SAIT ARIS / LRAT-example-lorawan-REFACTOR-and-CLEAN-Branch

Dependencies:   Custom_LSM303 Custom_UBloxGPS LRAT-mbed-os USBDevice mbed-lora-radio-drv stm32EEPROM

Fork of LRAT-example-lorawan by SAIT ARIS

Revision:
34:341fb423e74b
Parent:
33:e47306c32791
Child:
35:73b3963c6dd3
--- a/main.cpp	Wed Aug 15 22:16:56 2018 +0000
+++ b/main.cpp	Tue Aug 21 14:56:58 2018 +0000
@@ -14,10 +14,10 @@
  * See the License for the specific language governing permissions and
  * limitations under the License.
  */
+//#define TARGET_LRAT 1
+//#define SENSOR_TEMP 1
 #include <stdio.h>
 #include "mbed.h"
-//#include "unsupported/USBDevice/USBSerial/USBSerial.h"
-#include "USBSerial.h"
 
 #include "lorawan/LoRaWANInterface.h"
 #include "lorawan/system/lorawan_data_structures.h"
@@ -93,6 +93,14 @@
  */
 static lorawan_app_callbacks_t callbacks;
 
+#if defined(TARGET_LRAT)
+#include "USBSerial.h"
+USBSerial serial;
+FileHandle* mbed::mbed_override_console(int) {
+    return &serial;
+}
+#endif
+
 int mytime = 0;
 int mybatt = 0;
 double mylat = 0;
@@ -124,22 +132,23 @@
 int16_t magMaxZ = 0;
 
 #define NEOM8M_ADR_GPS 0x84
-#define LSM303_ADR_ACC 0x32
+//#define LSM303_ADR_ACC 0x32
 #define LSM303_ADR_MAG 0x3C
 
 #define NEOM8M_REG_GPS_LENH 0xFD
 #define NEOM8M_REG_GPS_LENL 0xFE
 #define NEOM8M_REG_GPS_DATA 0xFE
 #define LSM303_REG_ACC_STATUS_REG_AUX_A 0x07
-#define LSM303_REG_ACC_OUT_TEMP_L_A 0x0C
-#define LSM303_REG_ACC_OUT_TEMP_H_A 0x0D
+//#define LSM303_REG_ACC_OUT_TEMP_L_A 0x0C
+//#define LSM303_REG_ACC_OUT_TEMP_H_A 0x0D
 #define LSM303_REG_ACC_WHO_AM_I_A 0x0F
-#define LSM303_REG_ACC_TEMP_CFG_REG_A 0x1F
+//#define LSM303_REG_ACC_TEMP_CFG_REG_A 0x1F
 #define LSM303_REG_ACC_CTRL_REG1_A 0x20
 #define LSM303_REG_ACC_CTRL_REG2_A 0x21
 #define LSM303_REG_ACC_CTRL_REG3_A 0x22
 #define LSM303_REG_ACC_CTRL_REG4_A 0x23
 #define LSM303_REG_ACC_CTRL_REG5_A 0x24
+#define LSM303_REG_ACC_CTRL_REG6_A 0x25
 #define LSM303_REG_ACC_STATUS_REG_A 0x27
 #define LSM303_REG_ACC_OUT_X_L_A 0x28
 #define LSM303_REG_ACC_OUT_X_H_A 0x29
@@ -151,29 +160,88 @@
 #define LSM303_REG_ACC_INT1_SRC_A 0x31
 #define LSM303_REG_ACC_INT1_THS_A 0x32
 #define LSM303_REG_ACC_INT1_DURATION_A 0x33
+/*
 //#define LSM303_REG_MAG_CRA_REG_M 0x00
 //#define LSM303_REG_MAG_MR_REG_M 0x02
+*/
 #define LSM303_REG_MAG_OFFSET_X_REG_L_M 0x45
 #define LSM303_REG_MAG_OFFSET_X_REG_H_M 0x46
 #define LSM303_REG_MAG_OFFSET_Y_REG_L_M 0x47
 #define LSM303_REG_MAG_OFFSET_Y_REG_H_M 0x48
 #define LSM303_REG_MAG_OFFSET_Z_REG_L_M 0x49
 #define LSM303_REG_MAG_OFFSET_Z_REG_H_M 0x4A
-#define LSM303_REG_MAG_WHO_AM_I_M 0x4F
-#define LSM303_REG_MAG_CFG_REG_A_M 0x60
-#define LSM303_REG_MAG_CFG_REG_C_M 0x62
+//#define LSM303_REG_MAG_WHO_AM_I_M 0x4F
+//#define LSM303_REG_MAG_CFG_REG_A_M 0x60
+//#define LSM303_REG_MAG_CFG_REG_B_M 0x61
+//#define LSM303_REG_MAG_CFG_REG_C_M 0x62
 #define LSM303_REG_MAG_INT_CTRL_REG_M 0x63
 #define LSM303_REG_MAG_INT_SOURCE_REG_M 0x64
 #define LSM303_REG_MAG_INT_THS_L_REG_M 0x65
 #define LSM303_REG_MAG_INT_THS_H_REG_M 0x66
-#define LSM303_REG_MAG_STATUS_REG_M 0x67
-#define LSM303_REG_MAG_OUTX_L_REG_M 0x68
-#define LSM303_REG_MAG_OUTX_H_REG_M 0x69
-#define LSM303_REG_MAG_OUTY_L_REG_M 0x6A
-#define LSM303_REG_MAG_OUTY_H_REG_M 0x6B
-#define LSM303_REG_MAG_OUTZ_L_REG_M 0x6C
-#define LSM303_REG_MAG_OUTZ_H_REG_M 0x6D
+//#define LSM303_REG_MAG_STATUS_REG_M 0x67
+//#define LSM303_REG_MAG_OUTX_L_REG_M 0x68
+//#define LSM303_REG_MAG_OUTX_H_REG_M 0x69
+//#define LSM303_REG_MAG_OUTY_L_REG_M 0x6A
+//#define LSM303_REG_MAG_OUTY_H_REG_M 0x6B
+//#define LSM303_REG_MAG_OUTZ_L_REG_M 0x6C
+//#define LSM303_REG_MAG_OUTZ_H_REG_M 0x6D
 
+#if defined(TARGET_LRAT)
+    #define LEDR PB_6
+    #define LEDG PB_7
+    #define LEDB PB_5
+    #define LEDW PB_2
+    #define LSM303_ADR_ACC 0x3A
+    #define LSM303_REG_MAG_WHO_AM_I_M 0x0F
+    #define LSM303_WHO_ACC 0x41
+    #define LSM303_WHO_MAG 0x3D
+    #define LSM303_CTRL_REG7_A 0x26
+    #define LSM303_REG_MAG_CTRL_REG1_M 0x20
+    #define LSM303_REG_MAG_CTRL_REG2_M 0x21
+    #define LSM303_REG_MAG_CTRL_REG3_M 0x22
+    #define LSM303_REG_MAG_CTRL_REG4_M 0x23
+    #define LSM303_REG_MAG_CTRL_REG5_M 0x24
+    #define LSM303_REG_MAG_STATUS_REG_M 0x27
+    #define LSM303_REG_MAG_OUTX_L_REG_M 0x28
+    #define LSM303_REG_MAG_OUTX_H_REG_M 0x29
+    #define LSM303_REG_MAG_OUTY_L_REG_M 0x2A
+    #define LSM303_REG_MAG_OUTY_H_REG_M 0x2B
+    #define LSM303_REG_MAG_OUTZ_L_REG_M 0x2C
+    #define LSM303_REG_MAG_OUTZ_H_REG_M 0x2D
+    #define LSM303_REG_MAG_TEMP_L_M 0x2E
+    #define LSM303_REG_MAG_TEMP_H_M 0x2F
+    #define LSM303_REG_MAG_TEMP_CFG_REG_A 0x1F
+    #define CFG_ACC_ADR LSM303_REG_ACC_CTRL_REG1_A
+    #define CFG_ACC_LEN 7
+    #define CFG_MAG_ADR LSM303_REG_MAG_CTRL_REG1_M
+    #define CFG_MAG_LEN 5
+#else
+    #define LEDR PB_7
+    #define LEDG PB_5
+    #define LEDB PB_6
+    #define LEDW PA_5
+    #define LSM303_ADR_ACC 0x32
+    #define LSM303_REG_MAG_WHO_AM_I_M 0x4F
+    #define LSM303_WHO_ACC 0x33
+    #define LSM303_WHO_MAG 0x40
+    #define LSM303_REG_ACC_OUT_TEMP_L_A 0x0C
+    #define LSM303_REG_ACC_OUT_TEMP_H_A 0x0D
+    #define LSM303_REG_ACC_TEMP_CFG_REG_A 0x1F
+    #define LSM303_REG_MAG_CFG_REG_A_M 0x60
+    #define LSM303_REG_MAG_CFG_REG_B_M 0x61
+    #define LSM303_REG_MAG_CFG_REG_C_M 0x62
+    #define LSM303_REG_MAG_STATUS_REG_M 0x67
+    #define LSM303_REG_MAG_OUTX_L_REG_M 0x68
+    #define LSM303_REG_MAG_OUTX_H_REG_M 0x69
+    #define LSM303_REG_MAG_OUTY_L_REG_M 0x6A
+    #define LSM303_REG_MAG_OUTY_H_REG_M 0x6B
+    #define LSM303_REG_MAG_OUTZ_L_REG_M 0x6C
+    #define LSM303_REG_MAG_OUTZ_H_REG_M 0x6D
+    #define CFG_ACC_ADR LSM303_REG_ACC_TEMP_CFG_REG_A // Start Disco at TEMP CFG.
+    #define CFG_ACC_LEN 7
+    #define CFG_MAG_ADR LSM303_REG_MAG_CFG_REG_A_M
+    #define CFG_MAG_LEN 3
+#endif
 
 I2C i2c(PB_9, PB_8);
 InterruptIn accPin(PB_14);
@@ -203,6 +271,19 @@
 
 char cmdSendLoop[9] = "SendLoop";
 
+DigitalOut myLedR(LEDR);
+DigitalOut myLedG(LEDG);
+DigitalOut myLedB(LEDB);
+DigitalOut myLedW(LEDW);
+
+void magInitSequence();
+void accInitSequence();
+void gpsInitSequence();
+void tmpRead();
+void magRead();
+void accRead();
+void gpsRead();
+
 void onAccIrq()
 {
     accHFire++;
@@ -215,46 +296,38 @@
 
 void accDumpCfg()
 {
-    char start = LSM303_REG_ACC_CTRL_REG1_A;
-    int i;
-    for (i = 0; i < 6; i++)
+    char start = CFG_ACC_ADR;
+    for (int i = 0; i < CFG_ACC_LEN; i++)
     {
         cmd[0] = start + i;
         i2c.write(LSM303_ADR_ACC, cmd, 1);
         i2c.read(LSM303_ADR_ACC, &buf[i], 1);
     }
-    printf("CFGACC: |%02X %02X %02X %02X %02X %02X|\r\n", buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]);
+    printf("CFGACC: | ");
+    for (int i = 0; i < CFG_ACC_LEN; i++)
+    {
+        printf("%02X ", buf[i]);
+    }
+    printf("|\r\n");
 }
 
 void magDumpCfg()
 {
-    char start = LSM303_REG_MAG_CFG_REG_A_M;
-    int i;
-    for (i = 0; i < 3; i++)
+    char start = CFG_MAG_ADR;
+    for (int i = 0; i < CFG_MAG_LEN; i++)
     {
         cmd[0] = start + i;
         i2c.write(LSM303_ADR_MAG, cmd, 1);
         i2c.read(LSM303_ADR_MAG, &buf[i], 1);
     }
-    printf("CFGMAG: |%02X %02X %02X|\r\n", buf[0], buf[1], buf[2]);
+    printf("CFGMAG: | ");
+    for (int i = 0; i < CFG_MAG_LEN; i++)
+    {
+        printf("%02X ", buf[i]);
+    }
+    printf("|\r\n");
 }
 
-#define LEDR PB_7
-#define LEDG PB_5
-#define LEDB PB_6
-//#define LEDW PB_2
-
-DigitalOut myLedR(LEDR);
-DigitalOut myLedG(LEDG);
-DigitalOut myLedB(LEDB);
-//DigitalOut myLedW(LEDW);
-
-/*int myLedR = 0;
-int myLedG = 0;
-int myLedB = 0;
-int myLedW = 0;*/
-//uint8_t myFoo;
-
 /**
  * Entry point for application
  */
@@ -262,67 +335,17 @@
 {
     wait(4);
     printf("\r\n-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-\r\n");
-    USBSerial serial;
-/*    printf("Turning the lights on...\r\n");
-    myLedR = 1;
-    myLedG = 1;
-    myLedB = 1;
-    myLedW = 1;
-    printf("The lights are on.\r\n");
-    wait(0.5);
-    printf("Turning the lights off...\r\n");
-    myLedR = 0;
-    myLedG = 0;
-    myLedB = 0;
-    myLedW = 0;
-    printf("The lights are off.\r\n");
-    wait(0.5);
-    printf("Turning the lights on...\r\n");
-    myLedR = 1;
-    myLedG = 1;
-    myLedB = 1;
-    myLedW = 1;
-    printf("The lights are on.\r\n");
-    wait(0.5);
-    printf("Turning the lights off...\r\n");
-    myLedR = 0;
-    myLedG = 0;
-    myLedB = 0;
-    myLedW = 0;
-    printf("The lights are off.\r\n");
-    printf("Initializing USBSerial.\r\n");
-    USBSerial serial;
-    printf("USBSerial initialized.\r\n");*/
-    int myFoo = 1;
-    while(1)
+ 
+    // Boot Flash
+    for (int i = 0; i <= 64; i++)
     {
-        myLedR = 1;
-        //serial.printf("LED = Red\r\n");
-        wait(0.5);
-        myLedR = 0;
-        myLedG = 1;
-        //serial.printf("LED = Green\r\n");
-        wait(0.5);
-        myLedG = 0;
-        myLedB = 1;
-        //serial.printf("LED = Blue\r\n");
-        wait(0.5);
-        myLedB = 0;
-        //myLedW = 1;
-        //serial.printf("LED = White\r\n");
-        //wait(0.5);
-        //myLedW = 0;
-        if (myFoo % 6 == 0)
-        {
-            myLedR = 1;
-            myLedG = 1;
-            myLedB = 1;
-            //myLedW = 1;
-        }
-        myFoo++;
+        myLedR = i & 0x01;
+        myLedG = i & 0x02;
+        myLedB = i & 0x04;
+        myLedW = i & 0x08;
+        wait(0.01);
     }
-    
-    
+    wait(4);
     
     // setup tracing
     setup_trace();
@@ -330,163 +353,33 @@
     // stores the status of a call to LoRaWAN protocol
     lorawan_status_t retcode;
     
-    wait(4);
-
-    printf("\r\n- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -\r\n");
-    
+    /* I2C init */
+    ret = 0x00;
+    magDumpCfg();
+    accDumpCfg();
+    magInitSequence();
+    accInitSequence();
+    gpsInitSequence();
     magDumpCfg();
     accDumpCfg();
     
-    /* I2C init */
-    ret = 0x00;
-    
-    cmd[0] = LSM303_REG_MAG_WHO_AM_I_M;
-    i2c.write(LSM303_ADR_MAG, cmd, 1);
-    i2c.read(LSM303_ADR_MAG, &ret, 1);
-    res = (ret == 0x40 ? sPass : sFail);
-    printf("MAG WhoAmI: %02x %s\r\n", ret, res);
-    
-    cmd[0] = LSM303_REG_MAG_CFG_REG_A_M;
-    cmd[1] = 0x00;  // Mag = 10 Hz (high-resolution and continuous mode)
-    i2c.write(LSM303_ADR_MAG, cmd, 2);
-    cmd[0] = LSM303_REG_MAG_CFG_REG_C_M;
-    //cmd[1] = 0x01;  // Mag data-ready interrupt enable
-    cmd[1] = 0x40; // Mag enable interrupt on pin
-    i2c.write(LSM303_ADR_MAG, cmd, 2);
-    cmd[0] = LSM303_REG_MAG_CFG_REG_A_M;
-    i2c.write(LSM303_ADR_MAG, cmd, 1);
-    i2c.read(LSM303_ADR_MAG, &ret, 1);
-    printf("MAG RetVal: %02x\r\n", ret);
-    
-    cmd[0] = LSM303_REG_ACC_WHO_AM_I_A;
-    i2c.write(LSM303_ADR_ACC, cmd, 1);
-    i2c.read(LSM303_ADR_ACC, &ret, 1);
-    res = (ret == 0x33 ? sPass : sFail);
-    printf("ACC WhoAmI: %02x %s\r\n", ret, res);
-    
-    cmd[0] = LSM303_REG_ACC_CTRL_REG1_A;
-    cmd[1] = 0x57;  // Accel = 100 Hz (normal mode)
-    i2c.write(LSM303_ADR_ACC, cmd, 2);
+    cfg = 0x00;
+#if defined(TARGET_LRAT)
     cmd[0] = LSM303_REG_ACC_CTRL_REG1_A;
     i2c.write(LSM303_ADR_ACC, cmd, 1);
     i2c.read(LSM303_ADR_ACC, &ret, 1);
-    printf("ACC RetVal: %02x\r\n", ret);
-    
-    // Enable High Resolution Mode
-    cmd[0] = LSM303_REG_ACC_CTRL_REG4_A;
-    i2c.write(LSM303_ADR_ACC, cmd, 1);
-    i2c.read(LSM303_ADR_ACC, &ret, 1);
-    cmd[0] = LSM303_REG_ACC_CTRL_REG4_A;
-    cmd[1] = ret | 0x08;
-    i2c.write(LSM303_ADR_ACC, cmd, 2);
-
-    // Enable Temp Sensor
-    cmd[0] = LSM303_REG_ACC_TEMP_CFG_REG_A;
-    cmd[1] = 0xC0;
-    i2c.write(LSM303_ADR_ACC, cmd, 2);
-    cmd[0] = LSM303_REG_ACC_CTRL_REG4_A;
-    i2c.write(LSM303_ADR_ACC, cmd, 1);
-    i2c.read(LSM303_ADR_ACC, &ret, 1);
-    cmd[0] = LSM303_REG_ACC_CTRL_REG4_A;
-    cmd[1] = ret | 0x80;
-    i2c.write(LSM303_ADR_ACC, cmd, 2);
-    
-    // Set Full Scale to 4g
-    /*
+    cfg |= (ret & 0x80) >> 7;
     cmd[0] = LSM303_REG_ACC_CTRL_REG4_A;
     i2c.write(LSM303_ADR_ACC, cmd, 1);
     i2c.read(LSM303_ADR_ACC, &ret, 1);
-    cmd[0] = LSM303_REG_ACC_CTRL_REG4_A;
-    //cmd[1] = ret | 0x30;              // 16g
-    //cmd[1] = (ret & ~0x10) | 0x20;    // 8g
-    cmd[1] = (ret & ~0x20) | 0x10;      // 4g
-    //cmd[1] = ret & ~0x30;             // 2g
-    i2c.write(LSM303_ADR_ACC, cmd, 2);
-    */
-/*
-    // IRQ Init from Datasheet.
-    cmd[0] = LSM303_REG_ACC_CTRL_REG1_A;
-    cmd[1] = 0xA7;
-    i2c.write(LSM303_ADR_ACC, cmd, 2);
-    cmd[0] = LSM303_REG_ACC_CTRL_REG2_A;
-    cmd[1] = 0x00;
-    i2c.write(LSM303_ADR_ACC, cmd, 2);
-    cmd[0] = LSM303_REG_ACC_CTRL_REG3_A;
-    cmd[1] = 0x40;
-    i2c.write(LSM303_ADR_ACC, cmd, 2);
-    cmd[0] = LSM303_REG_ACC_CTRL_REG4_A;
-    cmd[1] = 0x00;
-    //cmd[1] = 0x10;
-    i2c.write(LSM303_ADR_ACC, cmd, 2);
-    cmd[0] = LSM303_REG_ACC_CTRL_REG5_A;
-    cmd[1] = 0x08;
-    i2c.write(LSM303_ADR_ACC, cmd, 2);
-*/
-
-    magDumpCfg();
-    accDumpCfg();
-
-    /*
-    // ACC INTERRUPT SETUP
-    // Enable Interrupt Pin
-    cmd[0] = LSM303_REG_ACC_CTRL_REG3_A;
-    i2c.write(LSM303_ADR_ACC, cmd, 1);
-    i2c.read(LSM303_ADR_ACC, &ret, 1);
-    cmd[0] = LSM303_REG_ACC_CTRL_REG3_A;
-    cmd[1] = ret | 0x40;
-    i2c.write(LSM303_ADR_ACC, cmd, 2);
-    // Enable Interrupt Latch
-    cmd[0] = LSM303_REG_ACC_CTRL_REG5_A;
-    i2c.write(LSM303_ADR_ACC, cmd, 1);
-    i2c.read(LSM303_ADR_ACC, &ret, 1);
-    cmd[0] = LSM303_REG_ACC_CTRL_REG5_A;
-    cmd[1] = ret | 0x08;
-    i2c.write(LSM303_ADR_ACC, cmd, 2);
-
-    // Set Threshold/Duration/Config
-    cmd[0] = LSM303_REG_ACC_INT1_THS_A;
-    //cmd[1] = 0x10;
-    //cmd[1] = 0x40;
-    //cmd[1] = 0x60;
-    cmd[1] = 0x7D;
-    i2c.write(LSM303_ADR_ACC, cmd, 2);
-    cmd[0] = LSM303_REG_ACC_INT1_DURATION_A;
-    cmd[1] = 0x00;
-    i2c.write(LSM303_ADR_ACC, cmd, 2);
-    cmd[0] = LSM303_REG_ACC_INT1_CFG_A;
-    cmd[1] = 0x2A;
-    //cmd[1] = 0x0A;
-    i2c.write(LSM303_ADR_ACC, cmd, 2);
-    //accPin.rise(&onAccIrq);
-    */
-    
-
-    /*
-    // MAG INTERRUPT SETUP
-    cmd[0] = LSM303_REG_MAG_INT_THS_L_REG_M;
-    cmd[1] = 0xF4;
-    i2c.write(LSM303_ADR_MAG, cmd, 2);
-    cmd[0] = LSM303_REG_MAG_INT_THS_H_REG_M;
-    cmd[1] = 0x01;
-    i2c.write(LSM303_ADR_MAG, cmd, 2);
-    cmd[0] = LSM303_REG_MAG_INT_CTRL_REG_M;
-    cmd[1] = 0xE7;
-    i2c.write(LSM303_ADR_MAG, cmd, 2);
-    magPin.rise(&onMagIrq);
-    */
-    
-    
-    /*while(1)
-    {
-        time_t tNow = time(NULL);
-        cmd[0] = LSM303_REG_ACC_INT1_SRC_A;
-        i2c.write(LSM303_ADR_ACC, cmd, 1);
-        i2c.read(LSM303_ADR_ACC, &ret, 1);
-        printf("%08X - %02X - IRQ: %d\r\n", tNow, ret, irqFired);
-        wait(1);
-    }*/
-    
-    cfg = 0x00;
+    accScale = 1 << (!(ret & 0x30) ? 0 : ((ret & 0x30) >> 4) - 1);
+    cmd[0] = LSM303_REG_MAG_CTRL_REG2_M;
+    i2c.write(LSM303_ADR_MAG, cmd, 1);
+    i2c.read(LSM303_ADR_MAG, &ret, 1);
+    cfg |= (ret & 0x60) >> 1;
+    //accShift = 0; // Full 16-bit resolution
+    accShift = 4;
+#else
     cmd[0] = LSM303_REG_ACC_CTRL_REG1_A;
     i2c.write(LSM303_ADR_ACC, cmd, 1);
     i2c.read(LSM303_ADR_ACC, &ret, 1);
@@ -506,210 +399,21 @@
         accShift = 4;
     else
         accShift = 6;
+#endif
     printf("Quality: %02x AccShift: %d AccScale: %d\r\n", cfg, accShift, accScale);
-    
-    /*
-    while(1)
-    {
-        cmd[0] = LSM303_REG_ACC_STATUS_REG_AUX_A;
-        i2c.write(LSM303_ADR_ACC, cmd, 1);
-        i2c.read(LSM303_ADR_ACC, &rda, 1);
-        if (rda & 0x04)
-        {
-            cmd[0] = LSM303_REG_ACC_OUT_TEMP_L_A;
-            i2c.write(LSM303_ADR_ACC, cmd, 1);
-            i2c.read(LSM303_ADR_ACC, &buf[0], 1);
-            cmd[0] = LSM303_REG_ACC_OUT_TEMP_H_A;
-            i2c.write(LSM303_ADR_ACC, cmd, 1);
-            i2c.read(LSM303_ADR_ACC, &buf[1], 1);
-            myTemp = (int16_t)(buf[0] | (buf[1] << 8)) >> 6;
-            printf("TMP: |%02X %02X %02X| (%d)\r\n", rda, buf[0], buf[1], myTemp);
-        }
-    }
-    */
-    
-    /*
-    while(1)
-    {
-        cmd[0] = LSM303_REG_ACC_STATUS_REG_AUX_A | 0x80;
-        i2c.write(LSM303_ADR_ACC, cmd, 1);
-        i2c.read(LSM303_ADR_ACC, &buf[0], 7);
-        if (buf[0] & 0x04)
-        {
-            myTemp = (int16_t)(buf[5] | (buf[6] << 8)) >> 6;
-            printf("TMP: |%02X %02X %02X| (%d)\r\n", buf[0], buf[5], buf[6], myTemp);
-        }
-    }
-    */
 
-    /*
     while(1)
     {
-        cmd[0] = LSM303_REG_ACC_STATUS_REG_AUX_A;
-        i2c.write(LSM303_ADR_ACC, cmd, 1);
-        i2c.read(LSM303_ADR_ACC, &rda, 1);
-        if (rda & 0x04)
-        {
-            cmd[0] = LSM303_REG_ACC_OUT_TEMP_L_A | 0x80;
-            i2c.write(LSM303_ADR_ACC, cmd, 1);
-            i2c.read(LSM303_ADR_ACC, &buf[0], 2);
-            myTemp = (int16_t)(buf[0] | (buf[1] << 8)) >> 6;
-            printf("TMP: |%02X %02X %02X| (%d)\r\n", rda, buf[0], buf[1], myTemp);
-        }
-    }
-    */
-    
-    cmd[0] = LSM303_REG_ACC_STATUS_REG_AUX_A;
-    i2c.write(LSM303_ADR_ACC, cmd, 1);
-    i2c.read(LSM303_ADR_ACC, &rda, 1);
-    if (rda & 0x04)
-    {
-        cmd[0] = LSM303_REG_ACC_OUT_TEMP_L_A | 0x80;
-        i2c.write(LSM303_ADR_ACC, cmd, 1);
-        i2c.read(LSM303_ADR_ACC, &buf[0], 2);
-        myTemp = (int16_t)(buf[0] | (buf[1] << 8)) >> 6;
-        printf("TMP: |%02X %02X %02X| (%d)\r\n", rda, buf[0], buf[1], myTemp);
-    }
-
-/*
-    //wait(8);
-
-    while(1) {
-    cmd[0] = LSM303_REG_MAG_STATUS_REG_M;
-    i2c.write(LSM303_ADR_MAG, cmd, 1);
-    i2c.read(LSM303_ADR_MAG, &rda, 1);
-    if (rda)
-    {
-    cmd[0] = LSM303_REG_MAG_OUTX_L_REG_M;
-    i2c.write(LSM303_ADR_MAG, cmd, 1);
-    i2c.read(LSM303_ADR_MAG, &buf[0], 1);
-    cmd[0] = LSM303_REG_MAG_OUTX_H_REG_M;
-    i2c.write(LSM303_ADR_MAG, cmd, 1);
-    i2c.read(LSM303_ADR_MAG, &buf[1], 1);
-    cmd[0] = LSM303_REG_MAG_OUTY_L_REG_M;
-    i2c.write(LSM303_ADR_MAG, cmd, 1);
-    i2c.read(LSM303_ADR_MAG, &buf[2], 1);
-    cmd[0] = LSM303_REG_MAG_OUTY_H_REG_M;
-    i2c.write(LSM303_ADR_MAG, cmd, 1);
-    i2c.read(LSM303_ADR_MAG, &buf[3], 1);
-    cmd[0] = LSM303_REG_MAG_OUTZ_L_REG_M;
-    i2c.write(LSM303_ADR_MAG, cmd, 1);
-    i2c.read(LSM303_ADR_MAG, &buf[4], 1);
-    cmd[0] = LSM303_REG_MAG_OUTZ_H_REG_M;
-    i2c.write(LSM303_ADR_MAG, cmd, 1);
-    i2c.read(LSM303_ADR_MAG, &buf[5], 1);
-    myMagX = (buf[0] | (buf[1] << 8));
-    myMagY = (buf[2] | (buf[3] << 8));
-    myMagZ = (buf[4] | (buf[5] << 8));
-    if (myMagX < magMinX)
-        magMinX = myMagX;
-    if (myMagY < magMinY)
-        magMinY = myMagY;
-    if (myMagZ < magMinZ)
-        magMinZ = myMagZ;
-    if (myMagX > magMaxX)
-        magMaxX = myMagX;
-    if (myMagY > magMaxY)
-        magMaxY = myMagY;
-    if (myMagZ > magMaxZ)
-        magMaxZ = myMagZ;
-    //printf("MAG: |%02X %02X %02X %02X %02X %02X| (%d,%d,%d)\r\n", buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], myMagX, myMagY, myMagZ);
-    cmd[0] = LSM303_REG_MAG_INT_SOURCE_REG_M;
-    i2c.write(LSM303_ADR_MAG, cmd, 1);
-    i2c.read(LSM303_ADR_MAG, &ret, 1);
-    if (ret & 0x01 && magEvent == 0 && ret & 0xFC)
-    {
-        magSFire++;
-        magEvent = 1;
-        magSHIRQ++;
+        time_t tNow = time(NULL);
+        printf("Clock: %d\r\n", tNow);
+#if defined(SENSOR_TEMP)
+        tmpRead();
+#endif
+        magRead();
+        accRead();
+        gpsRead();
+        wait(4);
     }
-    else if (!(ret & 0x01) && magEvent == 1 && !(ret & 0xFC))
-    {
-        magSFire++;
-        magEvent = 0;
-        magSLIRQ++;
-    }
-    printf("M|%02X|%02X %02X %02X %02X %02X %02X|%*d,%*d,%*d|%*d,%*d,%*d|%*d,%*d,%*d|%02X|%02X/%02X %02X/%02X\r\n", rda, buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], 6, myMagX, 6, myMagY, 6, myMagZ, 6, magMinX, 6, magMinY, 6, magMinZ, 6, magMaxX, 6, magMaxY, 6, magMaxZ, ret, magSHIRQ, magSLIRQ, magSFire, magHFire);
-    }
-
-    cmd[0] = LSM303_REG_ACC_STATUS_REG_A;
-    i2c.write(LSM303_ADR_ACC, cmd, 1);
-    i2c.read(LSM303_ADR_ACC, &rda, 1);
-    if (rda)
-    {
-    cmd[0] = LSM303_REG_ACC_OUT_X_L_A;
-    i2c.write(LSM303_ADR_ACC, cmd, 1);
-    i2c.read(LSM303_ADR_ACC, &buf[0], 1);
-    cmd[0] = LSM303_REG_ACC_OUT_X_H_A;
-    i2c.write(LSM303_ADR_ACC, cmd, 1);
-    i2c.read(LSM303_ADR_ACC, &buf[1], 1);
-    cmd[0] = LSM303_REG_ACC_OUT_Y_L_A;
-    i2c.write(LSM303_ADR_ACC, cmd, 1);
-    i2c.read(LSM303_ADR_ACC, &buf[2], 1);
-    cmd[0] = LSM303_REG_ACC_OUT_Y_H_A;
-    i2c.write(LSM303_ADR_ACC, cmd, 1);
-    i2c.read(LSM303_ADR_ACC, &buf[3], 1);
-    cmd[0] = LSM303_REG_ACC_OUT_Z_L_A;
-    i2c.write(LSM303_ADR_ACC, cmd, 1);
-    i2c.read(LSM303_ADR_ACC, &buf[4], 1);
-    cmd[0] = LSM303_REG_ACC_OUT_Z_H_A;
-    i2c.write(LSM303_ADR_ACC, cmd, 1);
-    i2c.read(LSM303_ADR_ACC, &buf[5], 1);
-    myAccX = ((int16_t)(buf[0] | (buf[1] << 8)) >> accShift);
-    myAccY = ((int16_t)(buf[2] | (buf[3] << 8)) >> accShift);
-    myAccZ = ((int16_t)(buf[4] | (buf[5] << 8)) >> accShift);
-    if (myAccX < accMinX)
-        accMinX = myAccX;
-    if (myAccY < accMinY)
-        accMinY = myAccY;
-    if (myAccZ < accMinZ)
-        accMinZ = myAccZ;
-    if (myAccX > accMaxX)
-        accMaxX = myAccX;
-    if (myAccY > accMaxY)
-        accMaxY = myAccY;
-    if (myAccZ > accMaxZ)
-        accMaxZ = myAccZ;
-    //printf("ACC: |%02X %02X %02X %02X %02X %02X| (%d,%d,%d)\r\n", buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], myAccX, myAccY, myAccZ);
-    cmd[0] = LSM303_REG_ACC_INT1_SRC_A;
-    i2c.write(LSM303_ADR_ACC, cmd, 1);
-    i2c.read(LSM303_ADR_ACC, &ret, 1);
-    if (ret & 0x40)
-    {
-        accSFire++;
-        if (accEvent == 1)
-        {
-            accEvent = 0;
-            accSLIRQ++;
-            cmd[0] = LSM303_REG_ACC_INT1_THS_A;
-            cmd[1] = 0x7D;
-            i2c.write(LSM303_ADR_ACC, cmd, 2);
-            cmd[0] = LSM303_REG_ACC_INT1_DURATION_A;
-            cmd[1] = 0x00;
-            i2c.write(LSM303_ADR_ACC, cmd, 2);
-            cmd[0] = LSM303_REG_ACC_INT1_CFG_A;
-            cmd[1] = 0x2A;
-            i2c.write(LSM303_ADR_ACC, cmd, 2);
-        }
-        else
-        {
-            accEvent = 1;
-            accSHIRQ++;
-            cmd[0] = LSM303_REG_ACC_INT1_THS_A;
-            cmd[1] = 0x50;
-            i2c.write(LSM303_ADR_ACC, cmd, 2);
-            cmd[0] = LSM303_REG_ACC_INT1_DURATION_A;
-            //cmd[1] = 0x7D;
-            cmd[1] = 0x03;
-            i2c.write(LSM303_ADR_ACC, cmd, 2);
-            cmd[0] = LSM303_REG_ACC_INT1_CFG_A;
-            cmd[1] = 0x95;
-            i2c.write(LSM303_ADR_ACC, cmd, 2);
-        }
-    }
-    printf("A|%02X|%02X %02X %02X %02X %02X %02X|%*d,%*d,%*d|%*d,%*d,%*d|%*d,%*d,%*d|%02X|%04X/%04X %04X/%04X\r\n", rda, buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], 5, myAccX, 5, myAccY, 5, myAccZ, 5, accMinX, 5, accMinY, 5, accMinZ, 5, accMaxX, 5, accMaxY, 5, accMaxZ, ret, accSHIRQ, accSLIRQ, accSFire, accHFire);
-    }
-    }*/
     
     // Initialize LoRaWAN stack
     if (lorawan.initialize(&ev_queue) != LORAWAN_STATUS_OK) {
@@ -767,7 +471,6 @@
     uint16_t packet_len;
     int16_t retcode;
     float sensor_value;
-    bool gpsDone = false;
 
     if (ds1820.begin()) {
         ds1820.startConversion();
@@ -781,7 +484,564 @@
 
     time_t tNow = time(NULL);
     printf("Clock: %d\r\n", tNow);
+    
+#if defined(SENSOR_TEMP)
+    tmpRead();
+#endif
+    magRead();
+    accRead();
+    gpsRead();
+    
+    int ilat = (int)(mylat * 100000);
+    int ilon = (int)(mylon * 100000);
+    printf("TIM: %d, SAT: %d, LAT: %d, LON: %d\r\n", mytime, mybatt, ilat, ilon);
+    packet_len = 11;
+    tx_buffer[0] = (mytime >> 24) & 0xFF;
+    tx_buffer[1] = (mytime >> 16) & 0xFF;
+    tx_buffer[2] = (mytime >> 8) & 0xFF;
+    tx_buffer[3] = (mytime >> 0) & 0xFF;
+    tx_buffer[4] = ((mybatt << 4) & 0xF0) | ((ilat >> 22) & 0x0F);
+    tx_buffer[5] = (ilat >> 14) & 0xFF;
+    tx_buffer[6] = (ilat >> 6) & 0xFF;
+    tx_buffer[7] = ((ilat << 2) & 0xFC) | ((ilon >> 24) & 0x03);
+    tx_buffer[8] = (ilon >> 16) & 0xFF;
+    tx_buffer[9] = (ilon >> 8) & 0xFF;
+    tx_buffer[10] = (ilon >> 0) & 0xFF;
+    printf("\r\nBUF: |");
+    for (int i = 0; i < packet_len; i++) { printf("%02X", tx_buffer[i]); }
+    printf("|\r\n");
+    retcode = lorawan.send(MBED_CONF_LORA_APP_PORT, tx_buffer, packet_len,
+                           MSG_CONFIRMED_FLAG);
 
+    if (retcode < 0) {
+        retcode == LORAWAN_STATUS_WOULD_BLOCK ? printf("send - WOULD BLOCK\r\n")
+                : printf("\r\n send() - Error code %d \r\n", retcode);
+
+        if (retcode == LORAWAN_STATUS_WOULD_BLOCK) {
+            //retry in 3 seconds
+            if (MBED_CONF_LORA_DUTY_CYCLE_ON) {
+                ev_queue.call_in(3000, send_message);
+            }
+        }
+        return;
+    }
+
+    printf("\r\n %d bytes scheduled for transmission \r\n", retcode);
+    memset(tx_buffer, 0, sizeof(tx_buffer));
+    
+    //LED Confirmation Output - MESSAGE SENT
+    for (int i = 0; i < 10; i++) {
+            myLedG = 1;
+            wait(0.1);
+            myLedG = 0;
+            myLedR = 1;
+            wait(0.1);
+            myLedR = 0;
+            myLedB = 1;
+            wait(0.1);
+            myLedB = 0;
+    }
+}
+
+/**
+ * Receive a message from the Network Server
+ */
+static void receive_message()
+{
+    int16_t retcode;
+    retcode = lorawan.receive(MBED_CONF_LORA_APP_PORT, rx_buffer,
+                              sizeof(rx_buffer),
+                              MSG_CONFIRMED_FLAG|MSG_UNCONFIRMED_FLAG);
+
+    if (retcode < 0) {
+        printf("\r\n receive() - Error code %d \r\n", retcode);
+        return;
+    }
+
+    printf(" Data:");
+
+    for (uint8_t i = 0; i < retcode; i++) {
+        printf("%x", rx_buffer[i]);
+    }
+
+    printf("\r\n Data Length: %d\r\n", retcode);
+
+    /*
+    int startLoop = 0;
+    if (strncmp((char *)rx_buffer, cmdSendLoop, 8) == 0)
+    {
+        printf("SendLoop Command Received!\r\n");
+        startLoop = 1;
+    }
+    */
+
+    memset(rx_buffer, 0, sizeof(rx_buffer));
+    /*
+    if (startLoop)
+        send_message();
+    */
+}
+
+/**
+ * Event handler
+ */
+static void lora_event_handler(lorawan_event_t event)
+{
+    tr_debug("In lora_event_handler(%d)...", event);
+    switch (event) {
+        case CONNECTED:
+            printf("\r\n Connection - Successful \r\n");
+            if (MBED_CONF_LORA_DUTY_CYCLE_ON) {
+                send_message();
+            } else {
+                ev_queue.call_every(TX_TIMER, send_message);
+            }
+
+            break;
+        case DISCONNECTED:
+            ev_queue.break_dispatch();
+            printf("\r\n Disconnected Successfully \r\n");
+            break;
+        case TX_DONE:
+            printf("\r\n Message Sent to Network Server \r\n");
+            if (MBED_CONF_LORA_DUTY_CYCLE_ON) {
+                send_message();
+            }
+            break;
+        case TX_TIMEOUT:
+        case TX_ERROR:
+        case TX_CRYPTO_ERROR:
+        case TX_SCHEDULING_ERROR:
+            printf("\r\n Transmission Error - EventCode = %d \r\n", event);
+            // try again
+            if (MBED_CONF_LORA_DUTY_CYCLE_ON) {
+                send_message();
+            }
+            break;
+        case RX_DONE:
+            printf("\r\n Received message from Network Server \r\n");
+            receive_message();
+            break;
+        case RX_TIMEOUT:
+        case RX_ERROR:
+            printf("\r\n Error in reception - Code = %d \r\n", event);
+            break;
+        case JOIN_FAILURE:
+            printf("\r\n OTAA Failed - Check Keys \r\n");
+            break;
+        case UPLINK_REQUIRED:
+            printf("\r\n Uplink required by NS \r\n");
+            if (MBED_CONF_LORA_DUTY_CYCLE_ON) {
+                send_message();
+            }
+            break;
+        default:
+            MBED_ASSERT("Unknown Event");
+    }
+}
+
+void magInitSequence()
+{
+    myLedR = 0;
+    myLedG = 0;
+    cmd[0] = LSM303_REG_MAG_WHO_AM_I_M;
+    i2c.write(LSM303_ADR_MAG, cmd, 1);
+    i2c.read(LSM303_ADR_MAG, &ret, 1);
+    res = (ret == LSM303_WHO_MAG ? sPass : sFail);
+    printf("MAG WhoAmI: %02X %s\r\n", ret, res);
+    
+    if (ret == LSM303_WHO_MAG)
+        myLedG = 1;
+    else
+        myLedR = 1;
+
+    for (int i = 0; i < 2; i++) {
+        myLedB = 1;
+        wait(0.3);
+        myLedB = 0;
+        wait(0.3);
+    }
+    
+#if defined(TARGET_LRAT)
+    cmd[0] = LSM303_REG_MAG_CTRL_REG1_M;
+    cmd[1] = 0x70;  // Ultra-High Performance Mode on XY axes, ODR=10Hz
+    i2c.write(LSM303_ADR_MAG, cmd, 2);
+    cmd[0] = LSM303_REG_MAG_CTRL_REG3_M;
+    cmd[1] = 0x00;  // High Resolution? (Full-power), Continuous
+    i2c.write(LSM303_ADR_MAG, cmd, 2);
+    cmd[0] = LSM303_REG_MAG_CTRL_REG4_M;
+    cmd[1] = 0x0C;  // Ultra-High Performance Mode on Z axis
+    i2c.write(LSM303_ADR_MAG, cmd, 2);
+    #if defined(SENSOR_TEMP)
+        // Enable Temp Sensor
+        cmd[0] = LSM303_REG_MAG_CTRL_REG1_M;
+        i2c.write(LSM303_ADR_MAG, cmd, 1);
+        i2c.read(LSM303_ADR_MAG, &ret, 1);
+        cmd[0] = LSM303_REG_MAG_CTRL_REG1_M;
+        cmd[1] = ret | 0x80;
+        i2c.write(LSM303_ADR_MAG, cmd, 2);
+        /*
+        cmd[0] = LSM303_REG_MAG_CTRL_REG5_M;
+        i2c.write(LSM303_ADR_MAG, cmd, 1);
+        i2c.read(LSM303_ADR_MAG, &ret, 1);
+        cmd[0] = LSM303_REG_MAG_CTRL_REG5_M;
+        cmd[1] = ret | 0x40;
+        i2c.write(LSM303_ADR_MAG, cmd, 2);
+        */
+    #endif
+#else
+    cmd[0] = LSM303_REG_MAG_CFG_REG_A_M;
+    cmd[1] = 0x00;  // Mag = 10 Hz (high-resolution and continuous mode)
+    i2c.write(LSM303_ADR_MAG, cmd, 2);
+    cmd[0] = LSM303_REG_MAG_CFG_REG_C_M;
+    //cmd[1] = 0x01;  // Mag data-ready interrupt enable
+    cmd[1] = 0x40; // Mag enable interrupt on pin
+    i2c.write(LSM303_ADR_MAG, cmd, 2);
+#endif
+    
+    for (int i = 0; i < 2; i++) {
+        myLedR = 1;
+        myLedG = 1;
+        myLedB = 1;
+        wait(0.5);
+        myLedR = 0;
+        myLedG = 0;
+        myLedB = 0;
+        wait(0.5);
+    }
+    /*
+    // MAG INTERRUPT SETUP
+    cmd[0] = LSM303_REG_MAG_INT_THS_L_REG_M;
+    cmd[1] = 0xF4;
+    i2c.write(LSM303_ADR_MAG, cmd, 2);
+    cmd[0] = LSM303_REG_MAG_INT_THS_H_REG_M;
+    cmd[1] = 0x01;
+    i2c.write(LSM303_ADR_MAG, cmd, 2);
+    cmd[0] = LSM303_REG_MAG_INT_CTRL_REG_M;
+    cmd[1] = 0xE7;
+    i2c.write(LSM303_ADR_MAG, cmd, 2);
+    magPin.rise(&onMagIrq);
+    */
+}
+
+void accInitSequence()
+{
+    myLedR = 0;
+    myLedG = 0;
+    cmd[0] = LSM303_REG_ACC_WHO_AM_I_A;
+    i2c.write(LSM303_ADR_ACC, cmd, 1);
+    i2c.read(LSM303_ADR_ACC, &ret, 1);
+    res = (ret == LSM303_WHO_ACC ? sPass : sFail);
+    printf("ACC WhoAmI: %02X %s\r\n", ret, res);
+    
+    if (ret == LSM303_WHO_ACC)
+        myLedG = 1;
+    else
+        myLedR = 1;
+    
+    for (int i = 0; i < 2; i++) {
+        myLedB = 1;
+        wait(0.3);
+        myLedB = 0;
+        wait(0.3);
+    }
+    
+#if defined(TARGET_LRAT)
+    cmd[0] = LSM303_REG_ACC_CTRL_REG1_A;
+    cmd[1] = 0xB7;  // High Resolution, ODR=100Hz, Enable XYZ Axes
+    i2c.write(LSM303_ADR_ACC, cmd, 2);
+#else
+    cmd[0] = LSM303_REG_ACC_CTRL_REG1_A;
+    cmd[1] = 0x57;  // Enable XYZ Axes, ODR=100Hz
+    i2c.write(LSM303_ADR_ACC, cmd, 2);
+    
+    // Enable High Resolution Mode
+    cmd[0] = LSM303_REG_ACC_CTRL_REG4_A;
+    i2c.write(LSM303_ADR_ACC, cmd, 1);
+    i2c.read(LSM303_ADR_ACC, &ret, 1);
+    cmd[0] = LSM303_REG_ACC_CTRL_REG4_A;
+    cmd[1] = ret | 0x08;    // High Resolution
+    i2c.write(LSM303_ADR_ACC, cmd, 2);
+    
+    #if defined(SENSOR_TEMP)
+        // Enable Temp Sensor
+        cmd[0] = LSM303_REG_ACC_TEMP_CFG_REG_A;
+        cmd[1] = 0xC0;
+        i2c.write(LSM303_ADR_ACC, cmd, 2);
+        cmd[0] = LSM303_REG_ACC_CTRL_REG4_A;
+        i2c.write(LSM303_ADR_ACC, cmd, 1);
+        i2c.read(LSM303_ADR_ACC, &ret, 1);
+        cmd[0] = LSM303_REG_ACC_CTRL_REG4_A;
+        cmd[1] = ret | 0x80;
+        i2c.write(LSM303_ADR_ACC, cmd, 2);
+    #endif
+#endif
+    
+    //LED Confirmation Output - ACC INIT COMPLETE
+    for (int i = 0; i < 2; i++) {
+        myLedR = 1;
+        myLedG = 1;
+        myLedB = 1;
+        wait(0.5);
+        myLedR = 0;
+        myLedG = 0;
+        myLedB = 0;
+        wait(0.5);
+    }
+    
+    // Set Full Scale to 4g
+    /*
+    cmd[0] = LSM303_REG_ACC_CTRL_REG4_A;
+    i2c.write(LSM303_ADR_ACC, cmd, 1);
+    i2c.read(LSM303_ADR_ACC, &ret, 1);
+    cmd[0] = LSM303_REG_ACC_CTRL_REG4_A;
+    //cmd[1] = ret | 0x30;              // 16g
+    //cmd[1] = (ret & ~0x10) | 0x20;    // 8g
+    cmd[1] = (ret & ~0x20) | 0x10;      // 4g
+    //cmd[1] = ret & ~0x30;             // 2g
+    i2c.write(LSM303_ADR_ACC, cmd, 2);
+    */
+/*
+    // IRQ Init from Datasheet.
+    cmd[0] = LSM303_REG_ACC_CTRL_REG1_A;
+    cmd[1] = 0xA7;
+    i2c.write(LSM303_ADR_ACC, cmd, 2);
+    cmd[0] = LSM303_REG_ACC_CTRL_REG2_A;
+    cmd[1] = 0x00;
+    i2c.write(LSM303_ADR_ACC, cmd, 2);
+    cmd[0] = LSM303_REG_ACC_CTRL_REG3_A;
+    cmd[1] = 0x40;
+    i2c.write(LSM303_ADR_ACC, cmd, 2);
+    cmd[0] = LSM303_REG_ACC_CTRL_REG4_A;
+    cmd[1] = 0x00;
+    //cmd[1] = 0x10;
+    i2c.write(LSM303_ADR_ACC, cmd, 2);
+    cmd[0] = LSM303_REG_ACC_CTRL_REG5_A;
+    cmd[1] = 0x08;
+    i2c.write(LSM303_ADR_ACC, cmd, 2);
+*/
+    /*
+    // ACC INTERRUPT SETUP
+    // Enable Interrupt Pin
+    cmd[0] = LSM303_REG_ACC_CTRL_REG3_A;
+    i2c.write(LSM303_ADR_ACC, cmd, 1);
+    i2c.read(LSM303_ADR_ACC, &ret, 1);
+    cmd[0] = LSM303_REG_ACC_CTRL_REG3_A;
+    cmd[1] = ret | 0x40;
+    i2c.write(LSM303_ADR_ACC, cmd, 2);
+    // Enable Interrupt Latch
+    cmd[0] = LSM303_REG_ACC_CTRL_REG5_A;
+    i2c.write(LSM303_ADR_ACC, cmd, 1);
+    i2c.read(LSM303_ADR_ACC, &ret, 1);
+    cmd[0] = LSM303_REG_ACC_CTRL_REG5_A;
+    cmd[1] = ret | 0x08;
+    i2c.write(LSM303_ADR_ACC, cmd, 2);
+
+    // Set Threshold/Duration/Config
+    cmd[0] = LSM303_REG_ACC_INT1_THS_A;
+    //cmd[1] = 0x10;
+    //cmd[1] = 0x40;
+    //cmd[1] = 0x60;
+    cmd[1] = 0x7D;
+    i2c.write(LSM303_ADR_ACC, cmd, 2);
+    cmd[0] = LSM303_REG_ACC_INT1_DURATION_A;
+    cmd[1] = 0x00;
+    i2c.write(LSM303_ADR_ACC, cmd, 2);
+    cmd[0] = LSM303_REG_ACC_INT1_CFG_A;
+    cmd[1] = 0x2A;
+    //cmd[1] = 0x0A;
+    i2c.write(LSM303_ADR_ACC, cmd, 2);
+    //accPin.rise(&onAccIrq);
+    */
+}
+
+void gpsInitSequence()
+{
+    myLedG = 1;
+    myLedR = 1;
+    
+    // LED Confirmation Output - GPS
+    for (int i = 0; i < 2; i++) {
+        myLedB = 1;
+        wait(0.3);
+        myLedB = 0;
+        wait(0.3);
+    }
+    myLedG = 0;
+    myLedR = 0;
+}
+
+void magRead()
+{
+    cmd[0] = LSM303_REG_MAG_STATUS_REG_M;
+    i2c.write(LSM303_ADR_MAG, cmd, 1);
+    i2c.read(LSM303_ADR_MAG, &rda, 1);
+    if (rda)
+    {
+        cmd[0] = LSM303_REG_MAG_OUTX_L_REG_M;
+        i2c.write(LSM303_ADR_MAG, cmd, 1);
+        i2c.read(LSM303_ADR_MAG, &buf[0], 1);
+        cmd[0] = LSM303_REG_MAG_OUTX_H_REG_M;
+        i2c.write(LSM303_ADR_MAG, cmd, 1);
+        i2c.read(LSM303_ADR_MAG, &buf[1], 1);
+        cmd[0] = LSM303_REG_MAG_OUTY_L_REG_M;
+        i2c.write(LSM303_ADR_MAG, cmd, 1);
+        i2c.read(LSM303_ADR_MAG, &buf[2], 1);
+        cmd[0] = LSM303_REG_MAG_OUTY_H_REG_M;
+        i2c.write(LSM303_ADR_MAG, cmd, 1);
+        i2c.read(LSM303_ADR_MAG, &buf[3], 1);
+        cmd[0] = LSM303_REG_MAG_OUTZ_L_REG_M;
+        i2c.write(LSM303_ADR_MAG, cmd, 1);
+        i2c.read(LSM303_ADR_MAG, &buf[4], 1);
+        cmd[0] = LSM303_REG_MAG_OUTZ_H_REG_M;
+        i2c.write(LSM303_ADR_MAG, cmd, 1);
+        i2c.read(LSM303_ADR_MAG, &buf[5], 1);
+        myMagX = (buf[0] | (buf[1] << 8));
+        myMagY = (buf[2] | (buf[3] << 8));
+        myMagZ = (buf[4] | (buf[5] << 8));
+        if (myMagX < magMinX)
+            magMinX = myMagX;
+        if (myMagY < magMinY)
+            magMinY = myMagY;
+        if (myMagZ < magMinZ)
+            magMinZ = myMagZ;
+        if (myMagX > magMaxX)
+            magMaxX = myMagX;
+        if (myMagY > magMaxY)
+            magMaxY = myMagY;
+        if (myMagZ > magMaxZ)
+            magMaxZ = myMagZ;
+        cmd[0] = LSM303_REG_MAG_INT_SOURCE_REG_M;
+        i2c.write(LSM303_ADR_MAG, cmd, 1);
+        i2c.read(LSM303_ADR_MAG, &ret, 1);
+        if (ret & 0x01 && magEvent == 0 && ret & 0xFC)
+        {
+            magSFire++;
+            magEvent = 1;
+            magSHIRQ++;
+        }
+        else if (!(ret & 0x01) && magEvent == 1 && !(ret & 0xFC))
+        {
+            magSFire++;
+            magEvent = 0;
+            magSLIRQ++;
+        }
+        printf("M|%02X|%02X %02X %02X %02X %02X %02X|%*d,%*d,%*d|%*d,%*d,%*d|%*d,%*d,%*d|%02X|%02X/%02X %02X/%02X\r\n", rda, buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], 6, myMagX, 6, myMagY, 6, myMagZ, 6, magMinX, 6, magMinY, 6, magMinZ, 6, magMaxX, 6, magMaxY, 6, magMaxZ, ret, magSHIRQ, magSLIRQ, magSFire, magHFire);
+    }
+}
+
+void accRead()
+{
+    cmd[0] = LSM303_REG_ACC_STATUS_REG_A;
+    i2c.write(LSM303_ADR_ACC, cmd, 1);
+    i2c.read(LSM303_ADR_ACC, &rda, 1);
+    if (rda)
+    {
+    cmd[0] = LSM303_REG_ACC_OUT_X_L_A;
+    i2c.write(LSM303_ADR_ACC, cmd, 1);
+    i2c.read(LSM303_ADR_ACC, &buf[0], 1);
+    cmd[0] = LSM303_REG_ACC_OUT_X_H_A;
+    i2c.write(LSM303_ADR_ACC, cmd, 1);
+    i2c.read(LSM303_ADR_ACC, &buf[1], 1);
+    cmd[0] = LSM303_REG_ACC_OUT_Y_L_A;
+    i2c.write(LSM303_ADR_ACC, cmd, 1);
+    i2c.read(LSM303_ADR_ACC, &buf[2], 1);
+    cmd[0] = LSM303_REG_ACC_OUT_Y_H_A;
+    i2c.write(LSM303_ADR_ACC, cmd, 1);
+    i2c.read(LSM303_ADR_ACC, &buf[3], 1);
+    cmd[0] = LSM303_REG_ACC_OUT_Z_L_A;
+    i2c.write(LSM303_ADR_ACC, cmd, 1);
+    i2c.read(LSM303_ADR_ACC, &buf[4], 1);
+    cmd[0] = LSM303_REG_ACC_OUT_Z_H_A;
+    i2c.write(LSM303_ADR_ACC, cmd, 1);
+    i2c.read(LSM303_ADR_ACC, &buf[5], 1);
+    myAccX = ((int16_t)(buf[0] | (buf[1] << 8)) >> accShift);
+    myAccY = ((int16_t)(buf[2] | (buf[3] << 8)) >> accShift);
+    myAccZ = ((int16_t)(buf[4] | (buf[5] << 8)) >> accShift);
+    if (myAccX < accMinX)
+        accMinX = myAccX;
+    if (myAccY < accMinY)
+        accMinY = myAccY;
+    if (myAccZ < accMinZ)
+        accMinZ = myAccZ;
+    if (myAccX > accMaxX)
+        accMaxX = myAccX;
+    if (myAccY > accMaxY)
+        accMaxY = myAccY;
+    if (myAccZ > accMaxZ)
+        accMaxZ = myAccZ;
+    cmd[0] = LSM303_REG_ACC_INT1_SRC_A;
+    i2c.write(LSM303_ADR_ACC, cmd, 1);
+    i2c.read(LSM303_ADR_ACC, &ret, 1);
+    if (ret & 0x40)
+    {
+        accSFire++;
+        if (accEvent == 1)
+        {
+            accEvent = 0;
+            accSLIRQ++;
+            cmd[0] = LSM303_REG_ACC_INT1_THS_A;
+            cmd[1] = 0x7D;
+            i2c.write(LSM303_ADR_ACC, cmd, 2);
+            cmd[0] = LSM303_REG_ACC_INT1_DURATION_A;
+            cmd[1] = 0x00;
+            i2c.write(LSM303_ADR_ACC, cmd, 2);
+            cmd[0] = LSM303_REG_ACC_INT1_CFG_A;
+            cmd[1] = 0x2A;
+            i2c.write(LSM303_ADR_ACC, cmd, 2);
+        }
+        else
+        {
+            accEvent = 1;
+            accSHIRQ++;
+            cmd[0] = LSM303_REG_ACC_INT1_THS_A;
+            cmd[1] = 0x50;
+            i2c.write(LSM303_ADR_ACC, cmd, 2);
+            cmd[0] = LSM303_REG_ACC_INT1_DURATION_A;
+            //cmd[1] = 0x7D;
+            cmd[1] = 0x03;
+            i2c.write(LSM303_ADR_ACC, cmd, 2);
+            cmd[0] = LSM303_REG_ACC_INT1_CFG_A;
+            cmd[1] = 0x95;
+            i2c.write(LSM303_ADR_ACC, cmd, 2);
+        }
+    }
+    printf("A|%02X|%02X %02X %02X %02X %02X %02X|%*d,%*d,%*d|%*d,%*d,%*d|%*d,%*d,%*d|%02X|%02X/%02X %02X/%02X\r\n", rda, buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], 6, myAccX, 6, myAccY, 6, myAccZ, 6, accMinX, 6, accMinY, 6, accMinZ, 6, accMaxX, 6, accMaxY, 6, accMaxZ, ret, accSHIRQ, accSLIRQ, accSFire, accHFire);
+    }
+}
+
+void tmpRead()
+{
+    #if defined(TARGET_LRAT)
+        cmd[0] = LSM303_REG_MAG_TEMP_L_M;
+        i2c.write(LSM303_ADR_MAG, cmd, 1);
+        i2c.read(LSM303_ADR_MAG, &buf[0], 1);
+        cmd[0] = LSM303_REG_MAG_TEMP_H_M;
+        i2c.write(LSM303_ADR_MAG, cmd, 1);
+        i2c.read(LSM303_ADR_MAG, &buf[1], 1);
+        myTemp = (int16_t)(buf[0] | (buf[1] << 8));
+        printf("T|%02X %02X| (%d)\r\n", buf[0], buf[1], myTemp);
+    #else
+        cmd[0] = LSM303_REG_ACC_STATUS_REG_AUX_A;
+        i2c.write(LSM303_ADR_ACC, cmd, 1);
+        i2c.read(LSM303_ADR_ACC, &rda, 1);
+        if (rda & 0x04)
+        {
+            cmd[0] = LSM303_REG_ACC_OUT_TEMP_L_A | 0x80;
+            i2c.write(LSM303_ADR_ACC, cmd, 1);
+            i2c.read(LSM303_ADR_ACC, &buf[0], 2);
+            myTemp = (int16_t)(buf[0] | (buf[1] << 8)) >> 6;
+            printf("T|%02X %02X %02X| (%d)\r\n", rda, buf[0], buf[1], myTemp);
+        }
+    #endif
+}
+
+void gpsRead()
+{
+    bool gpsDone = false;
+    bool fixGood = false;
+    myLedW = 1;
+    pos = 0;
     ret = 0xFF;
     cmd[0] = 0xFF;
     i2c.write(NEOM8M_ADR_GPS, cmd, 1);
@@ -801,7 +1061,7 @@
                 if (ret == '\n')
                 {
                     buf[pos] = 0x00;
-                    /* NMEA Validation */
+                    // NMEA Validation
                     uint16_t crc = 0;
                     char clr;
                     if (buf[0] == '$' && buf[pos-3] == '*')
@@ -872,6 +1132,8 @@
                         int fldDat;
                         sscanf(buf, "$GNRMC,%f,%c,%lf,%c,%lf,%c,%f,,%d", &fldTim, &fldSts, &fldLat, &fldN_S, &fldLon, &fldE_W, &fldSpd, &fldDat);
                         printf("Sec: %.2f, Sts: %c, Lat: %.5f %c, Lon: %.5f %c, Spd: %.3f, Dat: %06d\r\n", fldTim, fldSts, fldLat, fldN_S, fldLon, fldE_W, fldSpd, fldDat);
+                        if (fldSts == 'A')
+                            fixGood = true;
                     }
                     pos = 0;
                     i2c.read(NEOM8M_ADR_GPS, &ret, 1);
@@ -894,242 +1156,17 @@
     }
     if (pos > 0)
         printf("GPS: |%s|\r\n", buf);
-
-    /*
-    cmd[0] = LSM303_REG_ACC_STATUS_REG_AUX_A;
-    i2c.write(LSM303_ADR_ACC, cmd, 1);
-    i2c.read(LSM303_ADR_ACC, &rda, 1);
-    cmd[0] = LSM303_REG_ACC_OUT_TEMP_L_A;
-    i2c.write(LSM303_ADR_ACC, cmd, 1);
-    i2c.read(LSM303_ADR_ACC, &buf[0], 1);
-    cmd[0] = LSM303_REG_ACC_OUT_TEMP_H_A;
-    i2c.write(LSM303_ADR_ACC, cmd, 1);
-    i2c.read(LSM303_ADR_ACC, &buf[1], 1);
-    myTemp = (buf[0] | (buf[1] << 8));
-    printf("TMP: |%02X %02X %02X| (%d)\r\n", rda, buf[0], buf[1], myTemp);
-    */
-    
-    cmd[0] = LSM303_REG_ACC_STATUS_REG_AUX_A;
-    i2c.write(LSM303_ADR_ACC, cmd, 1);
-    i2c.read(LSM303_ADR_ACC, &rda, 1);
-    if (rda & 0x04)
-    {
-        cmd[0] = LSM303_REG_ACC_OUT_TEMP_L_A | 0x80;
-        i2c.write(LSM303_ADR_ACC, cmd, 1);
-        i2c.read(LSM303_ADR_ACC, &buf[0], 2);
-        myTemp = (int16_t)(buf[0] | (buf[1] << 8)) >> 6;
-        printf("TMP: |%02X %02X %02X| (%d)\r\n", rda, buf[0], buf[1], myTemp);
-    }
-
-    cmd[0] = LSM303_REG_MAG_STATUS_REG_M;
-    i2c.write(LSM303_ADR_MAG, cmd, 1);
-    i2c.read(LSM303_ADR_MAG, &rda, 1);
+    myLedW = 0;
+    if (fixGood)
+        myLedG = 1;
+    else
+        myLedR = 1;
 
-    cmd[0] = LSM303_REG_MAG_OUTX_L_REG_M;
-    i2c.write(LSM303_ADR_MAG, cmd, 1);
-    i2c.read(LSM303_ADR_MAG, &buf[0], 1);
-    cmd[0] = LSM303_REG_MAG_OUTX_H_REG_M;
-    i2c.write(LSM303_ADR_MAG, cmd, 1);
-    i2c.read(LSM303_ADR_MAG, &buf[1], 1);
-    cmd[0] = LSM303_REG_MAG_OUTY_L_REG_M;
-    i2c.write(LSM303_ADR_MAG, cmd, 1);
-    i2c.read(LSM303_ADR_MAG, &buf[2], 1);
-    cmd[0] = LSM303_REG_MAG_OUTY_H_REG_M;
-    i2c.write(LSM303_ADR_MAG, cmd, 1);
-    i2c.read(LSM303_ADR_MAG, &buf[3], 1);
-    cmd[0] = LSM303_REG_MAG_OUTZ_L_REG_M;
-    i2c.write(LSM303_ADR_MAG, cmd, 1);
-    i2c.read(LSM303_ADR_MAG, &buf[4], 1);
-    cmd[0] = LSM303_REG_MAG_OUTZ_H_REG_M;
-    i2c.write(LSM303_ADR_MAG, cmd, 1);
-    i2c.read(LSM303_ADR_MAG, &buf[5], 1);
-    myMagX = (buf[0] | (buf[1] << 8));
-    myMagY = (buf[2] | (buf[3] << 8));
-    myMagZ = (buf[4] | (buf[5] << 8));
-    printf("MAG: |%02X %02X %02X %02X %02X %02X %02X| (%d,%d,%d)\r\n", rda, buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], myMagX, myMagY, myMagZ);
-    
-    /*
-    cmd[0] = LSM303_REG_MAG_OFFSET_X_REG_L_M;
-    i2c.write(LSM303_ADR_MAG, cmd, 1);
-    i2c.read(LSM303_ADR_MAG, &buf[0], 1);
-    cmd[0] = LSM303_REG_MAG_OFFSET_X_REG_H_M;
-    i2c.write(LSM303_ADR_MAG, cmd, 1);
-    i2c.read(LSM303_ADR_MAG, &buf[1], 1);
-    cmd[0] = LSM303_REG_MAG_OFFSET_Y_REG_L_M;
-    i2c.write(LSM303_ADR_MAG, cmd, 1);
-    i2c.read(LSM303_ADR_MAG, &buf[2], 1);
-    cmd[0] = LSM303_REG_MAG_OFFSET_Y_REG_H_M;
-    i2c.write(LSM303_ADR_MAG, cmd, 1);
-    i2c.read(LSM303_ADR_MAG, &buf[3], 1);
-    cmd[0] = LSM303_REG_MAG_OFFSET_Z_REG_L_M;
-    i2c.write(LSM303_ADR_MAG, cmd, 1);
-    i2c.read(LSM303_ADR_MAG, &buf[4], 1);
-    cmd[0] = LSM303_REG_MAG_OFFSET_Z_REG_H_M;
-    i2c.write(LSM303_ADR_MAG, cmd, 1);
-    i2c.read(LSM303_ADR_MAG, &buf[5], 1);
-    myOffX = (buf[0] | (buf[1] << 8));
-    myOffY = (buf[2] | (buf[3] << 8));
-    myOffZ = (buf[4] | (buf[5] << 8));
-    printf("OFF: |%02X %02X %02X %02X %02X %02X| (%d,%d,%d)\r\n", buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], myOffX, myOffY, myOffZ);
-    */
-    
-    cmd[0] = LSM303_REG_ACC_STATUS_REG_A;
-    i2c.write(LSM303_ADR_ACC, cmd, 1);
-    i2c.read(LSM303_ADR_ACC, &rda, 1);
-    
-    cmd[0] = LSM303_REG_ACC_OUT_X_L_A;
-    i2c.write(LSM303_ADR_ACC, cmd, 1);
-    i2c.read(LSM303_ADR_ACC, &buf[0], 1);
-    cmd[0] = LSM303_REG_ACC_OUT_X_H_A;
-    i2c.write(LSM303_ADR_ACC, cmd, 1);
-    i2c.read(LSM303_ADR_ACC, &buf[1], 1);
-    cmd[0] = LSM303_REG_ACC_OUT_Y_L_A;
-    i2c.write(LSM303_ADR_ACC, cmd, 1);
-    i2c.read(LSM303_ADR_ACC, &buf[2], 1);
-    cmd[0] = LSM303_REG_ACC_OUT_Y_H_A;
-    i2c.write(LSM303_ADR_ACC, cmd, 1);
-    i2c.read(LSM303_ADR_ACC, &buf[3], 1);
-    cmd[0] = LSM303_REG_ACC_OUT_Z_L_A;
-    i2c.write(LSM303_ADR_ACC, cmd, 1);
-    i2c.read(LSM303_ADR_ACC, &buf[4], 1);
-    cmd[0] = LSM303_REG_ACC_OUT_Z_H_A;
-    i2c.write(LSM303_ADR_ACC, cmd, 1);
-    i2c.read(LSM303_ADR_ACC, &buf[5], 1);
-    myAccX = ((int16_t)(buf[0] | (buf[1] << 8)) >> accShift);
-    myAccY = ((int16_t)(buf[2] | (buf[3] << 8)) >> accShift);
-    myAccZ = ((int16_t)(buf[4] | (buf[5] << 8)) >> accShift);
-    printf("ACC: |%02X %02X %02X %02X %02X %02X %02X| (%d,%d,%d)\r\n", rda, buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], myAccX, myAccY, myAccZ);
-    
-    int ilat = (int)(mylat * 100000);
-    int ilon = (int)(mylon * 100000);
-    printf("TIM: %d, SAT: %d, LAT: %d, LON: %d\r\n", mytime, mybatt, ilat, ilon);
-    packet_len = 11;
-    tx_buffer[0] = (mytime >> 24) & 0xFF;
-    tx_buffer[1] = (mytime >> 16) & 0xFF;
-    tx_buffer[2] = (mytime >> 8) & 0xFF;
-    tx_buffer[3] = (mytime >> 0) & 0xFF;
-    tx_buffer[4] = ((mybatt << 4) & 0xF0) | ((ilat >> 22) & 0x0F);
-    tx_buffer[5] = (ilat >> 14) & 0xFF;
-    tx_buffer[6] = (ilat >> 6) & 0xFF;
-    tx_buffer[7] = ((ilat << 2) & 0xFC) | ((ilon >> 24) & 0x03);
-    tx_buffer[8] = (ilon >> 16) & 0xFF;
-    tx_buffer[9] = (ilon >> 8) & 0xFF;
-    tx_buffer[10] = (ilon >> 0) & 0xFF;
-    printf("\r\nBUF: |");
-    int i;
-    for (i = 0; i < packet_len; i++) { printf("%02x", tx_buffer[i]); }
-    printf("|\r\n");
-    retcode = lorawan.send(MBED_CONF_LORA_APP_PORT, tx_buffer, packet_len,
-                           MSG_CONFIRMED_FLAG);
-
-    if (retcode < 0) {
-        retcode == LORAWAN_STATUS_WOULD_BLOCK ? printf("send - WOULD BLOCK\r\n")
-                : printf("\r\n send() - Error code %d \r\n", retcode);
-
-        if (retcode == LORAWAN_STATUS_WOULD_BLOCK) {
-            //retry in 3 seconds
-            if (MBED_CONF_LORA_DUTY_CYCLE_ON) {
-                ev_queue.call_in(3000, send_message);
-            }
-        }
-        return;
-    }
-
-    printf("\r\n %d bytes scheduled for transmission \r\n", retcode);
-    memset(tx_buffer, 0, sizeof(tx_buffer));
-}
-
-/**
- * Receive a message from the Network Server
- */
-static void receive_message()
-{
-    int16_t retcode;
-    retcode = lorawan.receive(MBED_CONF_LORA_APP_PORT, rx_buffer,
-                              sizeof(rx_buffer),
-                              MSG_CONFIRMED_FLAG|MSG_UNCONFIRMED_FLAG);
-
-    if (retcode < 0) {
-        printf("\r\n receive() - Error code %d \r\n", retcode);
-        return;
-    }
-
-    printf(" Data:");
-
-    for (uint8_t i = 0; i < retcode; i++) {
-        printf("%x", rx_buffer[i]);
-    }
-
-    printf("\r\n Data Length: %d\r\n", retcode);
-
-    int startLoop = 0;
-    if (strncmp((char *)rx_buffer, cmdSendLoop, 8) == 0)
-    {
-        printf("SendLoop Command Received!\r\n");
-        startLoop = 1;
-    }
-
-    memset(rx_buffer, 0, sizeof(rx_buffer));
-    
-    if (startLoop)
-        send_message();
-}
-
-/**
- * Event handler
- */
-static void lora_event_handler(lorawan_event_t event)
-{
-    tr_debug("In lora_event_handler(%d)...", event);
-    switch (event) {
-        case CONNECTED:
-            printf("\r\n Connection - Successful \r\n");
-            if (MBED_CONF_LORA_DUTY_CYCLE_ON) {
-                send_message();
-            } else {
-                ev_queue.call_every(TX_TIMER, send_message);
-            }
-
-            break;
-        case DISCONNECTED:
-            ev_queue.break_dispatch();
-            printf("\r\n Disconnected Successfully \r\n");
-            break;
-        case TX_DONE:
-            printf("\r\n Message Sent to Network Server \r\n");
-            if (MBED_CONF_LORA_DUTY_CYCLE_ON) {
-                send_message();
-            }
-            break;
-        case TX_TIMEOUT:
-        case TX_ERROR:
-        case TX_CRYPTO_ERROR:
-        case TX_SCHEDULING_ERROR:
-            printf("\r\n Transmission Error - EventCode = %d \r\n", event);
-            // try again
-            if (MBED_CONF_LORA_DUTY_CYCLE_ON) {
-                send_message();
-            }
-            break;
-        case RX_DONE:
-            printf("\r\n Received message from Network Server \r\n");
-            receive_message();
-            break;
-        case RX_TIMEOUT:
-        case RX_ERROR:
-            printf("\r\n Error in reception - Code = %d \r\n", event);
-            break;
-        case JOIN_FAILURE:
-            printf("\r\n OTAA Failed - Check Keys \r\n");
-            break;
-        case UPLINK_REQUIRED:
-            printf("\r\n Uplink required by NS \r\n");
-            if (MBED_CONF_LORA_DUTY_CYCLE_ON) {
-                send_message();
-            }
-            break;
-        default:
-            MBED_ASSERT("Unknown Event");
+    for (int i = 0; i < 10; i++) {
+        myLedB = 1;
+        wait(0.1);
+        myLedB = 0;
+        wait(0.1);
     }
 }