EffectiveSpadRtnCount == 0) {
SignalRatePerSpad = 0;
} else {
SignalRatePerSpad = (FixPoint1616_t)((256 * SignalRate)
/ EffectiveSpadRtnCount);
}
Status = VL53L0X_GetLimitCheckValue(Dev,
VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD,
&RangeIgnoreThresholdValue);
if ((RangeIgnoreThresholdValue > 0) &&
(SignalRatePerSpad < RangeIgnoreThresholdValue)) {
/* Limit Fail add 2^6 to range status */
RangeIgnoreThresholdflag = 1;
}
}
if (Status == VL53L0X_ERROR_NONE) {
if (NoneFlag == 1) {
*pPalRangeStatus = 255; /* NONE */
} else if (DeviceRangeStatusInternal == 1 ||
DeviceRangeStatusInternal == 2 ||
DeviceRangeStatusInternal == 3) {
*pPalRangeStatus = 5; /* HW fail */
} else if (DeviceRangeStatusInternal == 6 ||
DeviceRangeStatusInternal == 9) {
*pPalRangeStatus = 4; /* Phase fail */
} else if (DeviceRangeStatusInternal == 8 ||
DeviceRangeStatusInternal == 10 ||
SignalRefClipflag == 1) {
*pPalRangeStatus = 3; /* Min range */
} else if (DeviceRangeStatusInternal == 4 ||
RangeIgnoreThresholdflag == 1) {
*pPalRangeStatus = 2; /* Signal Fail */
} else if (SigmaLimitflag == 1) {
*pPalRangeStatus = 1; /* Sigma Fail */
} else {
*pPalRangeStatus = 0; /* Range Valid */
}
}
/* DMAX only relevant during range error */
if (*pPalRangeStatus == 0)
pRangingMeasurementData->RangeDMaxMilliMeter = 0;
/* fill the Limit Check Status */
Status = VL53L0X_GetLimitCheckEnable(Dev,
VL53L0X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE,
&SignalRateFinalRangeLimitCheckEnable);
if (Status == VL53L0X_ERROR_NONE) {
if ((SigmaLimitCheckEnable == 0) || (SigmaLimitflag == 1))
Temp8 = 1;
else
Temp8 = 0;
VL53L0X_SETARRAYPARAMETERFIELD(Dev, LimitChecksStatus,
VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE, Temp8);
if ((DeviceRangeStatusInternal == 4) ||
(SignalRateFinalRangeLimitCheckEnable == 0))
Temp8 = 1;
else
Temp8 = 0;
VL53L0X_SETARRAYPARAMETERFIELD(Dev, LimitChecksStatus,
VL53L0X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE,
Temp8);
if ((SignalRefClipLimitCheckEnable == 0) ||
(SignalRefClipflag == 1))
Temp8 = 1;
else
Temp8 = 0;
VL53L0X_SETARRAYPARAMETERFIELD(Dev, LimitChecksStatus,
VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP, Temp8);
if ((RangeIgnoreThresholdLimitCheckEnable == 0) ||
(RangeIgnoreThresholdflag == 1))
Temp8 = 1;
else
Temp8 = 0;
VL53L0X_SETARRAYPARAMETERFIELD(Dev, LimitChecksStatus,
VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD,
Temp8);
}
LOG_FUNCTION_END(Status);
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_GetRangingMeasurementData(VL53L0X_DEV Dev,
VL53L0X_RangingMeasurementData_t *pRangingMeasurementData)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
uint8_t DeviceRangeStatus;
uint8_t RangeFractionalEnable;
uint8_t PalRangeStatus;
uint8_t XTalkCompensationEnable;
uint16_t AmbientRate;
FixPoint1616_t SignalRate;
uint16_t XTalkCompensationRateMegaCps;
uint16_t EffectiveSpadRtnCount;
uint16_t tmpuint16;
uint16_t XtalkRangeMilliMeter;
uint16_t LinearityCorrectiveGain;
uint8_t localBuffer[12];
VL53L0X_RangingMeasurementData_t LastRangeDataBuffer;
LOG_FUNCTION_START("");
/*
* use multi read even if some registers are not useful, result will
* be more efficient
* start reading at 0x14 dec20
* end reading at 0x21 dec33 total 14 bytes to read
*/
Status = VL53L0X_ReadMulti(Dev, 0x14, localBuffer, 12);
if (Status == VL53L0X_ERROR_NONE) {
pRangingMeasurementData->ZoneId = 0; /* Only one zone */
pRangingMeasurementData->TimeStamp = 0; /* Not Implemented */
tmpuint16 = VL53L0X_MAKEUINT16(localBuffer[11], localBuffer[10]);
/* cut1.1 if SYSTEM__RANGE_CONFIG if 1 range is 2bits fractional
*(format 11.2) else no fractional
*/
pRangingMeasurementData->MeasurementTimeUsec = 0;
SignalRate = VL53L0X_FIXPOINT97TOFIXPOINT1616(
VL53L0X_MAKEUINT16(localBuffer[7], localBuffer[6]));
/* peak_signal_count_rate_rtn_mcps */
pRangingMeasurementData->SignalRateRtnMegaCps = SignalRate;
AmbientRate = VL53L0X_MAKEUINT16(localBuffer[9], localBuffer[8]);
pRangingMeasurementData->AmbientRateRtnMegaCps =
VL53L0X_FIXPOINT97TOFIXPOINT1616(AmbientRate);
EffectiveSpadRtnCount = VL53L0X_MAKEUINT16(localBuffer[3],
localBuffer[2]);
/* EffectiveSpadRtnCount is 8.8 format */
pRangingMeasurementData->EffectiveSpadRtnCount =
EffectiveSpadRtnCount;
DeviceRangeStatus = localBuffer[0];
/* Get Linearity Corrective Gain */
LinearityCorrectiveGain = PALDevDataGet(Dev,
LinearityCorrectiveGain);
/* Get ranging configuration */
RangeFractionalEnable = PALDevDataGet(Dev,
RangeFractionalEnable);
if (LinearityCorrectiveGain != 1000) {
tmpuint16 = (uint16_t)((LinearityCorrectiveGain
* tmpuint16 + 500) / 1000);
/* Implement Xtalk */
VL53L0X_GETPARAMETERFIELD(Dev,
XTalkCompensationRateMegaCps,
XTalkCompensationRateMegaCps);
VL53L0X_GETPARAMETERFIELD(Dev, XTalkCompensationEnable,
XTalkCompensationEnable);
if (XTalkCompensationEnable) {
if ((SignalRate
- ((XTalkCompensationRateMegaCps
* EffectiveSpadRtnCount) >> 8))
<= 0) {
if (RangeFractionalEnable)
XtalkRangeMilliMeter = 8888;
else
XtalkRangeMilliMeter = 8888
<< 2;
} else {
XtalkRangeMilliMeter =
(tmpuint16 * SignalRate)
/ (SignalRate
- ((XTalkCompensationRateMegaCps
* EffectiveSpadRtnCount)
>> 8));
}
tmpuint16 = XtalkRangeMilliMeter;
}
}
if (RangeFractionalEnable) {
pRangingMeasurementData->RangeMilliMeter =
(uint16_t)((tmpuint16) >> 2);
pRangingMeasurementData->RangeFractionalPart =
(uint8_t)((tmpuint16 & 0x03) << 6);
} else {
pRangingMeasurementData->RangeMilliMeter = tmpuint16;
pRangingMeasurementData->RangeFractionalPart = 0;
}
/*
* For a standard definition of RangeStatus, this should
* return 0 in case of good result after a ranging
* The range status depends on the device so call a device
* specific function to obtain the right Status.
*/
Status |= VL53L0X_get_pal_range_status(Dev, DeviceRangeStatus,
SignalRate, EffectiveSpadRtnCount,
pRangingMeasurementData, &PalRangeStatus);
if (Status == VL53L0X_ERROR_NONE)
pRangingMeasurementData->RangeStatus = PalRangeStatus;
}
if (Status == VL53L0X_ERROR_NONE) {
/* Copy last read data into Dev buffer */
LastRangeDataBuffer = PALDevDataGet(Dev, LastRangeMeasure);
LastRangeDataBuffer.RangeMilliMeter =
pRangingMeasurementData->RangeMilliMeter;
LastRangeDataBuffer.RangeFractionalPart =
pRangingMeasurementData->RangeFractionalPart;
LastRangeDataBuffer.RangeDMaxMilliMeter =
pRangingMeasurementData->RangeDMaxMilliMeter;
LastRangeDataBuffer.MeasurementTimeUsec =
pRangingMeasurementData->MeasurementTimeUsec;
LastRangeDataBuffer.SignalRateRtnMegaCps =
pRangingMeasurementData->SignalRateRtnMegaCps;
LastRangeDataBuffer.AmbientRateRtnMegaCps =
pRangingMeasurementData->AmbientRateRtnMegaCps;
LastRangeDataBuffer.EffectiveSpadRtnCount =
pRangingMeasurementData->EffectiveSpadRtnCount;
LastRangeDataBuffer.RangeStatus =
pRangingMeasurementData->RangeStatus;
PALDevDataSet(Dev, LastRangeMeasure, LastRangeDataBuffer);
}
LOG_FUNCTION_END(Status);
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_PerformSingleRangingMeasurement(VL53L0X_DEV Dev,
VL53L0X_RangingMeasurementData_t *pRangingMeasurementData)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
LOG_FUNCTION_START("");
/* This function will do a complete single ranging
* Here we fix the mode! */
Status = VL53L0X_SetDeviceMode(Dev, VL53L0X_DEVICEMODE_SINGLE_RANGING);
if (Status == VL53L0X_ERROR_NONE)
Status = VL53L0X_PerformSingleMeasurement(Dev);
if (Status == VL53L0X_ERROR_NONE)
Status = VL53L0X_GetRangingMeasurementData(Dev,
pRangingMeasurementData);
if (Status == VL53L0X_ERROR_NONE)
Status = VL53L0X_ClearInterruptMask(Dev, 0);
LOG_FUNCTION_END(Status);
return Status;
}
VL53L0X_Error VL53L0X::perform_ref_signal_measurement(VL53L0X_DEV Dev,
uint16_t *refSignalRate)
{
VL53L0X_Error status = VL53L0X_ERROR_NONE;
VL53L0X_RangingMeasurementData_t rangingMeasurementData;
uint8_t SequenceConfig = 0;
/* store the value of the sequence config,
* this will be reset before the end of the function
*/
SequenceConfig = PALDevDataGet(Dev, SequenceConfig);
/*
* This function performs a reference signal rate measurement.
*/
if (status == VL53L0X_ERROR_NONE)
status = VL53L0X_WrByte(Dev,
VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG, 0xC0);
if (status == VL53L0X_ERROR_NONE)
status = VL53L0X_PerformSingleRangingMeasurement(Dev,
&rangingMeasurementData);
if (status == VL53L0X_ERROR_NONE)
status = VL53L0X_WrByte(Dev, 0xFF, 0x01);
if (status == VL53L0X_ERROR_NONE)
status = VL53L0X_RdWord(Dev,
VL53L0X_REG_RESULT_PEAK_SIGNAL_RATE_REF,
refSignalRate);
if (status == VL53L0X_ERROR_NONE)
status = VL53L0X_WrByte(Dev, 0xFF, 0x00);
if (status == VL53L0X_ERROR_NONE) {
/* restore the previous Sequence Config */
status = VL53L0X_WrByte(Dev, VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG,
SequenceConfig);
if (status == VL53L0X_ERROR_NONE)
PALDevDataSet(Dev, SequenceConfig, SequenceConfig);
}
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_perform_ref_spad_management(VL53L0X_DEV Dev,
uint32_t *refSpadCount,
uint8_t *isApertureSpads)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
uint8_t lastSpadArray[6];
uint8_t startSelect = 0xB4;
uint32_t minimumSpadCount = 3;
uint32_t maxSpadCount = 44;
uint32_t currentSpadIndex = 0;
uint32_t lastSpadIndex = 0;
int32_t nextGoodSpad = 0;
uint16_t targetRefRate = 0x0A00; /* 20 MCPS in 9:7 format */
uint16_t peakSignalRateRef;
uint32_t needAptSpads = 0;
uint32_t index = 0;
uint32_t spadArraySize = 6;
uint32_t signalRateDiff = 0;
uint32_t lastSignalRateDiff = 0;
uint8_t complete = 0;
uint8_t VhvSettings = 0;
uint8_t PhaseCal = 0;
uint32_t refSpadCount_int = 0;
uint8_t isApertureSpads_int = 0;
/*
* The reference SPAD initialization procedure determines the minimum
* amount of reference spads to be enables to achieve a target reference
* signal rate and should be performed once during initialization.
*
* Either aperture or non-aperture spads are applied but never both.
* Firstly non-aperture spads are set, begining with 5 spads, and
* increased one spad at a time until the closest measurement to the
* target rate is achieved.
*
* If the target rate is exceeded when 5 non-aperture spads are enabled,
* initialization is performed instead with aperture spads.
*
* When setting spads, a 'Good Spad Map' is applied.
*
* This procedure operates within a SPAD window of interest of a maximum
* 44 spads.
* The start point is currently fixed to 180, which lies towards the end
* of the non-aperture quadrant and runs in to the adjacent aperture
* quadrant.
*/
targetRefRate = PALDevDataGet(Dev, targetRefRate);
/*
* Initialize Spad arrays.
* Currently the good spad map is initialised to 'All good'.
* This is a short term implementation. The good spad map will be
* provided as an input.
* Note that there are 6 bytes. Only the first 44 bits will be used to
* represent spads.
*/
for (index = 0; index < spadArraySize; index++)
Dev->Data.SpadData.RefSpadEnables[index] = 0;
Status = VL53L0X_WrByte(Dev, 0xFF, 0x01);
if (Status == VL53L0X_ERROR_NONE)
Status = VL53L0X_WrByte(Dev,
VL53L0X_REG_DYNAMIC_SPAD_REF_EN_START_OFFSET, 0x00);
if (Status == VL53L0X_ERROR_NONE)
Status = VL53L0X_WrByte(Dev,
VL53L0X_REG_DYNAMIC_SPAD_NUM_REQUESTED_REF_SPAD, 0x2C);
if (Status == VL53L0X_ERROR_NONE)
Status = VL53L0X_WrByte(Dev, 0xFF, 0x00);
if (Status == VL53L0X_ERROR_NONE)
Status = VL53L0X_WrByte(Dev,
VL53L0X_REG_GLOBAL_CONFIG_REF_EN_START_SELECT,
startSelect);
if (Status == VL53L0X_ERROR_NONE)
Status = VL53L0X_WrByte(Dev,
VL53L0X_REG_POWER_MANAGEMENT_GO1_POWER_FORCE, 0);
/* Perform ref calibration */
if (Status == VL53L0X_ERROR_NONE)
Status = VL53L0X_perform_ref_calibration(Dev, &VhvSettings,
&PhaseCal, 0);
if (Status == VL53L0X_ERROR_NONE) {
/* Enable Minimum NON-APERTURE Spads */
currentSpadIndex = 0;
lastSpadIndex = currentSpadIndex;
needAptSpads = 0;
Status = enable_ref_spads(Dev,
needAptSpads,
Dev->Data.SpadData.RefGoodSpadMap,
Dev->Data.SpadData.RefSpadEnables,
spadArraySize,
startSelect,
currentSpadIndex,
minimumSpadCount,
&lastSpadIndex);
}
if (Status == VL53L0X_ERROR_NONE) {
currentSpadIndex = lastSpadIndex;
Status = perform_ref_signal_measurement(Dev,
&peakSignalRateRef);
if ((Status == VL53L0X_ERROR_NONE) &&
(peakSignalRateRef > targetRefRate)) {
/* Signal rate measurement too high,
* switch to APERTURE SPADs */
for (index = 0; index < spadArraySize; index++)
Dev->Data.SpadData.RefSpadEnables[index] = 0;
/* Increment to the first APERTURE spad */
while ((is_aperture(startSelect + currentSpadIndex)
== 0) && (currentSpadIndex < maxSpadCount)) {
currentSpadIndex++;
}
needAptSpads = 1;
Status = enable_ref_spads(Dev,
needAptSpads,
Dev->Data.SpadData.RefGoodSpadMap,
Dev->Data.SpadData.RefSpadEnables,
spadArraySize,
startSelect,
currentSpadIndex,
minimumSpadCount,
&lastSpadIndex);
if (Status == VL53L0X_ERROR_NONE) {
currentSpadIndex = lastSpadIndex;
Status = perform_ref_signal_measurement(Dev,
&peakSignalRateRef);
if ((Status == VL53L0X_ERROR_NONE) &&
(peakSignalRateRef > targetRefRate)) {
/* Signal rate still too high after
* setting the minimum number of
* APERTURE spads. Can do no more
* therefore set the min number of
* aperture spads as the result.
*/
isApertureSpads_int = 1;
refSpadCount_int = minimumSpadCount;
}
}
} else {
needAptSpads = 0;
}
}
if ((Status == VL53L0X_ERROR_NONE) &&
(peakSignalRateRef < targetRefRate)) {
/* At this point, the minimum number of either aperture
* or non-aperture spads have been set. Proceed to add
* spads and perform measurements until the target
* reference is reached.
*/
isApertureSpads_int = needAptSpads;
refSpadCount_int = minimumSpadCount;
memcpy(lastSpadArray, Dev->Data.SpadData.RefSpadEnables,
spadArraySize);
lastSignalRateDiff = abs(peakSignalRateRef -
targetRefRate);
complete = 0;
while (!complete) {
get_next_good_spad(
Dev->Data.SpadData.RefGoodSpadMap,
spadArraySize, currentSpadIndex,
&nextGoodSpad);
if (nextGoodSpad == -1) {
Status = VL53L0X_ERROR_REF_SPAD_INIT;
break;
}
/* Cannot combine Aperture and Non-Aperture spads, so
* ensure the current spad is of the correct type.
*/
if (is_aperture((uint32_t)startSelect + nextGoodSpad) !=
needAptSpads) {
/* At this point we have enabled the maximum
* number of Aperture spads.
*/
complete = 1;
break;
}
(refSpadCount_int)++;
currentSpadIndex = nextGoodSpad;
Status = enable_spad_bit(
Dev->Data.SpadData.RefSpadEnables,
spadArraySize, currentSpadIndex);
if (Status == VL53L0X_ERROR_NONE) {
currentSpadIndex++;
/* Proceed to apply the additional spad and
* perform measurement. */
Status = set_ref_spad_map(Dev,
Dev->Data.SpadData.RefSpadEnables);
}
if (Status != VL53L0X_ERROR_NONE)
break;
Status = perform_ref_signal_measurement(Dev,
&peakSignalRateRef);
if (Status != VL53L0X_ERROR_NONE)
break;
signalRateDiff = abs(peakSignalRateRef - targetRefRate);
if (peakSignalRateRef > targetRefRate) {
/* Select the spad map that provides the
* measurement closest to the target rate,
* either above or below it.
*/
if (signalRateDiff > lastSignalRateDiff) {
/* Previous spad map produced a closer
* measurement, so choose this. */
Status = set_ref_spad_map(Dev,
lastSpadArray);
memcpy(
Dev->Data.SpadData.RefSpadEnables,
lastSpadArray, spadArraySize);
(refSpadCount_int)--;
}
complete = 1;
} else {
/* Continue to add spads */
lastSignalRateDiff = signalRateDiff;
memcpy(lastSpadArray,
Dev->Data.SpadData.RefSpadEnables,
spadArraySize);
}
} /* while */
}
if (Status == VL53L0X_ERROR_NONE) {
*refSpadCount = refSpadCount_int;
*isApertureSpads = isApertureSpads_int;
VL53L0X_SETDEVICESPECIFICPARAMETER(Dev, RefSpadsInitialised, 1);
VL53L0X_SETDEVICESPECIFICPARAMETER(Dev,
ReferenceSpadCount, (uint8_t)(*refSpadCount));
VL53L0X_SETDEVICESPECIFICPARAMETER(Dev,
ReferenceSpadType, *isApertureSpads);
}
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_set_reference_spads(VL53L0X_DEV Dev,
uint32_t count, uint8_t isApertureSpads)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
uint32_t currentSpadIndex = 0;
uint8_t startSelect = 0xB4;
uint32_t spadArraySize = 6;
uint32_t maxSpadCount = 44;
uint32_t lastSpadIndex;
uint32_t index;
/*
* This function applies a requested number of reference spads, either
* aperture or
* non-aperture, as requested.
* The good spad map will be applied.
*/
Status = VL53L0X_WrByte(Dev, 0xFF, 0x01);
if (Status == VL53L0X_ERROR_NONE)
Status = VL53L0X_WrByte(Dev,
VL53L0X_REG_DYNAMIC_SPAD_REF_EN_START_OFFSET, 0x00);
if (Status == VL53L0X_ERROR_NONE)
Status = VL53L0X_WrByte(Dev,
VL53L0X_REG_DYNAMIC_SPAD_NUM_REQUESTED_REF_SPAD, 0x2C);
if (Status == VL53L0X_ERROR_NONE)
Status = VL53L0X_WrByte(Dev, 0xFF, 0x00);
if (Status == VL53L0X_ERROR_NONE)
Status = VL53L0X_WrByte(Dev,
VL53L0X_REG_GLOBAL_CONFIG_REF_EN_START_SELECT,
startSelect);
for (index = 0; index < spadArraySize; index++)
Dev->Data.SpadData.RefSpadEnables[index] = 0;
if (isApertureSpads) {
/* Increment to the first APERTURE spad */
while ((is_aperture(startSelect + currentSpadIndex) == 0) &&
(currentSpadIndex < maxSpadCount)) {
currentSpadIndex++;
}
}
Status = enable_ref_spads(Dev,
isApertureSpads,
Dev->Data.SpadData.RefGoodSpadMap,
Dev->Data.SpadData.RefSpadEnables,
spadArraySize,
startSelect,
currentSpadIndex,
count,
&lastSpadIndex);
if (Status == VL53L0X_ERROR_NONE) {
VL53L0X_SETDEVICESPECIFICPARAMETER(Dev, RefSpadsInitialised, 1);
VL53L0X_SETDEVICESPECIFICPARAMETER(Dev,
ReferenceSpadCount, (uint8_t)(count));
VL53L0X_SETDEVICESPECIFICPARAMETER(Dev,
ReferenceSpadType, isApertureSpads);
}
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_WaitDeviceBooted(VL53L0X_DEV Dev)
{
VL53L0X_Error Status = VL53L0X_ERROR_NOT_IMPLEMENTED;
LOG_FUNCTION_START("");
/* not implemented on VL53L0X */
LOG_FUNCTION_END(Status);
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_PerformRefCalibration(VL53L0X_DEV Dev, uint8_t *pVhvSettings,
uint8_t *pPhaseCal)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
LOG_FUNCTION_START("");
Status = VL53L0X_perform_ref_calibration(Dev, pVhvSettings,
pPhaseCal, 1);
LOG_FUNCTION_END(Status);
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_PerformRefSpadManagement(VL53L0X_DEV Dev,
uint32_t *refSpadCount, uint8_t *isApertureSpads)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
LOG_FUNCTION_START("");
Status = VL53L0X_perform_ref_spad_management(Dev, refSpadCount,
isApertureSpads);
LOG_FUNCTION_END(Status);
return Status;
}
/* Group PAL Init Functions */
VL53L0X_Error VL53L0X::VL53L0X_SetDeviceAddress(VL53L0X_DEV Dev, uint8_t DeviceAddress)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
LOG_FUNCTION_START("");
Status = VL53L0X_WrByte(Dev, VL53L0X_REG_I2C_SLAVE_DEVICE_ADDRESS,
DeviceAddress / 2);
LOG_FUNCTION_END(Status);
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_SetGpioConfig(VL53L0X_DEV Dev, uint8_t Pin,
VL53L0X_DeviceModes DeviceMode, VL53L0X_GpioFunctionality Functionality,
VL53L0X_InterruptPolarity Polarity)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
uint8_t data;
LOG_FUNCTION_START("");
if (Pin != 0) {
Status = VL53L0X_ERROR_GPIO_NOT_EXISTING;
} else if (DeviceMode == VL53L0X_DEVICEMODE_GPIO_DRIVE) {
if (Polarity == VL53L0X_INTERRUPTPOLARITY_LOW)
data = 0x10;
else
data = 1;
Status = VL53L0X_WrByte(Dev,
VL53L0X_REG_GPIO_HV_MUX_ACTIVE_HIGH, data);
} else if (DeviceMode == VL53L0X_DEVICEMODE_GPIO_OSC) {
Status |= VL53L0X_WrByte(Dev, 0xff, 0x01);
Status |= VL53L0X_WrByte(Dev, 0x00, 0x00);
Status |= VL53L0X_WrByte(Dev, 0xff, 0x00);
Status |= VL53L0X_WrByte(Dev, 0x80, 0x01);
Status |= VL53L0X_WrByte(Dev, 0x85, 0x02);
Status |= VL53L0X_WrByte(Dev, 0xff, 0x04);
Status |= VL53L0X_WrByte(Dev, 0xcd, 0x00);
Status |= VL53L0X_WrByte(Dev, 0xcc, 0x11);
Status |= VL53L0X_WrByte(Dev, 0xff, 0x07);
Status |= VL53L0X_WrByte(Dev, 0xbe, 0x00);
Status |= VL53L0X_WrByte(Dev, 0xff, 0x06);
Status |= VL53L0X_WrByte(Dev, 0xcc, 0x09);
Status |= VL53L0X_WrByte(Dev, 0xff, 0x00);
Status |= VL53L0X_WrByte(Dev, 0xff, 0x01);
Status |= VL53L0X_WrByte(Dev, 0x00, 0x00);
} else {
if (Status == VL53L0X_ERROR_NONE) {
switch (Functionality) {
case VL53L0X_GPIOFUNCTIONALITY_OFF:
data = 0x00;
break;
case VL53L0X_GPIOFUNCTIONALITY_THRESHOLD_CROSSED_LOW:
data = 0x01;
break;
case VL53L0X_GPIOFUNCTIONALITY_THRESHOLD_CROSSED_HIGH:
data = 0x02;
break;
case VL53L0X_GPIOFUNCTIONALITY_THRESHOLD_CROSSED_OUT:
data = 0x03;
break;
case VL53L0X_GPIOFUNCTIONALITY_NEW_MEASURE_READY:
data = 0x04;
break;
default:
Status =
VL53L0X_ERROR_GPIO_FUNCTIONALITY_NOT_SUPPORTED;
}
}
if (Status == VL53L0X_ERROR_NONE)
Status = VL53L0X_WrByte(Dev,
VL53L0X_REG_SYSTEM_INTERRUPT_CONFIG_GPIO, data);
if (Status == VL53L0X_ERROR_NONE) {
if (Polarity == VL53L0X_INTERRUPTPOLARITY_LOW)
data = 0;
else
data = (uint8_t)(1 << 4);
Status = VL53L0X_UpdateByte(Dev,
VL53L0X_REG_GPIO_HV_MUX_ACTIVE_HIGH, 0xEF, data);
}
if (Status == VL53L0X_ERROR_NONE)
VL53L0X_SETDEVICESPECIFICPARAMETER(Dev,
Pin0GpioFunctionality, Functionality);
if (Status == VL53L0X_ERROR_NONE)
Status = VL53L0X_ClearInterruptMask(Dev, 0);
}
LOG_FUNCTION_END(Status);
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_GetFractionEnable(VL53L0X_DEV Dev, uint8_t *pEnabled)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
LOG_FUNCTION_START("");
Status = VL53L0X_RdByte(Dev, VL53L0X_REG_SYSTEM_RANGE_CONFIG, pEnabled);
if (Status == VL53L0X_ERROR_NONE)
*pEnabled = (*pEnabled & 1);
LOG_FUNCTION_END(Status);
return Status;
}
uint16_t VL53L0X::VL53L0X_encode_timeout(uint32_t timeout_macro_clks)
{
/*!
* Encode timeout in macro periods in (LSByte * 2^MSByte) + 1 format
*/
uint16_t encoded_timeout = 0;
uint32_t ls_byte = 0;
uint16_t ms_byte = 0;
if (timeout_macro_clks > 0) {
ls_byte = timeout_macro_clks - 1;
while ((ls_byte & 0xFFFFFF00) > 0) {
ls_byte = ls_byte >> 1;
ms_byte++;
}
encoded_timeout = (ms_byte << 8)
+ (uint16_t) (ls_byte & 0x000000FF);
}
return encoded_timeout;
}
VL53L0X_Error VL53L0X::set_sequence_step_timeout(VL53L0X_DEV Dev,
VL53L0X_SequenceStepId SequenceStepId,
uint32_t TimeOutMicroSecs)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
uint8_t CurrentVCSELPulsePeriodPClk;
uint8_t MsrcEncodedTimeOut;
uint16_t PreRangeEncodedTimeOut;
uint16_t PreRangeTimeOutMClks;
uint16_t MsrcRangeTimeOutMClks;
uint32_t FinalRangeTimeOutMClks;
uint16_t FinalRangeEncodedTimeOut;
VL53L0X_SchedulerSequenceSteps_t SchedulerSequenceSteps;
if ((SequenceStepId == VL53L0X_SEQUENCESTEP_TCC) ||
(SequenceStepId == VL53L0X_SEQUENCESTEP_DSS) ||
(SequenceStepId == VL53L0X_SEQUENCESTEP_MSRC)) {
Status = VL53L0X_GetVcselPulsePeriod(Dev,
VL53L0X_VCSEL_PERIOD_PRE_RANGE,
&CurrentVCSELPulsePeriodPClk);
if (Status == VL53L0X_ERROR_NONE) {
MsrcRangeTimeOutMClks = VL53L0X_calc_timeout_mclks(Dev,
TimeOutMicroSecs,
(uint8_t)CurrentVCSELPulsePeriodPClk);
if (MsrcRangeTimeOutMClks > 256)
MsrcEncodedTimeOut = 255;
else
MsrcEncodedTimeOut =
(uint8_t)MsrcRangeTimeOutMClks - 1;
VL53L0X_SETDEVICESPECIFICPARAMETER(Dev,
LastEncodedTimeout,
MsrcEncodedTimeOut);
}
if (Status == VL53L0X_ERROR_NONE) {
Status = VL53L0X_WrByte(Dev,
VL53L0X_REG_MSRC_CONFIG_TIMEOUT_MACROP,
MsrcEncodedTimeOut);
}
} else {
if (SequenceStepId == VL53L0X_SEQUENCESTEP_PRE_RANGE) {
if (Status == VL53L0X_ERROR_NONE) {
Status = VL53L0X_GetVcselPulsePeriod(Dev,
VL53L0X_VCSEL_PERIOD_PRE_RANGE,
&CurrentVCSELPulsePeriodPClk);
PreRangeTimeOutMClks =
VL53L0X_calc_timeout_mclks(Dev,
TimeOutMicroSecs,
(uint8_t)CurrentVCSELPulsePeriodPClk);
PreRangeEncodedTimeOut = VL53L0X_encode_timeout(
PreRangeTimeOutMClks);
VL53L0X_SETDEVICESPECIFICPARAMETER(Dev,
LastEncodedTimeout,
PreRangeEncodedTimeOut);
}
if (Status == VL53L0X_ERROR_NONE) {
Status = VL53L0X_WrWord(Dev,
VL53L0X_REG_PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI,
PreRangeEncodedTimeOut);
}
if (Status == VL53L0X_ERROR_NONE) {
VL53L0X_SETDEVICESPECIFICPARAMETER(
Dev,
PreRangeTimeoutMicroSecs,
TimeOutMicroSecs);
}
} else if (SequenceStepId == VL53L0X_SEQUENCESTEP_FINAL_RANGE) {
/* For the final range timeout, the pre-range timeout
* must be added. To do this both final and pre-range
* timeouts must be expressed in macro periods MClks
* because they have different vcsel periods.
*/
VL53L0X_GetSequenceStepEnables(Dev,
&SchedulerSequenceSteps);
PreRangeTimeOutMClks = 0;
if (SchedulerSequenceSteps.PreRangeOn) {
/* Retrieve PRE-RANGE VCSEL Period */
Status = VL53L0X_GetVcselPulsePeriod(Dev,
VL53L0X_VCSEL_PERIOD_PRE_RANGE,
&CurrentVCSELPulsePeriodPClk);
/* Retrieve PRE-RANGE Timeout in Macro periods
* (MCLKS) */
if (Status == VL53L0X_ERROR_NONE) {
Status = VL53L0X_RdWord(Dev, 0x51,
&PreRangeEncodedTimeOut);
PreRangeTimeOutMClks =
VL53L0X_decode_timeout(
PreRangeEncodedTimeOut);
}
}
/* Calculate FINAL RANGE Timeout in Macro Periods
* (MCLKS) and add PRE-RANGE value
*/
if (Status == VL53L0X_ERROR_NONE) {
Status = VL53L0X_GetVcselPulsePeriod(Dev,
VL53L0X_VCSEL_PERIOD_FINAL_RANGE,
&CurrentVCSELPulsePeriodPClk);
}
if (Status == VL53L0X_ERROR_NONE) {
FinalRangeTimeOutMClks =
VL53L0X_calc_timeout_mclks(Dev,
TimeOutMicroSecs,
(uint8_t) CurrentVCSELPulsePeriodPClk);
FinalRangeTimeOutMClks += PreRangeTimeOutMClks;
FinalRangeEncodedTimeOut =
VL53L0X_encode_timeout(FinalRangeTimeOutMClks);
if (Status == VL53L0X_ERROR_NONE) {
Status = VL53L0X_WrWord(Dev, 0x71,
FinalRangeEncodedTimeOut);
}
if (Status == VL53L0X_ERROR_NONE) {
VL53L0X_SETDEVICESPECIFICPARAMETER(
Dev,
FinalRangeTimeoutMicroSecs,
TimeOutMicroSecs);
}
}
} else
Status = VL53L0X_ERROR_INVALID_PARAMS;
}
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_set_measurement_timing_budget_micro_seconds(VL53L0X_DEV Dev,
uint32_t MeasurementTimingBudgetMicroSeconds)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
uint32_t FinalRangeTimingBudgetMicroSeconds;
VL53L0X_SchedulerSequenceSteps_t SchedulerSequenceSteps;
uint32_t MsrcDccTccTimeoutMicroSeconds = 2000;
uint32_t StartOverheadMicroSeconds = 1910;
uint32_t EndOverheadMicroSeconds = 960;
uint32_t MsrcOverheadMicroSeconds = 660;
uint32_t TccOverheadMicroSeconds = 590;
uint32_t DssOverheadMicroSeconds = 690;
uint32_t PreRangeOverheadMicroSeconds = 660;
uint32_t FinalRangeOverheadMicroSeconds = 550;
uint32_t PreRangeTimeoutMicroSeconds = 0;
uint32_t cMinTimingBudgetMicroSeconds = 20000;
uint32_t SubTimeout = 0;
LOG_FUNCTION_START("");
if (MeasurementTimingBudgetMicroSeconds
< cMinTimingBudgetMicroSeconds) {
Status = VL53L0X_ERROR_INVALID_PARAMS;
return Status;
}
FinalRangeTimingBudgetMicroSeconds =
MeasurementTimingBudgetMicroSeconds -
(StartOverheadMicroSeconds + EndOverheadMicroSeconds);
Status = VL53L0X_GetSequenceStepEnables(Dev, &SchedulerSequenceSteps);
if (Status == VL53L0X_ERROR_NONE &&
(SchedulerSequenceSteps.TccOn ||
SchedulerSequenceSteps.MsrcOn ||
SchedulerSequenceSteps.DssOn)) {
/* TCC, MSRC and DSS all share the same timeout */
Status = get_sequence_step_timeout(Dev,
VL53L0X_SEQUENCESTEP_MSRC,
&MsrcDccTccTimeoutMicroSeconds);
/* Subtract the TCC, MSRC and DSS timeouts if they are
* enabled. */
if (Status != VL53L0X_ERROR_NONE)
return Status;
/* TCC */
if (SchedulerSequenceSteps.TccOn) {
SubTimeout = MsrcDccTccTimeoutMicroSeconds
+ TccOverheadMicroSeconds;
if (SubTimeout <
FinalRangeTimingBudgetMicroSeconds) {
FinalRangeTimingBudgetMicroSeconds -=
SubTimeout;
} else {
/* Requested timeout too big. */
Status = VL53L0X_ERROR_INVALID_PARAMS;
}
}
if (Status != VL53L0X_ERROR_NONE) {
LOG_FUNCTION_END(Status);
return Status;
}
/* DSS */
if (SchedulerSequenceSteps.DssOn) {
SubTimeout = 2 * (MsrcDccTccTimeoutMicroSeconds +
DssOverheadMicroSeconds);
if (SubTimeout < FinalRangeTimingBudgetMicroSeconds) {
FinalRangeTimingBudgetMicroSeconds
-= SubTimeout;
} else {
/* Requested timeout too big. */
Status = VL53L0X_ERROR_INVALID_PARAMS;
}
} else if (SchedulerSequenceSteps.MsrcOn) {
/* MSRC */
SubTimeout = MsrcDccTccTimeoutMicroSeconds +
MsrcOverheadMicroSeconds;
if (SubTimeout < FinalRangeTimingBudgetMicroSeconds) {
FinalRangeTimingBudgetMicroSeconds
-= SubTimeout;
} else {
/* Requested timeout too big. */
Status = VL53L0X_ERROR_INVALID_PARAMS;
}
}
}
if (Status != VL53L0X_ERROR_NONE) {
LOG_FUNCTION_END(Status);
return Status;
}
if (SchedulerSequenceSteps.PreRangeOn) {
/* Subtract the Pre-range timeout if enabled. */
Status = get_sequence_step_timeout(Dev,
VL53L0X_SEQUENCESTEP_PRE_RANGE,
&PreRangeTimeoutMicroSeconds);
SubTimeout = PreRangeTimeoutMicroSeconds +
PreRangeOverheadMicroSeconds;
if (SubTimeout < FinalRangeTimingBudgetMicroSeconds) {
FinalRangeTimingBudgetMicroSeconds -= SubTimeout;
} else {
/* Requested timeout too big. */
Status = VL53L0X_ERROR_INVALID_PARAMS;
}
}
if (Status == VL53L0X_ERROR_NONE &&
SchedulerSequenceSteps.FinalRangeOn) {
FinalRangeTimingBudgetMicroSeconds -=
FinalRangeOverheadMicroSeconds;
/* Final Range Timeout
* Note that the final range timeout is determined by the timing
* budget and the sum of all other timeouts within the sequence.
* If there is no room for the final range timeout, then an error
* will be set. Otherwise the remaining time will be applied to
* the final range.
*/
Status = set_sequence_step_timeout(Dev,
VL53L0X_SEQUENCESTEP_FINAL_RANGE,
FinalRangeTimingBudgetMicroSeconds);
VL53L0X_SETPARAMETERFIELD(Dev,
MeasurementTimingBudgetMicroSeconds,
MeasurementTimingBudgetMicroSeconds);
}
LOG_FUNCTION_END(Status);
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_SetMeasurementTimingBudgetMicroSeconds(VL53L0X_DEV Dev,
uint32_t MeasurementTimingBudgetMicroSeconds)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
LOG_FUNCTION_START("");
Status = VL53L0X_set_measurement_timing_budget_micro_seconds(Dev,
MeasurementTimingBudgetMicroSeconds);
LOG_FUNCTION_END(Status);
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_SetSequenceStepEnable(VL53L0X_DEV Dev,
VL53L0X_SequenceStepId SequenceStepId, uint8_t SequenceStepEnabled)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
uint8_t SequenceConfig = 0;
uint8_t SequenceConfigNew = 0;
uint32_t MeasurementTimingBudgetMicroSeconds;
LOG_FUNCTION_START("");
Status = VL53L0X_RdByte(Dev, VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG,
&SequenceConfig);
SequenceConfigNew = SequenceConfig;
if (Status == VL53L0X_ERROR_NONE) {
if (SequenceStepEnabled == 1) {
/* Enable requested sequence step
*/
switch (SequenceStepId) {
case VL53L0X_SEQUENCESTEP_TCC:
SequenceConfigNew |= 0x10;
break;
case VL53L0X_SEQUENCESTEP_DSS:
SequenceConfigNew |= 0x28;
break;
case VL53L0X_SEQUENCESTEP_MSRC:
SequenceConfigNew |= 0x04;
break;
case VL53L0X_SEQUENCESTEP_PRE_RANGE:
SequenceConfigNew |= 0x40;
break;
case VL53L0X_SEQUENCESTEP_FINAL_RANGE:
SequenceConfigNew |= 0x80;
break;
default:
Status = VL53L0X_ERROR_INVALID_PARAMS;
}
} else {
/* Disable requested sequence step
*/
switch (SequenceStepId) {
case VL53L0X_SEQUENCESTEP_TCC:
SequenceConfigNew &= 0xef;
break;
case VL53L0X_SEQUENCESTEP_DSS:
SequenceConfigNew &= 0xd7;
break;
case VL53L0X_SEQUENCESTEP_MSRC:
SequenceConfigNew &= 0xfb;
break;
case VL53L0X_SEQUENCESTEP_PRE_RANGE:
SequenceConfigNew &= 0xbf;
break;
case VL53L0X_SEQUENCESTEP_FINAL_RANGE:
SequenceConfigNew &= 0x7f;
break;
default:
Status = VL53L0X_ERROR_INVALID_PARAMS;
}
}
}
if (SequenceConfigNew != SequenceConfig) {
/* Apply New Setting */
if (Status == VL53L0X_ERROR_NONE) {
Status = VL53L0X_WrByte(Dev,
VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG, SequenceConfigNew);
}
if (Status == VL53L0X_ERROR_NONE)
PALDevDataSet(Dev, SequenceConfig, SequenceConfigNew);
/* Recalculate timing budget */
if (Status == VL53L0X_ERROR_NONE) {
VL53L0X_GETPARAMETERFIELD(Dev,
MeasurementTimingBudgetMicroSeconds,
MeasurementTimingBudgetMicroSeconds);
VL53L0X_SetMeasurementTimingBudgetMicroSeconds(Dev,
MeasurementTimingBudgetMicroSeconds);
}
}
LOG_FUNCTION_END(Status);
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_SetLimitCheckEnable(VL53L0X_DEV Dev, uint16_t LimitCheckId,
uint8_t LimitCheckEnable)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
FixPoint1616_t TempFix1616 = 0;
uint8_t LimitCheckEnableInt = 0;
uint8_t LimitCheckDisable = 0;
uint8_t Temp8;
LOG_FUNCTION_START("");
if (LimitCheckId >= VL53L0X_CHECKENABLE_NUMBER_OF_CHECKS) {
Status = VL53L0X_ERROR_INVALID_PARAMS;
} else {
if (LimitCheckEnable == 0) {
TempFix1616 = 0;
LimitCheckEnableInt = 0;
LimitCheckDisable = 1;
} else {
VL53L0X_GETARRAYPARAMETERFIELD(Dev, LimitChecksValue,
LimitCheckId, TempFix1616);
LimitCheckDisable = 0;
/* this to be sure to have either 0 or 1 */
LimitCheckEnableInt = 1;
}
switch (LimitCheckId) {
case VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE:
/* internal computation: */
VL53L0X_SETARRAYPARAMETERFIELD(Dev, LimitChecksEnable,
VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE,
LimitCheckEnableInt);
break;
case VL53L0X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE:
Status = VL53L0X_WrWord(Dev,
VL53L0X_REG_FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT,
VL53L0X_FIXPOINT1616TOFIXPOINT97(TempFix1616));
break;
case VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP:
/* internal computation: */
VL53L0X_SETARRAYPARAMETERFIELD(Dev, LimitChecksEnable,
VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP,
LimitCheckEnableInt);
break;
case VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD:
/* internal computation: */
VL53L0X_SETARRAYPARAMETERFIELD(Dev, LimitChecksEnable,
VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD,
LimitCheckEnableInt);
break;
case VL53L0X_CHECKENABLE_SIGNAL_RATE_MSRC:
Temp8 = (uint8_t)(LimitCheckDisable << 1);
Status = VL53L0X_UpdateByte(Dev,
VL53L0X_REG_MSRC_CONFIG_CONTROL,
0xFE, Temp8);
break;
case VL53L0X_CHECKENABLE_SIGNAL_RATE_PRE_RANGE:
Temp8 = (uint8_t)(LimitCheckDisable << 4);
Status = VL53L0X_UpdateByte(Dev,
VL53L0X_REG_MSRC_CONFIG_CONTROL,
0xEF, Temp8);
break;
default:
Status = VL53L0X_ERROR_INVALID_PARAMS;
}
}
if (Status == VL53L0X_ERROR_NONE) {
if (LimitCheckEnable == 0) {
VL53L0X_SETARRAYPARAMETERFIELD(Dev, LimitChecksEnable,
LimitCheckId, 0);
} else {
VL53L0X_SETARRAYPARAMETERFIELD(Dev, LimitChecksEnable,
LimitCheckId, 1);
}
}
LOG_FUNCTION_END(Status);
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_StaticInit(VL53L0X_DEV Dev)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
VL53L0X_DeviceParameters_t CurrentParameters = {0};
uint8_t *pTuningSettingBuffer;
uint16_t tempword = 0;
uint8_t tempbyte = 0;
uint8_t UseInternalTuningSettings = 0;
uint32_t count = 0;
uint8_t isApertureSpads = 0;
uint32_t refSpadCount = 0;
uint8_t ApertureSpads = 0;
uint8_t vcselPulsePeriodPCLK;
uint32_t seqTimeoutMicroSecs;
LOG_FUNCTION_START("");
Status = VL53L0X_get_info_from_device(Dev, 1);
/* set the ref spad from NVM */
count = (uint32_t)VL53L0X_GETDEVICESPECIFICPARAMETER(Dev,
ReferenceSpadCount);
ApertureSpads = VL53L0X_GETDEVICESPECIFICPARAMETER(Dev,
ReferenceSpadType);
/* NVM value invalid */
if ((ApertureSpads > 1) ||
((ApertureSpads == 1) && (count > 32)) ||
((ApertureSpads == 0) && (count > 12)))
Status = VL53L0X_perform_ref_spad_management(Dev, &refSpadCount,
&isApertureSpads);
else
Status = VL53L0X_set_reference_spads(Dev, count, ApertureSpads);
/* Initialize tuning settings buffer to prevent compiler warning. */
pTuningSettingBuffer = DefaultTuningSettings;
if (Status == VL53L0X_ERROR_NONE) {
UseInternalTuningSettings = PALDevDataGet(Dev,
UseInternalTuningSettings);
if (UseInternalTuningSettings == 0)
pTuningSettingBuffer = PALDevDataGet(Dev,
pTuningSettingsPointer);
else
pTuningSettingBuffer = DefaultTuningSettings;
}
if (Status == VL53L0X_ERROR_NONE)
Status = VL53L0X_load_tuning_settings(Dev, pTuningSettingBuffer);
/* Set interrupt config to new sample ready */
if (Status == VL53L0X_ERROR_NONE) {
Status = VL53L0X_SetGpioConfig(Dev, 0, 0,
VL53L0X_REG_SYSTEM_INTERRUPT_GPIO_NEW_SAMPLE_READY,
VL53L0X_INTERRUPTPOLARITY_LOW);
}
if (Status == VL53L0X_ERROR_NONE) {
Status = VL53L0X_WrByte(Dev, 0xFF, 0x01);
Status |= VL53L0X_RdWord(Dev, 0x84, &tempword);
Status |= VL53L0X_WrByte(Dev, 0xFF, 0x00);
}
if (Status == VL53L0X_ERROR_NONE) {
VL53L0X_SETDEVICESPECIFICPARAMETER(Dev, OscFrequencyMHz,
VL53L0X_FIXPOINT412TOFIXPOINT1616(tempword));
}
/* After static init, some device parameters may be changed,
* so update them */
if (Status == VL53L0X_ERROR_NONE)
Status = VL53L0X_GetDeviceParameters(Dev, &CurrentParameters);
if (Status == VL53L0X_ERROR_NONE) {
Status = VL53L0X_GetFractionEnable(Dev, &tempbyte);
if (Status == VL53L0X_ERROR_NONE)
PALDevDataSet(Dev, RangeFractionalEnable, tempbyte);
}
if (Status == VL53L0X_ERROR_NONE)
PALDevDataSet(Dev, CurrentParameters, CurrentParameters);
/* read the sequence config and save it */
if (Status == VL53L0X_ERROR_NONE) {
Status = VL53L0X_RdByte(Dev,
VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG, &tempbyte);
if (Status == VL53L0X_ERROR_NONE)
PALDevDataSet(Dev, SequenceConfig, tempbyte);
}
/* Disable MSRC and TCC by default */
if (Status == VL53L0X_ERROR_NONE)
Status = VL53L0X_SetSequenceStepEnable(Dev,
VL53L0X_SEQUENCESTEP_TCC, 0);
if (Status == VL53L0X_ERROR_NONE)
Status = VL53L0X_SetSequenceStepEnable(Dev,
VL53L0X_SEQUENCESTEP_MSRC, 0);
/* Set PAL State to standby */
if (Status == VL53L0X_ERROR_NONE)
PALDevDataSet(Dev, PalState, VL53L0X_STATE_IDLE);
/* Store pre-range vcsel period */
if (Status == VL53L0X_ERROR_NONE) {
Status = VL53L0X_GetVcselPulsePeriod(
Dev,
VL53L0X_VCSEL_PERIOD_PRE_RANGE,
&vcselPulsePeriodPCLK);
}
if (Status == VL53L0X_ERROR_NONE) {
VL53L0X_SETDEVICESPECIFICPARAMETER(
Dev,
PreRangeVcselPulsePeriod,
vcselPulsePeriodPCLK);
}
/* Store final-range vcsel period */
if (Status == VL53L0X_ERROR_NONE) {
Status = VL53L0X_GetVcselPulsePeriod(
Dev,
VL53L0X_VCSEL_PERIOD_FINAL_RANGE,
&vcselPulsePeriodPCLK);
}
if (Status == VL53L0X_ERROR_NONE) {
VL53L0X_SETDEVICESPECIFICPARAMETER(
Dev,
FinalRangeVcselPulsePeriod,
vcselPulsePeriodPCLK);
}
/* Store pre-range timeout */
if (Status == VL53L0X_ERROR_NONE) {
Status = get_sequence_step_timeout(
Dev,
VL53L0X_SEQUENCESTEP_PRE_RANGE,
&seqTimeoutMicroSecs);
}
if (Status == VL53L0X_ERROR_NONE) {
VL53L0X_SETDEVICESPECIFICPARAMETER(
Dev,
PreRangeTimeoutMicroSecs,
seqTimeoutMicroSecs);
}
/* Store final-range timeout */
if (Status == VL53L0X_ERROR_NONE) {
Status = get_sequence_step_timeout(
Dev,
VL53L0X_SEQUENCESTEP_FINAL_RANGE,
&seqTimeoutMicroSecs);
}
if (Status == VL53L0X_ERROR_NONE) {
VL53L0X_SETDEVICESPECIFICPARAMETER(
Dev,
FinalRangeTimeoutMicroSecs,
seqTimeoutMicroSecs);
}
LOG_FUNCTION_END(Status);
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_StopMeasurement(VL53L0X_DEV Dev)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
LOG_FUNCTION_START("");
Status = VL53L0X_WrByte(Dev, VL53L0X_REG_SYSRANGE_START,
VL53L0X_REG_SYSRANGE_MODE_SINGLESHOT);
Status = VL53L0X_WrByte(Dev, 0xFF, 0x01);
Status = VL53L0X_WrByte(Dev, 0x00, 0x00);
Status = VL53L0X_WrByte(Dev, 0x91, 0x00);
Status = VL53L0X_WrByte(Dev, 0x00, 0x01);
Status = VL53L0X_WrByte(Dev, 0xFF, 0x00);
if (Status == VL53L0X_ERROR_NONE) {
/* Set PAL State to Idle */
PALDevDataSet(Dev, PalState, VL53L0X_STATE_IDLE);
}
/* Check if need to apply interrupt settings */
if (Status == VL53L0X_ERROR_NONE)
Status = VL53L0X_CheckAndLoadInterruptSettings(Dev, 0);
LOG_FUNCTION_END(Status);
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_GetStopCompletedStatus(VL53L0X_DEV Dev,
uint32_t *pStopStatus)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
uint8_t Byte = 0;
LOG_FUNCTION_START("");
Status = VL53L0X_WrByte(Dev, 0xFF, 0x01);
if (Status == VL53L0X_ERROR_NONE)
Status = VL53L0X_RdByte(Dev, 0x04, &Byte);
if (Status == VL53L0X_ERROR_NONE)
Status = VL53L0X_WrByte(Dev, 0xFF, 0x0);
*pStopStatus = Byte;
if (Byte == 0) {
Status = VL53L0X_WrByte(Dev, 0x80, 0x01);
Status = VL53L0X_WrByte(Dev, 0xFF, 0x01);
Status = VL53L0X_WrByte(Dev, 0x00, 0x00);
Status = VL53L0X_WrByte(Dev, 0x91,
PALDevDataGet(Dev, StopVariable));
Status = VL53L0X_WrByte(Dev, 0x00, 0x01);
Status = VL53L0X_WrByte(Dev, 0xFF, 0x00);
Status = VL53L0X_WrByte(Dev, 0x80, 0x00);
}
LOG_FUNCTION_END(Status);
return Status;
}
/****************** Write and read functions from I2C *************************/
VL53L0X_Error VL53L0X::VL53L0X_WriteMulti(VL53L0X_DEV Dev, uint8_t index, uint8_t *pdata, uint32_t count)
{
int status;
status = VL53L0X_I2CWrite(Dev->I2cDevAddr, index, pdata, (uint16_t)count);
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_ReadMulti(VL53L0X_DEV Dev, uint8_t index, uint8_t *pdata, uint32_t count)
{
int status;
if (count>=VL53L0X_MAX_I2C_XFER_SIZE){
status = VL53L0X_ERROR_INVALID_PARAMS;
}
status = VL53L0X_I2CRead(Dev->I2cDevAddr, index, pdata, (uint16_t)count);
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_WrByte(VL53L0X_DEV Dev, uint8_t index, uint8_t data)
{
int status;
status=VL53L0X_I2CWrite(Dev->I2cDevAddr, index, &data, 1);
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_WrWord(VL53L0X_DEV Dev, uint8_t index, uint16_t data)
{
int status;
uint8_t buffer[2];
buffer[0] = data >> 8;
buffer[1] = data & 0x00FF;
status=VL53L0X_I2CWrite(Dev->I2cDevAddr, index, (uint8_t *)buffer, 2);
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_WrDWord(VL53L0X_DEV Dev, uint8_t index, uint32_t data)
{
int status;
uint8_t buffer[4];
buffer[0] = (data >> 24) & 0xFF;
buffer[1] = (data >> 16) & 0xFF;
buffer[2] = (data >> 8) & 0xFF;
buffer[3] = (data >> 0) & 0xFF;
status=VL53L0X_I2CWrite(Dev->I2cDevAddr, index, (uint8_t *)buffer, 4);
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_RdByte(VL53L0X_DEV Dev, uint8_t index, uint8_t *data)
{
int status;
status = VL53L0X_I2CRead(Dev->I2cDevAddr, index, data, 1);
if(status)
return -1;
return 0;
}
VL53L0X_Error VL53L0X::VL53L0X_RdWord(VL53L0X_DEV Dev, uint8_t index, uint16_t *data)
{
int status;
uint8_t buffer[2] = {0,0};
status = VL53L0X_I2CRead(Dev->I2cDevAddr, index, buffer, 2);
if (!status)
{
*data = (buffer[0] << 8) + buffer[1];
}
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_RdDWord(VL53L0X_DEV Dev, uint8_t index, uint32_t *data)
{
int status;
uint8_t buffer[4] = {0,0,0,0};
status = VL53L0X_I2CRead(Dev->I2cDevAddr, index, buffer, 4);
if(!status)
{
*data = (buffer[0] << 24) + (buffer[1] << 16) + (buffer[2] << 8) + buffer[3];
}
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_UpdateByte(VL53L0X_DEV Dev, uint8_t index, uint8_t AndData, uint8_t OrData)
{
int status;
uint8_t buffer = 0;
/* read data direct onto buffer */
status = VL53L0X_I2CRead(Dev->I2cDevAddr, index, &buffer,1);
if (!status)
{
buffer = (buffer & AndData) | OrData;
status = VL53L0X_I2CWrite(Dev->I2cDevAddr, index, &buffer, (uint8_t)1);
}
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_I2CWrite(uint8_t DeviceAddr, uint8_t RegisterAddr, uint8_t* pBuffer, uint16_t NumByteToWrite)
{
int ret;
ret = dev_i2c.i2c_write(pBuffer, DeviceAddr, RegisterAddr, NumByteToWrite);
if(ret)
return -1;
return 0;
}
VL53L0X_Error VL53L0X::VL53L0X_I2CRead(uint8_t DeviceAddr, uint8_t RegisterAddr, uint8_t* pBuffer, uint16_t NumByteToRead)
{
int ret;
ret = dev_i2c.i2c_read(pBuffer, DeviceAddr, RegisterAddr, NumByteToRead);
if(ret)
return -1;
return 0;
}
int VL53L0X::read_id(uint8_t *id)
{
int status = 0;
uint16_t rl_id=0;
status = VL53L0X_RdWord(Device, VL53L0X_REG_IDENTIFICATION_MODEL_ID, &rl_id);
if (rl_id == 0xEEAA)
return status;
return -1;
}
int VL53L0X::ReadID(uint8_t *id)
{
return read_id(id);
}
VL53L0X_Error VL53L0X::WaitMeasurementDataReady(VL53L0X_DEV Dev)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
uint8_t NewDatReady=0;
uint32_t LoopNb;
// Wait until it finished
// use timeout to avoid deadlock
if (Status == VL53L0X_ERROR_NONE) {
LoopNb = 0;
do {
Status = VL53L0X_GetMeasurementDataReady(Dev, &NewDatReady);
if ((NewDatReady == 0x01) || Status != VL53L0X_ERROR_NONE) {
break;
}
LoopNb = LoopNb + 1;
VL53L0X_PollingDelay(Dev);
} while (LoopNb < VL53L0X_DEFAULT_MAX_LOOP);
if (LoopNb >= VL53L0X_DEFAULT_MAX_LOOP) {
Status = VL53L0X_ERROR_TIME_OUT;
}
}
return Status;
}
VL53L0X_Error VL53L0X::WaitStopCompleted(VL53L0X_DEV Dev)
{
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
uint32_t StopCompleted=0;
uint32_t LoopNb;
// Wait until it finished
// use timeout to avoid deadlock
if (Status == VL53L0X_ERROR_NONE) {
LoopNb = 0;
do {
Status = VL53L0X_GetStopCompletedStatus(Dev, &StopCompleted);
if ((StopCompleted == 0x00) || Status != VL53L0X_ERROR_NONE) {
break;
}
LoopNb = LoopNb + 1;
VL53L0X_PollingDelay(Dev);
} while (LoopNb < VL53L0X_DEFAULT_MAX_LOOP);
if (LoopNb >= VL53L0X_DEFAULT_MAX_LOOP) {
Status = VL53L0X_ERROR_TIME_OUT;
}
}
return Status;
}
int VL53L0X::InitSensor(uint8_t NewAddr)
{
int status;
VL53L0X_Off();
VL53L0X_On();
// status=VL53L0X_WaitDeviceBooted(Device);
// if(status)
// printf("WaitDeviceBooted fail\n\r");
status=IsPresent();
if(!status)
{
status=Init(&MyDevice);
if(status != VL53L0X_ERROR_NONE)
{
printf("Failed to init VL53L0X sensor!\n\r");
return status;
}
// deduce silicon version
status = VL53L0X_GetDeviceInfo(&MyDevice, &DeviceInfo);
status=Prepare();
if(status != VL53L0X_ERROR_NONE)
{
printf("Failed to prepare VL53L0X!\n\r");
return status;
}
if(NewAddr!=DEFAULT_DEVICE_ADDRESS)
{
status=SetDeviceAddress(NewAddr);
if(status)
{
printf("Failed to change I2C address!\n\r");
return status;
}
}
else
{
printf("Invalid new address!\n\r");
return VL53L0X_ERROR_INVALID_PARAMS;
}
}
return status;
}
int VL53L0X::RangeMeasIntContinuousMode(void (*fptr)(void))
{
int status, ClrStatus;
status = VL53L0X_StopMeasurement(Device); // it is safer to do this while sensor is stopped
// status = VL53L0X_SetInterruptThresholds(Device, VL53L0X_DEVICEMODE_CONTINUOUS_RANGING, 0, 300);
status = VL53L0X_SetGpioConfig(Device, 0, VL53L0X_DEVICEMODE_CONTINUOUS_RANGING,
VL53L0X_REG_SYSTEM_INTERRUPT_GPIO_NEW_SAMPLE_READY,
VL53L0X_INTERRUPTPOLARITY_HIGH);
if (!status)
{
AttachInterruptMeasureDetectionIRQ(fptr);
EnableInterruptMeasureDetectionIRQ();
}
ClrStatus=ClearInterrupt(VL53L0X_REG_RESULT_INTERRUPT_STATUS|VL53L0X_REG_RESULT_RANGE_STATUS);
if(ClrStatus)
VL53L0X_ErrLog("VL53L0X_ClearErrorInterrupt fail\r\n");
if(!status)
{
status=RangeStartContinuousMode();
}
return status;
}
int VL53L0X::StartMeasurement(OperatingMode operating_mode, void (*fptr)(void))
{
int Status = VL53L0X_ERROR_NONE;
int ClrStatus;
uint8_t VhvSettings;
uint8_t PhaseCal;
// *** from mass market cube expansion v1.1, ranging with satellites.
// default settings, for normal range.
FixPoint1616_t signalLimit = (FixPoint1616_t)(0.25*65536);
FixPoint1616_t sigmaLimit = (FixPoint1616_t)(18*65536);
uint32_t timingBudget = 33000;
uint8_t preRangeVcselPeriod = 14;
uint8_t finalRangeVcselPeriod = 10;
if (operating_mode == range_continuous_interrupt)
{
if (gpio1Int==NULL)
{
printf ("GPIO1 Error\r\n");
return 1;
}
Status = VL53L0X_StopMeasurement(Device); // it is safer to do this while sensor is stopped
// Status = VL53L0X_SetInterruptThresholds(Device, VL53L0X_DEVICEMODE_CONTINUOUS_RANGING, 0, 300);
Status = VL53L0X_SetGpioConfig(Device, 0, VL53L0X_DEVICEMODE_CONTINUOUS_RANGING,
VL53L0X_REG_SYSTEM_INTERRUPT_GPIO_NEW_SAMPLE_READY,
VL53L0X_INTERRUPTPOLARITY_HIGH);
if (Status == VL53L0X_ERROR_NONE)
{
AttachInterruptMeasureDetectionIRQ(fptr);
EnableInterruptMeasureDetectionIRQ();
}
ClrStatus=ClearInterrupt(VL53L0X_REG_RESULT_INTERRUPT_STATUS|VL53L0X_REG_RESULT_RANGE_STATUS);
if(ClrStatus)
VL53L0X_ErrLog("VL53L0X_ClearErrorInterrupt fail\r\n");
if(Status == VL53L0X_ERROR_NONE)
{
Status = VL53L0X_SetDeviceMode(Device, VL53L0X_DEVICEMODE_CONTINUOUS_RANGING); // Setup in continuous ranging mode
}
if(Status == VL53L0X_ERROR_NONE)
{
Status = VL53L0X_StartMeasurement(Device);
}
}
if (operating_mode == range_single_shot_polling)
{
// singelshot, polled ranging
if(Status == VL53L0X_ERROR_NONE)
{
// no need to do this when we use VL53L0X_PerformSingleRangingMeasurement
Status = VL53L0X_SetDeviceMode(Device, VL53L0X_DEVICEMODE_SINGLE_RANGING); // Setup in single ranging mode
}
// Enable/Disable Sigma and Signal check
if (Status == VL53L0X_ERROR_NONE) {
Status = VL53L0X_SetLimitCheckEnable(Device,
VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE, 1);
}
if (Status == VL53L0X_ERROR_NONE) {
Status = VL53L0X_SetLimitCheckEnable(Device,
VL53L0X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE, 1);
}
// *** from mass market cube expansion v1.1, ranging with satellites.
/* Ranging configuration */
//*
// switch(rangingConfig) {
// case LONG_RANGE:
signalLimit = (FixPoint1616_t)(0.1*65536);
sigmaLimit = (FixPoint1616_t)(60*65536);
timingBudget = 33000;
preRangeVcselPeriod = 18;
finalRangeVcselPeriod = 14;
/* break;
case HIGH_ACCURACY:
signalLimit = (FixPoint1616_t)(0.25*65536);
sigmaLimit = (FixPoint1616_t)(18*65536);
timingBudget = 200000;
preRangeVcselPeriod = 14;
finalRangeVcselPeriod = 10;
break;
case HIGH_SPEED:
signalLimit = (FixPoint1616_t)(0.25*65536);
sigmaLimit = (FixPoint1616_t)(32*65536);
timingBudget = 20000;
preRangeVcselPeriod = 14;
finalRangeVcselPeriod = 10;
break;
default:
debug_printf("Not Supported");
}
*/
if (Status == VL53L0X_ERROR_NONE) {
Status = VL53L0X_SetLimitCheckValue(Device,
VL53L0X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE, signalLimit);
}
if (Status == VL53L0X_ERROR_NONE) {
Status = VL53L0X_SetLimitCheckValue(Device,
VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE, sigmaLimit);
}
if (Status == VL53L0X_ERROR_NONE) {
Status = VL53L0X_SetMeasurementTimingBudgetMicroSeconds(Device, timingBudget);
}
if (Status == VL53L0X_ERROR_NONE) {
Status = VL53L0X_SetVcselPulsePeriod(Device,
VL53L0X_VCSEL_PERIOD_PRE_RANGE, preRangeVcselPeriod);
}
if (Status == VL53L0X_ERROR_NONE) {
Status = VL53L0X_SetVcselPulsePeriod(Device,
VL53L0X_VCSEL_PERIOD_FINAL_RANGE, finalRangeVcselPeriod);
}
if (Status == VL53L0X_ERROR_NONE) {
Status = VL53L0X_PerformRefCalibration(Device, &VhvSettings, &PhaseCal);
}
}
if (operating_mode == range_continuous_polling)
{
if(Status == VL53L0X_ERROR_NONE)
{
printf ("Call of VL53L0X_SetDeviceMode\n");
Status = VL53L0X_SetDeviceMode(Device, VL53L0X_DEVICEMODE_CONTINUOUS_RANGING); // Setup in continuous ranging mode
}
if(Status == VL53L0X_ERROR_NONE)
{
printf ("Call of VL53L0X_StartMeasurement\n");
Status = VL53L0X_StartMeasurement(Device);
}
}
return Status;
}
int VL53L0X::GetMeasurement(OperatingMode operating_mode, VL53L0X_RangingMeasurementData_t *Data)
{
int Status = VL53L0X_ERROR_NONE;
if (operating_mode == range_single_shot_polling)
{
Status = VL53L0X_PerformSingleRangingMeasurement(Device, Data);
}
if (operating_mode == range_continuous_polling)
{
if (Status == VL53L0X_ERROR_NONE)
Status = VL53L0X_measurement_poll_for_completion(Device);
if(Status == VL53L0X_ERROR_NONE)
{
Status = VL53L0X_GetRangingMeasurementData(Device, Data);
// Clear the interrupt
VL53L0X_ClearInterruptMask(Device, VL53L0X_REG_SYSTEM_INTERRUPT_GPIO_NEW_SAMPLE_READY);
VL53L0X_PollingDelay(Device);
}
}
if (operating_mode == range_continuous_interrupt)
{
Status = VL53L0X_GetRangingMeasurementData(Device, Data);
VL53L0X_ClearInterruptMask(Device, VL53L0X_REG_SYSTEM_INTERRUPT_CLEAR | VL53L0X_REG_RESULT_INTERRUPT_STATUS);
}
return Status;
}
int VL53L0X::StopMeasurement(OperatingMode operating_mode)
{
int status = VL53L0X_ERROR_NONE;
// don't need to stop for a singleshot range!
if (operating_mode==range_single_shot_polling)
{
}
if (operating_mode==range_continuous_interrupt || operating_mode==range_continuous_polling)
{
// continuous mode
if(status == VL53L0X_ERROR_NONE)
{
printf ("Call of VL53L0X_StopMeasurement\n");
status = VL53L0X_StopMeasurement(Device);
}
if(status == VL53L0X_ERROR_NONE)
{
printf ("Wait Stop to be competed\n");
status = WaitStopCompleted(Device);
}
if(status == VL53L0X_ERROR_NONE)
status = VL53L0X_ClearInterruptMask(Device,
VL53L0X_REG_SYSTEM_INTERRUPT_GPIO_NEW_SAMPLE_READY);
}
return status;
}
int VL53L0X::HandleIRQ(OperatingMode operating_mode, VL53L0X_RangingMeasurementData_t *Data)
{
int status;
status=GetMeasurement(operating_mode, Data);
EnableInterruptMeasureDetectionIRQ();
return status;
}
/******************************************************************************/

X-NUCLEO-53L0A1 Ranging Sensor Expansion Board