SAIT ARIS / LRAT-example-lorawan-REFACTOR-and-CLEAN-Branch

Dependencies:   Custom_LSM303 Custom_UBloxGPS LRAT-mbed-os USBDevice mbed-lora-radio-drv stm32EEPROM

Fork of LRAT-example-lorawan by SAIT ARIS

main.cpp

Committer:
lpeters
Date:
2018-08-21
Revision:
34:341fb423e74b
Parent:
33:e47306c32791
Child:
35:73b3963c6dd3

File content as of revision 34:341fb423e74b:

/**
 * Copyright (c) 2017, Arm Limited and affiliates.
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
//#define TARGET_LRAT 1
//#define SENSOR_TEMP 1
#include <stdio.h>
#include "mbed.h"

#include "lorawan/LoRaWANInterface.h"
#include "lorawan/system/lorawan_data_structures.h"
#include "events/EventQueue.h"

// Application helpers
#include "DummySensor.h"
#include "trace_helper.h"
#include "lora_radio_helper.h"

#include "mbed-trace/mbed_trace.h"
#define TRACE_GROUP "MAIN"

using namespace events;

// Max payload size can be LORAMAC_PHY_MAXPAYLOAD.
// This example only communicates with much shorter messages (<30 bytes).
// If longer messages are used, these buffers must be changed accordingly.
uint8_t tx_buffer[30];
uint8_t rx_buffer[30];

/*
 * Sets up an application dependent transmission timer in ms. Used only when Duty Cycling is off for testing
 */
#define TX_TIMER                        10000

/**
 * Maximum number of events for the event queue.
 * 10 is the safe number for the stack events, however, if application
 * also uses the queue for whatever purposes, this number should be increased.
 */
#define MAX_NUMBER_OF_EVENTS            10

/**
 * Maximum number of retries for CONFIRMED messages before giving up
 */
#define CONFIRMED_MSG_RETRY_COUNTER     15

/**
 * Dummy pin for dummy sensor
 */
#define PC_9                            0

/**
 * Dummy sensor class object
 */
DS1820  ds1820(PC_9);

/**
* This event queue is the global event queue for both the
* application and stack. To conserve memory, the stack is designed to run
* in the same thread as the application and the application is responsible for
* providing an event queue to the stack that will be used for ISR deferment as
* well as application information event queuing.
*/
static EventQueue ev_queue(MAX_NUMBER_OF_EVENTS * EVENTS_EVENT_SIZE);

/**
 * Event handler.
 *
 * This will be passed to the LoRaWAN stack to queue events for the
 * application which in turn drive the application.
 */
static void lora_event_handler(lorawan_event_t event);

/**
 * Constructing Mbed LoRaWANInterface and passing it down the radio object.
 */
static LoRaWANInterface lorawan(radio);

/**
 * Application specific callbacks
 */
static lorawan_app_callbacks_t callbacks;

#if defined(TARGET_LRAT)
#include "USBSerial.h"
USBSerial serial;
FileHandle* mbed::mbed_override_console(int) {
    return &serial;
}
#endif

int mytime = 0;
int mybatt = 0;
double mylat = 0;
double mylon = 0;

int16_t myAccX = 0;
int16_t myAccY = 0;
int16_t myAccZ = 0;
int16_t myMagX = 0;
int16_t myMagY = 0;
int16_t myMagZ = 0;
int16_t myOffX = 0;
int16_t myOffY = 0;
int16_t myOffZ = 0;
int16_t myTemp = 0;

int16_t accMinX = 0;
int16_t accMinY = 0;
int16_t accMinZ = 0;
int16_t accMaxX = 0;
int16_t accMaxY = 0;
int16_t accMaxZ = 0;

int16_t magMinX = 0;
int16_t magMinY = 0;
int16_t magMinZ = 0;
int16_t magMaxX = 0;
int16_t magMaxY = 0;
int16_t magMaxZ = 0;

#define NEOM8M_ADR_GPS 0x84
//#define LSM303_ADR_ACC 0x32
#define LSM303_ADR_MAG 0x3C

#define NEOM8M_REG_GPS_LENH 0xFD
#define NEOM8M_REG_GPS_LENL 0xFE
#define NEOM8M_REG_GPS_DATA 0xFE
#define LSM303_REG_ACC_STATUS_REG_AUX_A 0x07
//#define LSM303_REG_ACC_OUT_TEMP_L_A 0x0C
//#define LSM303_REG_ACC_OUT_TEMP_H_A 0x0D
#define LSM303_REG_ACC_WHO_AM_I_A 0x0F
//#define LSM303_REG_ACC_TEMP_CFG_REG_A 0x1F
#define LSM303_REG_ACC_CTRL_REG1_A 0x20
#define LSM303_REG_ACC_CTRL_REG2_A 0x21
#define LSM303_REG_ACC_CTRL_REG3_A 0x22
#define LSM303_REG_ACC_CTRL_REG4_A 0x23
#define LSM303_REG_ACC_CTRL_REG5_A 0x24
#define LSM303_REG_ACC_CTRL_REG6_A 0x25
#define LSM303_REG_ACC_STATUS_REG_A 0x27
#define LSM303_REG_ACC_OUT_X_L_A 0x28
#define LSM303_REG_ACC_OUT_X_H_A 0x29
#define LSM303_REG_ACC_OUT_Y_L_A 0x2A
#define LSM303_REG_ACC_OUT_Y_H_A 0x2B
#define LSM303_REG_ACC_OUT_Z_L_A 0x2C
#define LSM303_REG_ACC_OUT_Z_H_A 0x2D
#define LSM303_REG_ACC_INT1_CFG_A 0x30
#define LSM303_REG_ACC_INT1_SRC_A 0x31
#define LSM303_REG_ACC_INT1_THS_A 0x32
#define LSM303_REG_ACC_INT1_DURATION_A 0x33
/*
//#define LSM303_REG_MAG_CRA_REG_M 0x00
//#define LSM303_REG_MAG_MR_REG_M 0x02
*/
#define LSM303_REG_MAG_OFFSET_X_REG_L_M 0x45
#define LSM303_REG_MAG_OFFSET_X_REG_H_M 0x46
#define LSM303_REG_MAG_OFFSET_Y_REG_L_M 0x47
#define LSM303_REG_MAG_OFFSET_Y_REG_H_M 0x48
#define LSM303_REG_MAG_OFFSET_Z_REG_L_M 0x49
#define LSM303_REG_MAG_OFFSET_Z_REG_H_M 0x4A
//#define LSM303_REG_MAG_WHO_AM_I_M 0x4F
//#define LSM303_REG_MAG_CFG_REG_A_M 0x60
//#define LSM303_REG_MAG_CFG_REG_B_M 0x61
//#define LSM303_REG_MAG_CFG_REG_C_M 0x62
#define LSM303_REG_MAG_INT_CTRL_REG_M 0x63
#define LSM303_REG_MAG_INT_SOURCE_REG_M 0x64
#define LSM303_REG_MAG_INT_THS_L_REG_M 0x65
#define LSM303_REG_MAG_INT_THS_H_REG_M 0x66
//#define LSM303_REG_MAG_STATUS_REG_M 0x67
//#define LSM303_REG_MAG_OUTX_L_REG_M 0x68
//#define LSM303_REG_MAG_OUTX_H_REG_M 0x69
//#define LSM303_REG_MAG_OUTY_L_REG_M 0x6A
//#define LSM303_REG_MAG_OUTY_H_REG_M 0x6B
//#define LSM303_REG_MAG_OUTZ_L_REG_M 0x6C
//#define LSM303_REG_MAG_OUTZ_H_REG_M 0x6D

#if defined(TARGET_LRAT)
    #define LEDR PB_6
    #define LEDG PB_7
    #define LEDB PB_5
    #define LEDW PB_2
    #define LSM303_ADR_ACC 0x3A
    #define LSM303_REG_MAG_WHO_AM_I_M 0x0F
    #define LSM303_WHO_ACC 0x41
    #define LSM303_WHO_MAG 0x3D
    #define LSM303_CTRL_REG7_A 0x26
    #define LSM303_REG_MAG_CTRL_REG1_M 0x20
    #define LSM303_REG_MAG_CTRL_REG2_M 0x21
    #define LSM303_REG_MAG_CTRL_REG3_M 0x22
    #define LSM303_REG_MAG_CTRL_REG4_M 0x23
    #define LSM303_REG_MAG_CTRL_REG5_M 0x24
    #define LSM303_REG_MAG_STATUS_REG_M 0x27
    #define LSM303_REG_MAG_OUTX_L_REG_M 0x28
    #define LSM303_REG_MAG_OUTX_H_REG_M 0x29
    #define LSM303_REG_MAG_OUTY_L_REG_M 0x2A
    #define LSM303_REG_MAG_OUTY_H_REG_M 0x2B
    #define LSM303_REG_MAG_OUTZ_L_REG_M 0x2C
    #define LSM303_REG_MAG_OUTZ_H_REG_M 0x2D
    #define LSM303_REG_MAG_TEMP_L_M 0x2E
    #define LSM303_REG_MAG_TEMP_H_M 0x2F
    #define LSM303_REG_MAG_TEMP_CFG_REG_A 0x1F
    #define CFG_ACC_ADR LSM303_REG_ACC_CTRL_REG1_A
    #define CFG_ACC_LEN 7
    #define CFG_MAG_ADR LSM303_REG_MAG_CTRL_REG1_M
    #define CFG_MAG_LEN 5
#else
    #define LEDR PB_7
    #define LEDG PB_5
    #define LEDB PB_6
    #define LEDW PA_5
    #define LSM303_ADR_ACC 0x32
    #define LSM303_REG_MAG_WHO_AM_I_M 0x4F
    #define LSM303_WHO_ACC 0x33
    #define LSM303_WHO_MAG 0x40
    #define LSM303_REG_ACC_OUT_TEMP_L_A 0x0C
    #define LSM303_REG_ACC_OUT_TEMP_H_A 0x0D
    #define LSM303_REG_ACC_TEMP_CFG_REG_A 0x1F
    #define LSM303_REG_MAG_CFG_REG_A_M 0x60
    #define LSM303_REG_MAG_CFG_REG_B_M 0x61
    #define LSM303_REG_MAG_CFG_REG_C_M 0x62
    #define LSM303_REG_MAG_STATUS_REG_M 0x67
    #define LSM303_REG_MAG_OUTX_L_REG_M 0x68
    #define LSM303_REG_MAG_OUTX_H_REG_M 0x69
    #define LSM303_REG_MAG_OUTY_L_REG_M 0x6A
    #define LSM303_REG_MAG_OUTY_H_REG_M 0x6B
    #define LSM303_REG_MAG_OUTZ_L_REG_M 0x6C
    #define LSM303_REG_MAG_OUTZ_H_REG_M 0x6D
    #define CFG_ACC_ADR LSM303_REG_ACC_TEMP_CFG_REG_A // Start Disco at TEMP CFG.
    #define CFG_ACC_LEN 7
    #define CFG_MAG_ADR LSM303_REG_MAG_CFG_REG_A_M
    #define CFG_MAG_LEN 3
#endif

I2C i2c(PB_9, PB_8);
InterruptIn accPin(PB_14);
InterruptIn magPin(PA_10);

char cfg;
char ret;
char rda = '\0';
char cmd[2];
char buf[83];
int pos = 0;
char *res;
char sPass[26] = "[\u001b[32mPASS\u001b[0m]";
char sFail[26] = "[\u001b[31mFAIL\u001b[0m]";
int accShift = 0;
int accScale = 0;
int accEvent = 0;
uint16_t accSFire = 0;
uint16_t accHFire = 0;
uint16_t accSLIRQ = 0;
uint16_t accSHIRQ = 0;
int magEvent = 0;
uint16_t magSFire = 0;
uint16_t magHFire = 0;
uint16_t magSLIRQ = 0;
uint16_t magSHIRQ = 0;

char cmdSendLoop[9] = "SendLoop";

DigitalOut myLedR(LEDR);
DigitalOut myLedG(LEDG);
DigitalOut myLedB(LEDB);
DigitalOut myLedW(LEDW);

void magInitSequence();
void accInitSequence();
void gpsInitSequence();
void tmpRead();
void magRead();
void accRead();
void gpsRead();

void onAccIrq()
{
    accHFire++;
}

void onMagIrq()
{
    magHFire++;
}

void accDumpCfg()
{
    char start = CFG_ACC_ADR;
    for (int i = 0; i < CFG_ACC_LEN; i++)
    {
        cmd[0] = start + i;
        i2c.write(LSM303_ADR_ACC, cmd, 1);
        i2c.read(LSM303_ADR_ACC, &buf[i], 1);
    }
    printf("CFGACC: | ");
    for (int i = 0; i < CFG_ACC_LEN; i++)
    {
        printf("%02X ", buf[i]);
    }
    printf("|\r\n");
}

void magDumpCfg()
{
    char start = CFG_MAG_ADR;
    for (int i = 0; i < CFG_MAG_LEN; i++)
    {
        cmd[0] = start + i;
        i2c.write(LSM303_ADR_MAG, cmd, 1);
        i2c.read(LSM303_ADR_MAG, &buf[i], 1);
    }
    printf("CFGMAG: | ");
    for (int i = 0; i < CFG_MAG_LEN; i++)
    {
        printf("%02X ", buf[i]);
    }
    printf("|\r\n");
}

/**
 * Entry point for application
 */
int main (void)
{
    wait(4);
    printf("\r\n-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-\r\n");
 
    // Boot Flash
    for (int i = 0; i <= 64; i++)
    {
        myLedR = i & 0x01;
        myLedG = i & 0x02;
        myLedB = i & 0x04;
        myLedW = i & 0x08;
        wait(0.01);
    }
    wait(4);
    
    // setup tracing
    setup_trace();

    // stores the status of a call to LoRaWAN protocol
    lorawan_status_t retcode;
    
    /* I2C init */
    ret = 0x00;
    magDumpCfg();
    accDumpCfg();
    magInitSequence();
    accInitSequence();
    gpsInitSequence();
    magDumpCfg();
    accDumpCfg();
    
    cfg = 0x00;
#if defined(TARGET_LRAT)
    cmd[0] = LSM303_REG_ACC_CTRL_REG1_A;
    i2c.write(LSM303_ADR_ACC, cmd, 1);
    i2c.read(LSM303_ADR_ACC, &ret, 1);
    cfg |= (ret & 0x80) >> 7;
    cmd[0] = LSM303_REG_ACC_CTRL_REG4_A;
    i2c.write(LSM303_ADR_ACC, cmd, 1);
    i2c.read(LSM303_ADR_ACC, &ret, 1);
    accScale = 1 << (!(ret & 0x30) ? 0 : ((ret & 0x30) >> 4) - 1);
    cmd[0] = LSM303_REG_MAG_CTRL_REG2_M;
    i2c.write(LSM303_ADR_MAG, cmd, 1);
    i2c.read(LSM303_ADR_MAG, &ret, 1);
    cfg |= (ret & 0x60) >> 1;
    //accShift = 0; // Full 16-bit resolution
    accShift = 4;
#else
    cmd[0] = LSM303_REG_ACC_CTRL_REG1_A;
    i2c.write(LSM303_ADR_ACC, cmd, 1);
    i2c.read(LSM303_ADR_ACC, &ret, 1);
    cfg |= (ret & 0x08) >> 3;
    cmd[0] = LSM303_REG_ACC_CTRL_REG4_A;
    i2c.write(LSM303_ADR_ACC, cmd, 1);
    i2c.read(LSM303_ADR_ACC, &ret, 1);
    cfg |= (ret & 0x08) >> 2;
    accScale = 1 << ((ret & 0x30) >> 4);
    cmd[0] = LSM303_REG_MAG_CFG_REG_A_M;
    i2c.write(LSM303_ADR_MAG, cmd, 1);
    i2c.read(LSM303_ADR_MAG, &ret, 1);
    cfg |= (ret & 0x10);
    if (cfg & 0x01)
        accShift = 8;
    else if (cfg & 0x02)
        accShift = 4;
    else
        accShift = 6;
#endif
    printf("Quality: %02x AccShift: %d AccScale: %d\r\n", cfg, accShift, accScale);

    while(1)
    {
        time_t tNow = time(NULL);
        printf("Clock: %d\r\n", tNow);
#if defined(SENSOR_TEMP)
        tmpRead();
#endif
        magRead();
        accRead();
        gpsRead();
        wait(4);
    }
    
    // Initialize LoRaWAN stack
    if (lorawan.initialize(&ev_queue) != LORAWAN_STATUS_OK) {
        printf("\r\n LoRa initialization failed! \r\n");
        return -1;
    }

    printf("\r\n Mbed LoRaWANStack initialized \r\n");
    printf("MBED_CONF_LORA_APP_PORT: %d", MBED_CONF_LORA_APP_PORT);

    // prepare application callbacks
    callbacks.events = mbed::callback(lora_event_handler);
    lorawan.add_app_callbacks(&callbacks);

    // Set number of retries in case of CONFIRMED messages
    if (lorawan.set_confirmed_msg_retries(CONFIRMED_MSG_RETRY_COUNTER)
                                          != LORAWAN_STATUS_OK) {
        printf("\r\n set_confirmed_msg_retries failed! \r\n\r\n");
        return -1;
    }

    printf("\r\n CONFIRMED message retries : %d \r\n",
           CONFIRMED_MSG_RETRY_COUNTER);

    // Enable adaptive data rate
    if (lorawan.enable_adaptive_datarate() != LORAWAN_STATUS_OK) {
        printf("\r\n enable_adaptive_datarate failed! \r\n");
        return -1;
    }

    printf("\r\n Adaptive data  rate (ADR) - Enabled \r\n");

    retcode = lorawan.connect();

    if (retcode == LORAWAN_STATUS_OK ||
        retcode == LORAWAN_STATUS_CONNECT_IN_PROGRESS) {
    } else {
        printf("\r\n Connection error, code = %d \r\n", retcode);
        return -1;
    }

    printf("\r\n Connection - In Progress ...\r\n");

    // make your event queue dispatching events forever
    ev_queue.dispatch_forever();

    return 0;
}

/**
 * Sends a message to the Network Server
 */
static void send_message()
{
    uint16_t packet_len;
    int16_t retcode;
    float sensor_value;

    if (ds1820.begin()) {
        ds1820.startConversion();
        sensor_value = ds1820.read();
        printf("\r\n Dummy Sensor Value = %3.1f \r\n", sensor_value);
        ds1820.startConversion();
    } else {
        printf("\r\n No sensor found \r\n");
        return;
    }

    time_t tNow = time(NULL);
    printf("Clock: %d\r\n", tNow);
    
#if defined(SENSOR_TEMP)
    tmpRead();
#endif
    magRead();
    accRead();
    gpsRead();
    
    int ilat = (int)(mylat * 100000);
    int ilon = (int)(mylon * 100000);
    printf("TIM: %d, SAT: %d, LAT: %d, LON: %d\r\n", mytime, mybatt, ilat, ilon);
    packet_len = 11;
    tx_buffer[0] = (mytime >> 24) & 0xFF;
    tx_buffer[1] = (mytime >> 16) & 0xFF;
    tx_buffer[2] = (mytime >> 8) & 0xFF;
    tx_buffer[3] = (mytime >> 0) & 0xFF;
    tx_buffer[4] = ((mybatt << 4) & 0xF0) | ((ilat >> 22) & 0x0F);
    tx_buffer[5] = (ilat >> 14) & 0xFF;
    tx_buffer[6] = (ilat >> 6) & 0xFF;
    tx_buffer[7] = ((ilat << 2) & 0xFC) | ((ilon >> 24) & 0x03);
    tx_buffer[8] = (ilon >> 16) & 0xFF;
    tx_buffer[9] = (ilon >> 8) & 0xFF;
    tx_buffer[10] = (ilon >> 0) & 0xFF;
    printf("\r\nBUF: |");
    for (int i = 0; i < packet_len; i++) { printf("%02X", tx_buffer[i]); }
    printf("|\r\n");
    retcode = lorawan.send(MBED_CONF_LORA_APP_PORT, tx_buffer, packet_len,
                           MSG_CONFIRMED_FLAG);

    if (retcode < 0) {
        retcode == LORAWAN_STATUS_WOULD_BLOCK ? printf("send - WOULD BLOCK\r\n")
                : printf("\r\n send() - Error code %d \r\n", retcode);

        if (retcode == LORAWAN_STATUS_WOULD_BLOCK) {
            //retry in 3 seconds
            if (MBED_CONF_LORA_DUTY_CYCLE_ON) {
                ev_queue.call_in(3000, send_message);
            }
        }
        return;
    }

    printf("\r\n %d bytes scheduled for transmission \r\n", retcode);
    memset(tx_buffer, 0, sizeof(tx_buffer));
    
    //LED Confirmation Output - MESSAGE SENT
    for (int i = 0; i < 10; i++) {
            myLedG = 1;
            wait(0.1);
            myLedG = 0;
            myLedR = 1;
            wait(0.1);
            myLedR = 0;
            myLedB = 1;
            wait(0.1);
            myLedB = 0;
    }
}

/**
 * Receive a message from the Network Server
 */
static void receive_message()
{
    int16_t retcode;
    retcode = lorawan.receive(MBED_CONF_LORA_APP_PORT, rx_buffer,
                              sizeof(rx_buffer),
                              MSG_CONFIRMED_FLAG|MSG_UNCONFIRMED_FLAG);

    if (retcode < 0) {
        printf("\r\n receive() - Error code %d \r\n", retcode);
        return;
    }

    printf(" Data:");

    for (uint8_t i = 0; i < retcode; i++) {
        printf("%x", rx_buffer[i]);
    }

    printf("\r\n Data Length: %d\r\n", retcode);

    /*
    int startLoop = 0;
    if (strncmp((char *)rx_buffer, cmdSendLoop, 8) == 0)
    {
        printf("SendLoop Command Received!\r\n");
        startLoop = 1;
    }
    */

    memset(rx_buffer, 0, sizeof(rx_buffer));
    /*
    if (startLoop)
        send_message();
    */
}

/**
 * Event handler
 */
static void lora_event_handler(lorawan_event_t event)
{
    tr_debug("In lora_event_handler(%d)...", event);
    switch (event) {
        case CONNECTED:
            printf("\r\n Connection - Successful \r\n");
            if (MBED_CONF_LORA_DUTY_CYCLE_ON) {
                send_message();
            } else {
                ev_queue.call_every(TX_TIMER, send_message);
            }

            break;
        case DISCONNECTED:
            ev_queue.break_dispatch();
            printf("\r\n Disconnected Successfully \r\n");
            break;
        case TX_DONE:
            printf("\r\n Message Sent to Network Server \r\n");
            if (MBED_CONF_LORA_DUTY_CYCLE_ON) {
                send_message();
            }
            break;
        case TX_TIMEOUT:
        case TX_ERROR:
        case TX_CRYPTO_ERROR:
        case TX_SCHEDULING_ERROR:
            printf("\r\n Transmission Error - EventCode = %d \r\n", event);
            // try again
            if (MBED_CONF_LORA_DUTY_CYCLE_ON) {
                send_message();
            }
            break;
        case RX_DONE:
            printf("\r\n Received message from Network Server \r\n");
            receive_message();
            break;
        case RX_TIMEOUT:
        case RX_ERROR:
            printf("\r\n Error in reception - Code = %d \r\n", event);
            break;
        case JOIN_FAILURE:
            printf("\r\n OTAA Failed - Check Keys \r\n");
            break;
        case UPLINK_REQUIRED:
            printf("\r\n Uplink required by NS \r\n");
            if (MBED_CONF_LORA_DUTY_CYCLE_ON) {
                send_message();
            }
            break;
        default:
            MBED_ASSERT("Unknown Event");
    }
}

void magInitSequence()
{
    myLedR = 0;
    myLedG = 0;
    cmd[0] = LSM303_REG_MAG_WHO_AM_I_M;
    i2c.write(LSM303_ADR_MAG, cmd, 1);
    i2c.read(LSM303_ADR_MAG, &ret, 1);
    res = (ret == LSM303_WHO_MAG ? sPass : sFail);
    printf("MAG WhoAmI: %02X %s\r\n", ret, res);
    
    if (ret == LSM303_WHO_MAG)
        myLedG = 1;
    else
        myLedR = 1;

    for (int i = 0; i < 2; i++) {
        myLedB = 1;
        wait(0.3);
        myLedB = 0;
        wait(0.3);
    }
    
#if defined(TARGET_LRAT)
    cmd[0] = LSM303_REG_MAG_CTRL_REG1_M;
    cmd[1] = 0x70;  // Ultra-High Performance Mode on XY axes, ODR=10Hz
    i2c.write(LSM303_ADR_MAG, cmd, 2);
    cmd[0] = LSM303_REG_MAG_CTRL_REG3_M;
    cmd[1] = 0x00;  // High Resolution? (Full-power), Continuous
    i2c.write(LSM303_ADR_MAG, cmd, 2);
    cmd[0] = LSM303_REG_MAG_CTRL_REG4_M;
    cmd[1] = 0x0C;  // Ultra-High Performance Mode on Z axis
    i2c.write(LSM303_ADR_MAG, cmd, 2);
    #if defined(SENSOR_TEMP)
        // Enable Temp Sensor
        cmd[0] = LSM303_REG_MAG_CTRL_REG1_M;
        i2c.write(LSM303_ADR_MAG, cmd, 1);
        i2c.read(LSM303_ADR_MAG, &ret, 1);
        cmd[0] = LSM303_REG_MAG_CTRL_REG1_M;
        cmd[1] = ret | 0x80;
        i2c.write(LSM303_ADR_MAG, cmd, 2);
        /*
        cmd[0] = LSM303_REG_MAG_CTRL_REG5_M;
        i2c.write(LSM303_ADR_MAG, cmd, 1);
        i2c.read(LSM303_ADR_MAG, &ret, 1);
        cmd[0] = LSM303_REG_MAG_CTRL_REG5_M;
        cmd[1] = ret | 0x40;
        i2c.write(LSM303_ADR_MAG, cmd, 2);
        */
    #endif
#else
    cmd[0] = LSM303_REG_MAG_CFG_REG_A_M;
    cmd[1] = 0x00;  // Mag = 10 Hz (high-resolution and continuous mode)
    i2c.write(LSM303_ADR_MAG, cmd, 2);
    cmd[0] = LSM303_REG_MAG_CFG_REG_C_M;
    //cmd[1] = 0x01;  // Mag data-ready interrupt enable
    cmd[1] = 0x40; // Mag enable interrupt on pin
    i2c.write(LSM303_ADR_MAG, cmd, 2);
#endif
    
    for (int i = 0; i < 2; i++) {
        myLedR = 1;
        myLedG = 1;
        myLedB = 1;
        wait(0.5);
        myLedR = 0;
        myLedG = 0;
        myLedB = 0;
        wait(0.5);
    }
    /*
    // MAG INTERRUPT SETUP
    cmd[0] = LSM303_REG_MAG_INT_THS_L_REG_M;
    cmd[1] = 0xF4;
    i2c.write(LSM303_ADR_MAG, cmd, 2);
    cmd[0] = LSM303_REG_MAG_INT_THS_H_REG_M;
    cmd[1] = 0x01;
    i2c.write(LSM303_ADR_MAG, cmd, 2);
    cmd[0] = LSM303_REG_MAG_INT_CTRL_REG_M;
    cmd[1] = 0xE7;
    i2c.write(LSM303_ADR_MAG, cmd, 2);
    magPin.rise(&onMagIrq);
    */
}

void accInitSequence()
{
    myLedR = 0;
    myLedG = 0;
    cmd[0] = LSM303_REG_ACC_WHO_AM_I_A;
    i2c.write(LSM303_ADR_ACC, cmd, 1);
    i2c.read(LSM303_ADR_ACC, &ret, 1);
    res = (ret == LSM303_WHO_ACC ? sPass : sFail);
    printf("ACC WhoAmI: %02X %s\r\n", ret, res);
    
    if (ret == LSM303_WHO_ACC)
        myLedG = 1;
    else
        myLedR = 1;
    
    for (int i = 0; i < 2; i++) {
        myLedB = 1;
        wait(0.3);
        myLedB = 0;
        wait(0.3);
    }
    
#if defined(TARGET_LRAT)
    cmd[0] = LSM303_REG_ACC_CTRL_REG1_A;
    cmd[1] = 0xB7;  // High Resolution, ODR=100Hz, Enable XYZ Axes
    i2c.write(LSM303_ADR_ACC, cmd, 2);
#else
    cmd[0] = LSM303_REG_ACC_CTRL_REG1_A;
    cmd[1] = 0x57;  // Enable XYZ Axes, ODR=100Hz
    i2c.write(LSM303_ADR_ACC, cmd, 2);
    
    // Enable High Resolution Mode
    cmd[0] = LSM303_REG_ACC_CTRL_REG4_A;
    i2c.write(LSM303_ADR_ACC, cmd, 1);
    i2c.read(LSM303_ADR_ACC, &ret, 1);
    cmd[0] = LSM303_REG_ACC_CTRL_REG4_A;
    cmd[1] = ret | 0x08;    // High Resolution
    i2c.write(LSM303_ADR_ACC, cmd, 2);
    
    #if defined(SENSOR_TEMP)
        // Enable Temp Sensor
        cmd[0] = LSM303_REG_ACC_TEMP_CFG_REG_A;
        cmd[1] = 0xC0;
        i2c.write(LSM303_ADR_ACC, cmd, 2);
        cmd[0] = LSM303_REG_ACC_CTRL_REG4_A;
        i2c.write(LSM303_ADR_ACC, cmd, 1);
        i2c.read(LSM303_ADR_ACC, &ret, 1);
        cmd[0] = LSM303_REG_ACC_CTRL_REG4_A;
        cmd[1] = ret | 0x80;
        i2c.write(LSM303_ADR_ACC, cmd, 2);
    #endif
#endif
    
    //LED Confirmation Output - ACC INIT COMPLETE
    for (int i = 0; i < 2; i++) {
        myLedR = 1;
        myLedG = 1;
        myLedB = 1;
        wait(0.5);
        myLedR = 0;
        myLedG = 0;
        myLedB = 0;
        wait(0.5);
    }
    
    // Set Full Scale to 4g
    /*
    cmd[0] = LSM303_REG_ACC_CTRL_REG4_A;
    i2c.write(LSM303_ADR_ACC, cmd, 1);
    i2c.read(LSM303_ADR_ACC, &ret, 1);
    cmd[0] = LSM303_REG_ACC_CTRL_REG4_A;
    //cmd[1] = ret | 0x30;              // 16g
    //cmd[1] = (ret & ~0x10) | 0x20;    // 8g
    cmd[1] = (ret & ~0x20) | 0x10;      // 4g
    //cmd[1] = ret & ~0x30;             // 2g
    i2c.write(LSM303_ADR_ACC, cmd, 2);
    */
/*
    // IRQ Init from Datasheet.
    cmd[0] = LSM303_REG_ACC_CTRL_REG1_A;
    cmd[1] = 0xA7;
    i2c.write(LSM303_ADR_ACC, cmd, 2);
    cmd[0] = LSM303_REG_ACC_CTRL_REG2_A;
    cmd[1] = 0x00;
    i2c.write(LSM303_ADR_ACC, cmd, 2);
    cmd[0] = LSM303_REG_ACC_CTRL_REG3_A;
    cmd[1] = 0x40;
    i2c.write(LSM303_ADR_ACC, cmd, 2);
    cmd[0] = LSM303_REG_ACC_CTRL_REG4_A;
    cmd[1] = 0x00;
    //cmd[1] = 0x10;
    i2c.write(LSM303_ADR_ACC, cmd, 2);
    cmd[0] = LSM303_REG_ACC_CTRL_REG5_A;
    cmd[1] = 0x08;
    i2c.write(LSM303_ADR_ACC, cmd, 2);
*/
    /*
    // ACC INTERRUPT SETUP
    // Enable Interrupt Pin
    cmd[0] = LSM303_REG_ACC_CTRL_REG3_A;
    i2c.write(LSM303_ADR_ACC, cmd, 1);
    i2c.read(LSM303_ADR_ACC, &ret, 1);
    cmd[0] = LSM303_REG_ACC_CTRL_REG3_A;
    cmd[1] = ret | 0x40;
    i2c.write(LSM303_ADR_ACC, cmd, 2);
    // Enable Interrupt Latch
    cmd[0] = LSM303_REG_ACC_CTRL_REG5_A;
    i2c.write(LSM303_ADR_ACC, cmd, 1);
    i2c.read(LSM303_ADR_ACC, &ret, 1);
    cmd[0] = LSM303_REG_ACC_CTRL_REG5_A;
    cmd[1] = ret | 0x08;
    i2c.write(LSM303_ADR_ACC, cmd, 2);

    // Set Threshold/Duration/Config
    cmd[0] = LSM303_REG_ACC_INT1_THS_A;
    //cmd[1] = 0x10;
    //cmd[1] = 0x40;
    //cmd[1] = 0x60;
    cmd[1] = 0x7D;
    i2c.write(LSM303_ADR_ACC, cmd, 2);
    cmd[0] = LSM303_REG_ACC_INT1_DURATION_A;
    cmd[1] = 0x00;
    i2c.write(LSM303_ADR_ACC, cmd, 2);
    cmd[0] = LSM303_REG_ACC_INT1_CFG_A;
    cmd[1] = 0x2A;
    //cmd[1] = 0x0A;
    i2c.write(LSM303_ADR_ACC, cmd, 2);
    //accPin.rise(&onAccIrq);
    */
}

void gpsInitSequence()
{
    myLedG = 1;
    myLedR = 1;
    
    // LED Confirmation Output - GPS
    for (int i = 0; i < 2; i++) {
        myLedB = 1;
        wait(0.3);
        myLedB = 0;
        wait(0.3);
    }
    myLedG = 0;
    myLedR = 0;
}

void magRead()
{
    cmd[0] = LSM303_REG_MAG_STATUS_REG_M;
    i2c.write(LSM303_ADR_MAG, cmd, 1);
    i2c.read(LSM303_ADR_MAG, &rda, 1);
    if (rda)
    {
        cmd[0] = LSM303_REG_MAG_OUTX_L_REG_M;
        i2c.write(LSM303_ADR_MAG, cmd, 1);
        i2c.read(LSM303_ADR_MAG, &buf[0], 1);
        cmd[0] = LSM303_REG_MAG_OUTX_H_REG_M;
        i2c.write(LSM303_ADR_MAG, cmd, 1);
        i2c.read(LSM303_ADR_MAG, &buf[1], 1);
        cmd[0] = LSM303_REG_MAG_OUTY_L_REG_M;
        i2c.write(LSM303_ADR_MAG, cmd, 1);
        i2c.read(LSM303_ADR_MAG, &buf[2], 1);
        cmd[0] = LSM303_REG_MAG_OUTY_H_REG_M;
        i2c.write(LSM303_ADR_MAG, cmd, 1);
        i2c.read(LSM303_ADR_MAG, &buf[3], 1);
        cmd[0] = LSM303_REG_MAG_OUTZ_L_REG_M;
        i2c.write(LSM303_ADR_MAG, cmd, 1);
        i2c.read(LSM303_ADR_MAG, &buf[4], 1);
        cmd[0] = LSM303_REG_MAG_OUTZ_H_REG_M;
        i2c.write(LSM303_ADR_MAG, cmd, 1);
        i2c.read(LSM303_ADR_MAG, &buf[5], 1);
        myMagX = (buf[0] | (buf[1] << 8));
        myMagY = (buf[2] | (buf[3] << 8));
        myMagZ = (buf[4] | (buf[5] << 8));
        if (myMagX < magMinX)
            magMinX = myMagX;
        if (myMagY < magMinY)
            magMinY = myMagY;
        if (myMagZ < magMinZ)
            magMinZ = myMagZ;
        if (myMagX > magMaxX)
            magMaxX = myMagX;
        if (myMagY > magMaxY)
            magMaxY = myMagY;
        if (myMagZ > magMaxZ)
            magMaxZ = myMagZ;
        cmd[0] = LSM303_REG_MAG_INT_SOURCE_REG_M;
        i2c.write(LSM303_ADR_MAG, cmd, 1);
        i2c.read(LSM303_ADR_MAG, &ret, 1);
        if (ret & 0x01 && magEvent == 0 && ret & 0xFC)
        {
            magSFire++;
            magEvent = 1;
            magSHIRQ++;
        }
        else if (!(ret & 0x01) && magEvent == 1 && !(ret & 0xFC))
        {
            magSFire++;
            magEvent = 0;
            magSLIRQ++;
        }
        printf("M|%02X|%02X %02X %02X %02X %02X %02X|%*d,%*d,%*d|%*d,%*d,%*d|%*d,%*d,%*d|%02X|%02X/%02X %02X/%02X\r\n", rda, buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], 6, myMagX, 6, myMagY, 6, myMagZ, 6, magMinX, 6, magMinY, 6, magMinZ, 6, magMaxX, 6, magMaxY, 6, magMaxZ, ret, magSHIRQ, magSLIRQ, magSFire, magHFire);
    }
}

void accRead()
{
    cmd[0] = LSM303_REG_ACC_STATUS_REG_A;
    i2c.write(LSM303_ADR_ACC, cmd, 1);
    i2c.read(LSM303_ADR_ACC, &rda, 1);
    if (rda)
    {
    cmd[0] = LSM303_REG_ACC_OUT_X_L_A;
    i2c.write(LSM303_ADR_ACC, cmd, 1);
    i2c.read(LSM303_ADR_ACC, &buf[0], 1);
    cmd[0] = LSM303_REG_ACC_OUT_X_H_A;
    i2c.write(LSM303_ADR_ACC, cmd, 1);
    i2c.read(LSM303_ADR_ACC, &buf[1], 1);
    cmd[0] = LSM303_REG_ACC_OUT_Y_L_A;
    i2c.write(LSM303_ADR_ACC, cmd, 1);
    i2c.read(LSM303_ADR_ACC, &buf[2], 1);
    cmd[0] = LSM303_REG_ACC_OUT_Y_H_A;
    i2c.write(LSM303_ADR_ACC, cmd, 1);
    i2c.read(LSM303_ADR_ACC, &buf[3], 1);
    cmd[0] = LSM303_REG_ACC_OUT_Z_L_A;
    i2c.write(LSM303_ADR_ACC, cmd, 1);
    i2c.read(LSM303_ADR_ACC, &buf[4], 1);
    cmd[0] = LSM303_REG_ACC_OUT_Z_H_A;
    i2c.write(LSM303_ADR_ACC, cmd, 1);
    i2c.read(LSM303_ADR_ACC, &buf[5], 1);
    myAccX = ((int16_t)(buf[0] | (buf[1] << 8)) >> accShift);
    myAccY = ((int16_t)(buf[2] | (buf[3] << 8)) >> accShift);
    myAccZ = ((int16_t)(buf[4] | (buf[5] << 8)) >> accShift);
    if (myAccX < accMinX)
        accMinX = myAccX;
    if (myAccY < accMinY)
        accMinY = myAccY;
    if (myAccZ < accMinZ)
        accMinZ = myAccZ;
    if (myAccX > accMaxX)
        accMaxX = myAccX;
    if (myAccY > accMaxY)
        accMaxY = myAccY;
    if (myAccZ > accMaxZ)
        accMaxZ = myAccZ;
    cmd[0] = LSM303_REG_ACC_INT1_SRC_A;
    i2c.write(LSM303_ADR_ACC, cmd, 1);
    i2c.read(LSM303_ADR_ACC, &ret, 1);
    if (ret & 0x40)
    {
        accSFire++;
        if (accEvent == 1)
        {
            accEvent = 0;
            accSLIRQ++;
            cmd[0] = LSM303_REG_ACC_INT1_THS_A;
            cmd[1] = 0x7D;
            i2c.write(LSM303_ADR_ACC, cmd, 2);
            cmd[0] = LSM303_REG_ACC_INT1_DURATION_A;
            cmd[1] = 0x00;
            i2c.write(LSM303_ADR_ACC, cmd, 2);
            cmd[0] = LSM303_REG_ACC_INT1_CFG_A;
            cmd[1] = 0x2A;
            i2c.write(LSM303_ADR_ACC, cmd, 2);
        }
        else
        {
            accEvent = 1;
            accSHIRQ++;
            cmd[0] = LSM303_REG_ACC_INT1_THS_A;
            cmd[1] = 0x50;
            i2c.write(LSM303_ADR_ACC, cmd, 2);
            cmd[0] = LSM303_REG_ACC_INT1_DURATION_A;
            //cmd[1] = 0x7D;
            cmd[1] = 0x03;
            i2c.write(LSM303_ADR_ACC, cmd, 2);
            cmd[0] = LSM303_REG_ACC_INT1_CFG_A;
            cmd[1] = 0x95;
            i2c.write(LSM303_ADR_ACC, cmd, 2);
        }
    }
    printf("A|%02X|%02X %02X %02X %02X %02X %02X|%*d,%*d,%*d|%*d,%*d,%*d|%*d,%*d,%*d|%02X|%02X/%02X %02X/%02X\r\n", rda, buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], 6, myAccX, 6, myAccY, 6, myAccZ, 6, accMinX, 6, accMinY, 6, accMinZ, 6, accMaxX, 6, accMaxY, 6, accMaxZ, ret, accSHIRQ, accSLIRQ, accSFire, accHFire);
    }
}

void tmpRead()
{
    #if defined(TARGET_LRAT)
        cmd[0] = LSM303_REG_MAG_TEMP_L_M;
        i2c.write(LSM303_ADR_MAG, cmd, 1);
        i2c.read(LSM303_ADR_MAG, &buf[0], 1);
        cmd[0] = LSM303_REG_MAG_TEMP_H_M;
        i2c.write(LSM303_ADR_MAG, cmd, 1);
        i2c.read(LSM303_ADR_MAG, &buf[1], 1);
        myTemp = (int16_t)(buf[0] | (buf[1] << 8));
        printf("T|%02X %02X| (%d)\r\n", buf[0], buf[1], myTemp);
    #else
        cmd[0] = LSM303_REG_ACC_STATUS_REG_AUX_A;
        i2c.write(LSM303_ADR_ACC, cmd, 1);
        i2c.read(LSM303_ADR_ACC, &rda, 1);
        if (rda & 0x04)
        {
            cmd[0] = LSM303_REG_ACC_OUT_TEMP_L_A | 0x80;
            i2c.write(LSM303_ADR_ACC, cmd, 1);
            i2c.read(LSM303_ADR_ACC, &buf[0], 2);
            myTemp = (int16_t)(buf[0] | (buf[1] << 8)) >> 6;
            printf("T|%02X %02X %02X| (%d)\r\n", rda, buf[0], buf[1], myTemp);
        }
    #endif
}

void gpsRead()
{
    bool gpsDone = false;
    bool fixGood = false;
    myLedW = 1;
    pos = 0;
    ret = 0xFF;
    cmd[0] = 0xFF;
    i2c.write(NEOM8M_ADR_GPS, cmd, 1);
    while(!gpsDone)
    {
        while (ret == 0xFF)
        {
            i2c.read(NEOM8M_ADR_GPS, &ret, 1);
        }   
        while (ret != 0xFF)
        {
            buf[pos++] = ret;
            i2c.read(NEOM8M_ADR_GPS, &ret, 1);
            if (ret == '\r')
            {
                i2c.read(NEOM8M_ADR_GPS, &ret, 1);
                if (ret == '\n')
                {
                    buf[pos] = 0x00;
                    // NMEA Validation
                    uint16_t crc = 0;
                    char clr;
                    if (buf[0] == '$' && buf[pos-3] == '*')
                    {
                        int i;
                        for (i = 1; i < pos-3; i++)
                        {
                            crc ^= buf[i];
                        }
                    }
                    if (crc == ((buf[pos-2] < 'A' ? buf[pos-2] - '0' : buf[pos-2] - '7') << 4 | (buf[pos-1] < 'A' ? buf[pos-1] - '0' : buf[pos-1] - '7')))
                        clr = '2'; // 2 = Green
                    else
                        clr = '1'; // 1 = Red
                    printf("GPS: [\u001b[3%cm%02X\u001b[0m] |%s|\r\n", clr, crc, buf);
                    // Global Positioning System Fix Data
                    if(strncmp(buf, "$GNGGA", 6) == 0)
                    {
                        printf("GNGGA> ");
                        //sscanf(cmd, "$GPGGA,%f,%f,%c,%f,%c,%d,%d,%*f,%f", &timefix, &latitude, &ns, &longitude, &ew, &fq, &nst, &altitude);
                        //pc.printf("GPGGA Fix taken at: %f, Latitude: %f %c, Longitude: %f %c, Fix quality: %d, Number of sat: %d, Altitude: %f M\n", timefix, latitude, ns, longitude, ew, fq, nst, altitude);
                        float fldTim, fldAlt;
                        double fldLat, fldLon;
                        char fldN_S, fldE_W;
                        int fldFix, fldSat;
                        sscanf(buf, "$GNGGA,%f,%lf,%c,%lf,%c,%d,%d,%*f,%f", &fldTim, &fldLat, &fldN_S, &fldLon, &fldE_W, &fldFix, &fldSat, &fldAlt);
                        printf("Sec: %.2f, Lat: %.5f %c, Lon: %.5f %c, Fix: %d, Sat: %d, Alt: %.1f M\r\n", fldTim, fldLat, fldN_S, fldLon, fldE_W, fldFix, fldSat, fldAlt);
                        if (clr == '2')
                        {
                            mylat = fldLat / (fldN_S == 'S' ? -100 : 100);
                            mylon = fldLon / (fldE_W == 'W' ? -100 : 100);
                            mytime = (uint32_t)fldTim;
                            mybatt = (fldSat & 0xF0 ? 0x0F : fldSat & 0x0F);
                        }
                    }
                    // Satellite status
                    if(strncmp(buf, "$GNGSA", 6) == 0)
                    {
                        printf("GNGSA> ");
                        //sscanf(cmd, "$GPGSA,%c,%d,%d", &tf, &fix, &nst);
                        //pc.printf("GPGSA Type fix: %c, 3D fix: %d, number of sat: %d\r\n", tf, fix, nst);
                        char fldTyp;
                        int fldDim, fldSat;
                        sscanf(buf, "$GNGSA,%c,%d,%d", &fldTyp, &fldDim, &fldSat);
                        printf("Typ: %c, Pos: %d, Sat: %d\r\n", fldTyp, fldDim, fldSat);
                    }
                    // Geographic position, Latitude and Longitude
                    if(strncmp(buf, "$GNGLL", 6) == 0)
                    {
                        printf("GNGLL> ");
                        //sscanf(cmd, "$GPGLL,%f,%c,%f,%c,%f", &latitude, &ns, &longitude, &ew, &timefix);
                        //pc.printf("GPGLL Latitude: %f %c, Longitude: %f %c, Fix taken at: %f\n", latitude, ns, longitude, ew, timefix);
                        float fldTim;
                        double fldLat, fldLon;
                        char fldN_S, fldE_W;
                        sscanf(buf, "$GNGLL,%lf,%c,%lf,%c,%f", &fldLat, &fldN_S, &fldLon, &fldE_W, &fldTim);
                        printf("Lat: %.5f %c, Lon: %.5f %c, Sec: %.2f\r\n", fldLat, fldN_S, fldLon, fldE_W, fldTim);
                    }
                    // Geographic position, Latitude and Longitude
                    if(strncmp(buf, "$GNRMC", 6) == 0)
                    {
                        printf("GNRMC> ");
                        //sscanf(cmd, "$GPRMC,%f,%c,%f,%c,%f,%c,%f,,%d", &timefix, &status, &latitude, &ns, &longitude, &ew, &speed, &date);
                        //pc.printf("GPRMC Fix taken at: %f, Status: %c, Latitude: %f %c, Longitude: %f %c, Speed: %f, Date: %d\n", timefix, status, latitude, ns, longitude, ew, speed, date);
                        float fldTim, fldSpd;
                        double fldLat, fldLon;
                        char fldSts, fldN_S, fldE_W;
                        int fldDat;
                        sscanf(buf, "$GNRMC,%f,%c,%lf,%c,%lf,%c,%f,,%d", &fldTim, &fldSts, &fldLat, &fldN_S, &fldLon, &fldE_W, &fldSpd, &fldDat);
                        printf("Sec: %.2f, Sts: %c, Lat: %.5f %c, Lon: %.5f %c, Spd: %.3f, Dat: %06d\r\n", fldTim, fldSts, fldLat, fldN_S, fldLon, fldE_W, fldSpd, fldDat);
                        if (fldSts == 'A')
                            fixGood = true;
                    }
                    pos = 0;
                    i2c.read(NEOM8M_ADR_GPS, &ret, 1);
                }
                else
                {
                    printf("WARN: Expected '\n', received '%02x'.\r\n", ret);
                }
            }
            else if (pos == 82)
            {
                buf[pos] = 0x00;
                printf("GPS: |%s| ...\r\n", buf);
                pos = 0;
                i2c.read(NEOM8M_ADR_GPS, &ret, 1);
            }
        }
        buf[pos] = 0x00;
        gpsDone = true;
    }
    if (pos > 0)
        printf("GPS: |%s|\r\n", buf);
    myLedW = 0;
    if (fixGood)
        myLedG = 1;
    else
        myLedR = 1;

    for (int i = 0; i < 10; i++) {
        myLedB = 1;
        wait(0.1);
        myLedB = 0;
        wait(0.1);
    }
}

// EOF