Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: Custom_LSM303 Custom_UBloxGPS LRAT-mbed-os USBDevice mbed-lora-radio-drv stm32EEPROM
Fork of LRAT-example-lorawan by
main.cpp
- Committer:
- lpeters
- Date:
- 2018-08-15
- Revision:
- 33:e47306c32791
- Parent:
- 31:f03c183e2bf6
- Child:
- 34:341fb423e74b
File content as of revision 33:e47306c32791:
/**
* Copyright (c) 2017, Arm Limited and affiliates.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdio.h>
#include "mbed.h"
//#include "unsupported/USBDevice/USBSerial/USBSerial.h"
#include "USBSerial.h"
#include "lorawan/LoRaWANInterface.h"
#include "lorawan/system/lorawan_data_structures.h"
#include "events/EventQueue.h"
// Application helpers
#include "DummySensor.h"
#include "trace_helper.h"
#include "lora_radio_helper.h"
#include "mbed-trace/mbed_trace.h"
#define TRACE_GROUP "MAIN"
using namespace events;
// Max payload size can be LORAMAC_PHY_MAXPAYLOAD.
// This example only communicates with much shorter messages (<30 bytes).
// If longer messages are used, these buffers must be changed accordingly.
uint8_t tx_buffer[30];
uint8_t rx_buffer[30];
/*
* Sets up an application dependent transmission timer in ms. Used only when Duty Cycling is off for testing
*/
#define TX_TIMER 10000
/**
* Maximum number of events for the event queue.
* 10 is the safe number for the stack events, however, if application
* also uses the queue for whatever purposes, this number should be increased.
*/
#define MAX_NUMBER_OF_EVENTS 10
/**
* Maximum number of retries for CONFIRMED messages before giving up
*/
#define CONFIRMED_MSG_RETRY_COUNTER 15
/**
* Dummy pin for dummy sensor
*/
#define PC_9 0
/**
* Dummy sensor class object
*/
DS1820 ds1820(PC_9);
/**
* This event queue is the global event queue for both the
* application and stack. To conserve memory, the stack is designed to run
* in the same thread as the application and the application is responsible for
* providing an event queue to the stack that will be used for ISR deferment as
* well as application information event queuing.
*/
static EventQueue ev_queue(MAX_NUMBER_OF_EVENTS * EVENTS_EVENT_SIZE);
/**
* Event handler.
*
* This will be passed to the LoRaWAN stack to queue events for the
* application which in turn drive the application.
*/
static void lora_event_handler(lorawan_event_t event);
/**
* Constructing Mbed LoRaWANInterface and passing it down the radio object.
*/
static LoRaWANInterface lorawan(radio);
/**
* Application specific callbacks
*/
static lorawan_app_callbacks_t callbacks;
int mytime = 0;
int mybatt = 0;
double mylat = 0;
double mylon = 0;
int16_t myAccX = 0;
int16_t myAccY = 0;
int16_t myAccZ = 0;
int16_t myMagX = 0;
int16_t myMagY = 0;
int16_t myMagZ = 0;
int16_t myOffX = 0;
int16_t myOffY = 0;
int16_t myOffZ = 0;
int16_t myTemp = 0;
int16_t accMinX = 0;
int16_t accMinY = 0;
int16_t accMinZ = 0;
int16_t accMaxX = 0;
int16_t accMaxY = 0;
int16_t accMaxZ = 0;
int16_t magMinX = 0;
int16_t magMinY = 0;
int16_t magMinZ = 0;
int16_t magMaxX = 0;
int16_t magMaxY = 0;
int16_t magMaxZ = 0;
#define NEOM8M_ADR_GPS 0x84
#define LSM303_ADR_ACC 0x32
#define LSM303_ADR_MAG 0x3C
#define NEOM8M_REG_GPS_LENH 0xFD
#define NEOM8M_REG_GPS_LENL 0xFE
#define NEOM8M_REG_GPS_DATA 0xFE
#define LSM303_REG_ACC_STATUS_REG_AUX_A 0x07
#define LSM303_REG_ACC_OUT_TEMP_L_A 0x0C
#define LSM303_REG_ACC_OUT_TEMP_H_A 0x0D
#define LSM303_REG_ACC_WHO_AM_I_A 0x0F
#define LSM303_REG_ACC_TEMP_CFG_REG_A 0x1F
#define LSM303_REG_ACC_CTRL_REG1_A 0x20
#define LSM303_REG_ACC_CTRL_REG2_A 0x21
#define LSM303_REG_ACC_CTRL_REG3_A 0x22
#define LSM303_REG_ACC_CTRL_REG4_A 0x23
#define LSM303_REG_ACC_CTRL_REG5_A 0x24
#define LSM303_REG_ACC_STATUS_REG_A 0x27
#define LSM303_REG_ACC_OUT_X_L_A 0x28
#define LSM303_REG_ACC_OUT_X_H_A 0x29
#define LSM303_REG_ACC_OUT_Y_L_A 0x2A
#define LSM303_REG_ACC_OUT_Y_H_A 0x2B
#define LSM303_REG_ACC_OUT_Z_L_A 0x2C
#define LSM303_REG_ACC_OUT_Z_H_A 0x2D
#define LSM303_REG_ACC_INT1_CFG_A 0x30
#define LSM303_REG_ACC_INT1_SRC_A 0x31
#define LSM303_REG_ACC_INT1_THS_A 0x32
#define LSM303_REG_ACC_INT1_DURATION_A 0x33
//#define LSM303_REG_MAG_CRA_REG_M 0x00
//#define LSM303_REG_MAG_MR_REG_M 0x02
#define LSM303_REG_MAG_OFFSET_X_REG_L_M 0x45
#define LSM303_REG_MAG_OFFSET_X_REG_H_M 0x46
#define LSM303_REG_MAG_OFFSET_Y_REG_L_M 0x47
#define LSM303_REG_MAG_OFFSET_Y_REG_H_M 0x48
#define LSM303_REG_MAG_OFFSET_Z_REG_L_M 0x49
#define LSM303_REG_MAG_OFFSET_Z_REG_H_M 0x4A
#define LSM303_REG_MAG_WHO_AM_I_M 0x4F
#define LSM303_REG_MAG_CFG_REG_A_M 0x60
#define LSM303_REG_MAG_CFG_REG_C_M 0x62
#define LSM303_REG_MAG_INT_CTRL_REG_M 0x63
#define LSM303_REG_MAG_INT_SOURCE_REG_M 0x64
#define LSM303_REG_MAG_INT_THS_L_REG_M 0x65
#define LSM303_REG_MAG_INT_THS_H_REG_M 0x66
#define LSM303_REG_MAG_STATUS_REG_M 0x67
#define LSM303_REG_MAG_OUTX_L_REG_M 0x68
#define LSM303_REG_MAG_OUTX_H_REG_M 0x69
#define LSM303_REG_MAG_OUTY_L_REG_M 0x6A
#define LSM303_REG_MAG_OUTY_H_REG_M 0x6B
#define LSM303_REG_MAG_OUTZ_L_REG_M 0x6C
#define LSM303_REG_MAG_OUTZ_H_REG_M 0x6D
I2C i2c(PB_9, PB_8);
InterruptIn accPin(PB_14);
InterruptIn magPin(PA_10);
char cfg;
char ret;
char rda = '\0';
char cmd[2];
char buf[83];
int pos = 0;
char *res;
char sPass[26] = "[\u001b[32mPASS\u001b[0m]";
char sFail[26] = "[\u001b[31mFAIL\u001b[0m]";
int accShift = 0;
int accScale = 0;
int accEvent = 0;
uint16_t accSFire = 0;
uint16_t accHFire = 0;
uint16_t accSLIRQ = 0;
uint16_t accSHIRQ = 0;
int magEvent = 0;
uint16_t magSFire = 0;
uint16_t magHFire = 0;
uint16_t magSLIRQ = 0;
uint16_t magSHIRQ = 0;
char cmdSendLoop[9] = "SendLoop";
void onAccIrq()
{
accHFire++;
}
void onMagIrq()
{
magHFire++;
}
void accDumpCfg()
{
char start = LSM303_REG_ACC_CTRL_REG1_A;
int i;
for (i = 0; i < 6; i++)
{
cmd[0] = start + i;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &buf[i], 1);
}
printf("CFGACC: |%02X %02X %02X %02X %02X %02X|\r\n", buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]);
}
void magDumpCfg()
{
char start = LSM303_REG_MAG_CFG_REG_A_M;
int i;
for (i = 0; i < 3; i++)
{
cmd[0] = start + i;
i2c.write(LSM303_ADR_MAG, cmd, 1);
i2c.read(LSM303_ADR_MAG, &buf[i], 1);
}
printf("CFGMAG: |%02X %02X %02X|\r\n", buf[0], buf[1], buf[2]);
}
#define LEDR PB_7
#define LEDG PB_5
#define LEDB PB_6
//#define LEDW PB_2
DigitalOut myLedR(LEDR);
DigitalOut myLedG(LEDG);
DigitalOut myLedB(LEDB);
//DigitalOut myLedW(LEDW);
/*int myLedR = 0;
int myLedG = 0;
int myLedB = 0;
int myLedW = 0;*/
//uint8_t myFoo;
/**
* Entry point for application
*/
int main (void)
{
wait(4);
printf("\r\n-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-\r\n");
USBSerial serial;
/* printf("Turning the lights on...\r\n");
myLedR = 1;
myLedG = 1;
myLedB = 1;
myLedW = 1;
printf("The lights are on.\r\n");
wait(0.5);
printf("Turning the lights off...\r\n");
myLedR = 0;
myLedG = 0;
myLedB = 0;
myLedW = 0;
printf("The lights are off.\r\n");
wait(0.5);
printf("Turning the lights on...\r\n");
myLedR = 1;
myLedG = 1;
myLedB = 1;
myLedW = 1;
printf("The lights are on.\r\n");
wait(0.5);
printf("Turning the lights off...\r\n");
myLedR = 0;
myLedG = 0;
myLedB = 0;
myLedW = 0;
printf("The lights are off.\r\n");
printf("Initializing USBSerial.\r\n");
USBSerial serial;
printf("USBSerial initialized.\r\n");*/
int myFoo = 1;
while(1)
{
myLedR = 1;
//serial.printf("LED = Red\r\n");
wait(0.5);
myLedR = 0;
myLedG = 1;
//serial.printf("LED = Green\r\n");
wait(0.5);
myLedG = 0;
myLedB = 1;
//serial.printf("LED = Blue\r\n");
wait(0.5);
myLedB = 0;
//myLedW = 1;
//serial.printf("LED = White\r\n");
//wait(0.5);
//myLedW = 0;
if (myFoo % 6 == 0)
{
myLedR = 1;
myLedG = 1;
myLedB = 1;
//myLedW = 1;
}
myFoo++;
}
// setup tracing
setup_trace();
// stores the status of a call to LoRaWAN protocol
lorawan_status_t retcode;
wait(4);
printf("\r\n- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -\r\n");
magDumpCfg();
accDumpCfg();
/* I2C init */
ret = 0x00;
cmd[0] = LSM303_REG_MAG_WHO_AM_I_M;
i2c.write(LSM303_ADR_MAG, cmd, 1);
i2c.read(LSM303_ADR_MAG, &ret, 1);
res = (ret == 0x40 ? sPass : sFail);
printf("MAG WhoAmI: %02x %s\r\n", ret, res);
cmd[0] = LSM303_REG_MAG_CFG_REG_A_M;
cmd[1] = 0x00; // Mag = 10 Hz (high-resolution and continuous mode)
i2c.write(LSM303_ADR_MAG, cmd, 2);
cmd[0] = LSM303_REG_MAG_CFG_REG_C_M;
//cmd[1] = 0x01; // Mag data-ready interrupt enable
cmd[1] = 0x40; // Mag enable interrupt on pin
i2c.write(LSM303_ADR_MAG, cmd, 2);
cmd[0] = LSM303_REG_MAG_CFG_REG_A_M;
i2c.write(LSM303_ADR_MAG, cmd, 1);
i2c.read(LSM303_ADR_MAG, &ret, 1);
printf("MAG RetVal: %02x\r\n", ret);
cmd[0] = LSM303_REG_ACC_WHO_AM_I_A;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &ret, 1);
res = (ret == 0x33 ? sPass : sFail);
printf("ACC WhoAmI: %02x %s\r\n", ret, res);
cmd[0] = LSM303_REG_ACC_CTRL_REG1_A;
cmd[1] = 0x57; // Accel = 100 Hz (normal mode)
i2c.write(LSM303_ADR_ACC, cmd, 2);
cmd[0] = LSM303_REG_ACC_CTRL_REG1_A;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &ret, 1);
printf("ACC RetVal: %02x\r\n", ret);
// Enable High Resolution Mode
cmd[0] = LSM303_REG_ACC_CTRL_REG4_A;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &ret, 1);
cmd[0] = LSM303_REG_ACC_CTRL_REG4_A;
cmd[1] = ret | 0x08;
i2c.write(LSM303_ADR_ACC, cmd, 2);
// Enable Temp Sensor
cmd[0] = LSM303_REG_ACC_TEMP_CFG_REG_A;
cmd[1] = 0xC0;
i2c.write(LSM303_ADR_ACC, cmd, 2);
cmd[0] = LSM303_REG_ACC_CTRL_REG4_A;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &ret, 1);
cmd[0] = LSM303_REG_ACC_CTRL_REG4_A;
cmd[1] = ret | 0x80;
i2c.write(LSM303_ADR_ACC, cmd, 2);
// Set Full Scale to 4g
/*
cmd[0] = LSM303_REG_ACC_CTRL_REG4_A;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &ret, 1);
cmd[0] = LSM303_REG_ACC_CTRL_REG4_A;
//cmd[1] = ret | 0x30; // 16g
//cmd[1] = (ret & ~0x10) | 0x20; // 8g
cmd[1] = (ret & ~0x20) | 0x10; // 4g
//cmd[1] = ret & ~0x30; // 2g
i2c.write(LSM303_ADR_ACC, cmd, 2);
*/
/*
// IRQ Init from Datasheet.
cmd[0] = LSM303_REG_ACC_CTRL_REG1_A;
cmd[1] = 0xA7;
i2c.write(LSM303_ADR_ACC, cmd, 2);
cmd[0] = LSM303_REG_ACC_CTRL_REG2_A;
cmd[1] = 0x00;
i2c.write(LSM303_ADR_ACC, cmd, 2);
cmd[0] = LSM303_REG_ACC_CTRL_REG3_A;
cmd[1] = 0x40;
i2c.write(LSM303_ADR_ACC, cmd, 2);
cmd[0] = LSM303_REG_ACC_CTRL_REG4_A;
cmd[1] = 0x00;
//cmd[1] = 0x10;
i2c.write(LSM303_ADR_ACC, cmd, 2);
cmd[0] = LSM303_REG_ACC_CTRL_REG5_A;
cmd[1] = 0x08;
i2c.write(LSM303_ADR_ACC, cmd, 2);
*/
magDumpCfg();
accDumpCfg();
/*
// ACC INTERRUPT SETUP
// Enable Interrupt Pin
cmd[0] = LSM303_REG_ACC_CTRL_REG3_A;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &ret, 1);
cmd[0] = LSM303_REG_ACC_CTRL_REG3_A;
cmd[1] = ret | 0x40;
i2c.write(LSM303_ADR_ACC, cmd, 2);
// Enable Interrupt Latch
cmd[0] = LSM303_REG_ACC_CTRL_REG5_A;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &ret, 1);
cmd[0] = LSM303_REG_ACC_CTRL_REG5_A;
cmd[1] = ret | 0x08;
i2c.write(LSM303_ADR_ACC, cmd, 2);
// Set Threshold/Duration/Config
cmd[0] = LSM303_REG_ACC_INT1_THS_A;
//cmd[1] = 0x10;
//cmd[1] = 0x40;
//cmd[1] = 0x60;
cmd[1] = 0x7D;
i2c.write(LSM303_ADR_ACC, cmd, 2);
cmd[0] = LSM303_REG_ACC_INT1_DURATION_A;
cmd[1] = 0x00;
i2c.write(LSM303_ADR_ACC, cmd, 2);
cmd[0] = LSM303_REG_ACC_INT1_CFG_A;
cmd[1] = 0x2A;
//cmd[1] = 0x0A;
i2c.write(LSM303_ADR_ACC, cmd, 2);
//accPin.rise(&onAccIrq);
*/
/*
// MAG INTERRUPT SETUP
cmd[0] = LSM303_REG_MAG_INT_THS_L_REG_M;
cmd[1] = 0xF4;
i2c.write(LSM303_ADR_MAG, cmd, 2);
cmd[0] = LSM303_REG_MAG_INT_THS_H_REG_M;
cmd[1] = 0x01;
i2c.write(LSM303_ADR_MAG, cmd, 2);
cmd[0] = LSM303_REG_MAG_INT_CTRL_REG_M;
cmd[1] = 0xE7;
i2c.write(LSM303_ADR_MAG, cmd, 2);
magPin.rise(&onMagIrq);
*/
/*while(1)
{
time_t tNow = time(NULL);
cmd[0] = LSM303_REG_ACC_INT1_SRC_A;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &ret, 1);
printf("%08X - %02X - IRQ: %d\r\n", tNow, ret, irqFired);
wait(1);
}*/
cfg = 0x00;
cmd[0] = LSM303_REG_ACC_CTRL_REG1_A;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &ret, 1);
cfg |= (ret & 0x08) >> 3;
cmd[0] = LSM303_REG_ACC_CTRL_REG4_A;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &ret, 1);
cfg |= (ret & 0x08) >> 2;
accScale = 1 << ((ret & 0x30) >> 4);
cmd[0] = LSM303_REG_MAG_CFG_REG_A_M;
i2c.write(LSM303_ADR_MAG, cmd, 1);
i2c.read(LSM303_ADR_MAG, &ret, 1);
cfg |= (ret & 0x10);
if (cfg & 0x01)
accShift = 8;
else if (cfg & 0x02)
accShift = 4;
else
accShift = 6;
printf("Quality: %02x AccShift: %d AccScale: %d\r\n", cfg, accShift, accScale);
/*
while(1)
{
cmd[0] = LSM303_REG_ACC_STATUS_REG_AUX_A;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &rda, 1);
if (rda & 0x04)
{
cmd[0] = LSM303_REG_ACC_OUT_TEMP_L_A;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &buf[0], 1);
cmd[0] = LSM303_REG_ACC_OUT_TEMP_H_A;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &buf[1], 1);
myTemp = (int16_t)(buf[0] | (buf[1] << 8)) >> 6;
printf("TMP: |%02X %02X %02X| (%d)\r\n", rda, buf[0], buf[1], myTemp);
}
}
*/
/*
while(1)
{
cmd[0] = LSM303_REG_ACC_STATUS_REG_AUX_A | 0x80;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &buf[0], 7);
if (buf[0] & 0x04)
{
myTemp = (int16_t)(buf[5] | (buf[6] << 8)) >> 6;
printf("TMP: |%02X %02X %02X| (%d)\r\n", buf[0], buf[5], buf[6], myTemp);
}
}
*/
/*
while(1)
{
cmd[0] = LSM303_REG_ACC_STATUS_REG_AUX_A;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &rda, 1);
if (rda & 0x04)
{
cmd[0] = LSM303_REG_ACC_OUT_TEMP_L_A | 0x80;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &buf[0], 2);
myTemp = (int16_t)(buf[0] | (buf[1] << 8)) >> 6;
printf("TMP: |%02X %02X %02X| (%d)\r\n", rda, buf[0], buf[1], myTemp);
}
}
*/
cmd[0] = LSM303_REG_ACC_STATUS_REG_AUX_A;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &rda, 1);
if (rda & 0x04)
{
cmd[0] = LSM303_REG_ACC_OUT_TEMP_L_A | 0x80;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &buf[0], 2);
myTemp = (int16_t)(buf[0] | (buf[1] << 8)) >> 6;
printf("TMP: |%02X %02X %02X| (%d)\r\n", rda, buf[0], buf[1], myTemp);
}
/*
//wait(8);
while(1) {
cmd[0] = LSM303_REG_MAG_STATUS_REG_M;
i2c.write(LSM303_ADR_MAG, cmd, 1);
i2c.read(LSM303_ADR_MAG, &rda, 1);
if (rda)
{
cmd[0] = LSM303_REG_MAG_OUTX_L_REG_M;
i2c.write(LSM303_ADR_MAG, cmd, 1);
i2c.read(LSM303_ADR_MAG, &buf[0], 1);
cmd[0] = LSM303_REG_MAG_OUTX_H_REG_M;
i2c.write(LSM303_ADR_MAG, cmd, 1);
i2c.read(LSM303_ADR_MAG, &buf[1], 1);
cmd[0] = LSM303_REG_MAG_OUTY_L_REG_M;
i2c.write(LSM303_ADR_MAG, cmd, 1);
i2c.read(LSM303_ADR_MAG, &buf[2], 1);
cmd[0] = LSM303_REG_MAG_OUTY_H_REG_M;
i2c.write(LSM303_ADR_MAG, cmd, 1);
i2c.read(LSM303_ADR_MAG, &buf[3], 1);
cmd[0] = LSM303_REG_MAG_OUTZ_L_REG_M;
i2c.write(LSM303_ADR_MAG, cmd, 1);
i2c.read(LSM303_ADR_MAG, &buf[4], 1);
cmd[0] = LSM303_REG_MAG_OUTZ_H_REG_M;
i2c.write(LSM303_ADR_MAG, cmd, 1);
i2c.read(LSM303_ADR_MAG, &buf[5], 1);
myMagX = (buf[0] | (buf[1] << 8));
myMagY = (buf[2] | (buf[3] << 8));
myMagZ = (buf[4] | (buf[5] << 8));
if (myMagX < magMinX)
magMinX = myMagX;
if (myMagY < magMinY)
magMinY = myMagY;
if (myMagZ < magMinZ)
magMinZ = myMagZ;
if (myMagX > magMaxX)
magMaxX = myMagX;
if (myMagY > magMaxY)
magMaxY = myMagY;
if (myMagZ > magMaxZ)
magMaxZ = myMagZ;
//printf("MAG: |%02X %02X %02X %02X %02X %02X| (%d,%d,%d)\r\n", buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], myMagX, myMagY, myMagZ);
cmd[0] = LSM303_REG_MAG_INT_SOURCE_REG_M;
i2c.write(LSM303_ADR_MAG, cmd, 1);
i2c.read(LSM303_ADR_MAG, &ret, 1);
if (ret & 0x01 && magEvent == 0 && ret & 0xFC)
{
magSFire++;
magEvent = 1;
magSHIRQ++;
}
else if (!(ret & 0x01) && magEvent == 1 && !(ret & 0xFC))
{
magSFire++;
magEvent = 0;
magSLIRQ++;
}
printf("M|%02X|%02X %02X %02X %02X %02X %02X|%*d,%*d,%*d|%*d,%*d,%*d|%*d,%*d,%*d|%02X|%02X/%02X %02X/%02X\r\n", rda, buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], 6, myMagX, 6, myMagY, 6, myMagZ, 6, magMinX, 6, magMinY, 6, magMinZ, 6, magMaxX, 6, magMaxY, 6, magMaxZ, ret, magSHIRQ, magSLIRQ, magSFire, magHFire);
}
cmd[0] = LSM303_REG_ACC_STATUS_REG_A;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &rda, 1);
if (rda)
{
cmd[0] = LSM303_REG_ACC_OUT_X_L_A;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &buf[0], 1);
cmd[0] = LSM303_REG_ACC_OUT_X_H_A;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &buf[1], 1);
cmd[0] = LSM303_REG_ACC_OUT_Y_L_A;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &buf[2], 1);
cmd[0] = LSM303_REG_ACC_OUT_Y_H_A;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &buf[3], 1);
cmd[0] = LSM303_REG_ACC_OUT_Z_L_A;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &buf[4], 1);
cmd[0] = LSM303_REG_ACC_OUT_Z_H_A;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &buf[5], 1);
myAccX = ((int16_t)(buf[0] | (buf[1] << 8)) >> accShift);
myAccY = ((int16_t)(buf[2] | (buf[3] << 8)) >> accShift);
myAccZ = ((int16_t)(buf[4] | (buf[5] << 8)) >> accShift);
if (myAccX < accMinX)
accMinX = myAccX;
if (myAccY < accMinY)
accMinY = myAccY;
if (myAccZ < accMinZ)
accMinZ = myAccZ;
if (myAccX > accMaxX)
accMaxX = myAccX;
if (myAccY > accMaxY)
accMaxY = myAccY;
if (myAccZ > accMaxZ)
accMaxZ = myAccZ;
//printf("ACC: |%02X %02X %02X %02X %02X %02X| (%d,%d,%d)\r\n", buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], myAccX, myAccY, myAccZ);
cmd[0] = LSM303_REG_ACC_INT1_SRC_A;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &ret, 1);
if (ret & 0x40)
{
accSFire++;
if (accEvent == 1)
{
accEvent = 0;
accSLIRQ++;
cmd[0] = LSM303_REG_ACC_INT1_THS_A;
cmd[1] = 0x7D;
i2c.write(LSM303_ADR_ACC, cmd, 2);
cmd[0] = LSM303_REG_ACC_INT1_DURATION_A;
cmd[1] = 0x00;
i2c.write(LSM303_ADR_ACC, cmd, 2);
cmd[0] = LSM303_REG_ACC_INT1_CFG_A;
cmd[1] = 0x2A;
i2c.write(LSM303_ADR_ACC, cmd, 2);
}
else
{
accEvent = 1;
accSHIRQ++;
cmd[0] = LSM303_REG_ACC_INT1_THS_A;
cmd[1] = 0x50;
i2c.write(LSM303_ADR_ACC, cmd, 2);
cmd[0] = LSM303_REG_ACC_INT1_DURATION_A;
//cmd[1] = 0x7D;
cmd[1] = 0x03;
i2c.write(LSM303_ADR_ACC, cmd, 2);
cmd[0] = LSM303_REG_ACC_INT1_CFG_A;
cmd[1] = 0x95;
i2c.write(LSM303_ADR_ACC, cmd, 2);
}
}
printf("A|%02X|%02X %02X %02X %02X %02X %02X|%*d,%*d,%*d|%*d,%*d,%*d|%*d,%*d,%*d|%02X|%04X/%04X %04X/%04X\r\n", rda, buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], 5, myAccX, 5, myAccY, 5, myAccZ, 5, accMinX, 5, accMinY, 5, accMinZ, 5, accMaxX, 5, accMaxY, 5, accMaxZ, ret, accSHIRQ, accSLIRQ, accSFire, accHFire);
}
}*/
// Initialize LoRaWAN stack
if (lorawan.initialize(&ev_queue) != LORAWAN_STATUS_OK) {
printf("\r\n LoRa initialization failed! \r\n");
return -1;
}
printf("\r\n Mbed LoRaWANStack initialized \r\n");
printf("MBED_CONF_LORA_APP_PORT: %d", MBED_CONF_LORA_APP_PORT);
// prepare application callbacks
callbacks.events = mbed::callback(lora_event_handler);
lorawan.add_app_callbacks(&callbacks);
// Set number of retries in case of CONFIRMED messages
if (lorawan.set_confirmed_msg_retries(CONFIRMED_MSG_RETRY_COUNTER)
!= LORAWAN_STATUS_OK) {
printf("\r\n set_confirmed_msg_retries failed! \r\n\r\n");
return -1;
}
printf("\r\n CONFIRMED message retries : %d \r\n",
CONFIRMED_MSG_RETRY_COUNTER);
// Enable adaptive data rate
if (lorawan.enable_adaptive_datarate() != LORAWAN_STATUS_OK) {
printf("\r\n enable_adaptive_datarate failed! \r\n");
return -1;
}
printf("\r\n Adaptive data rate (ADR) - Enabled \r\n");
retcode = lorawan.connect();
if (retcode == LORAWAN_STATUS_OK ||
retcode == LORAWAN_STATUS_CONNECT_IN_PROGRESS) {
} else {
printf("\r\n Connection error, code = %d \r\n", retcode);
return -1;
}
printf("\r\n Connection - In Progress ...\r\n");
// make your event queue dispatching events forever
ev_queue.dispatch_forever();
return 0;
}
/**
* Sends a message to the Network Server
*/
static void send_message()
{
uint16_t packet_len;
int16_t retcode;
float sensor_value;
bool gpsDone = false;
if (ds1820.begin()) {
ds1820.startConversion();
sensor_value = ds1820.read();
printf("\r\n Dummy Sensor Value = %3.1f \r\n", sensor_value);
ds1820.startConversion();
} else {
printf("\r\n No sensor found \r\n");
return;
}
time_t tNow = time(NULL);
printf("Clock: %d\r\n", tNow);
ret = 0xFF;
cmd[0] = 0xFF;
i2c.write(NEOM8M_ADR_GPS, cmd, 1);
while(!gpsDone)
{
while (ret == 0xFF)
{
i2c.read(NEOM8M_ADR_GPS, &ret, 1);
}
while (ret != 0xFF)
{
buf[pos++] = ret;
i2c.read(NEOM8M_ADR_GPS, &ret, 1);
if (ret == '\r')
{
i2c.read(NEOM8M_ADR_GPS, &ret, 1);
if (ret == '\n')
{
buf[pos] = 0x00;
/* NMEA Validation */
uint16_t crc = 0;
char clr;
if (buf[0] == '$' && buf[pos-3] == '*')
{
int i;
for (i = 1; i < pos-3; i++)
{
crc ^= buf[i];
}
}
if (crc == ((buf[pos-2] < 'A' ? buf[pos-2] - '0' : buf[pos-2] - '7') << 4 | (buf[pos-1] < 'A' ? buf[pos-1] - '0' : buf[pos-1] - '7')))
clr = '2'; // 2 = Green
else
clr = '1'; // 1 = Red
printf("GPS: [\u001b[3%cm%02X\u001b[0m] |%s|\r\n", clr, crc, buf);
// Global Positioning System Fix Data
if(strncmp(buf, "$GNGGA", 6) == 0)
{
printf("GNGGA> ");
//sscanf(cmd, "$GPGGA,%f,%f,%c,%f,%c,%d,%d,%*f,%f", &timefix, &latitude, &ns, &longitude, &ew, &fq, &nst, &altitude);
//pc.printf("GPGGA Fix taken at: %f, Latitude: %f %c, Longitude: %f %c, Fix quality: %d, Number of sat: %d, Altitude: %f M\n", timefix, latitude, ns, longitude, ew, fq, nst, altitude);
float fldTim, fldAlt;
double fldLat, fldLon;
char fldN_S, fldE_W;
int fldFix, fldSat;
sscanf(buf, "$GNGGA,%f,%lf,%c,%lf,%c,%d,%d,%*f,%f", &fldTim, &fldLat, &fldN_S, &fldLon, &fldE_W, &fldFix, &fldSat, &fldAlt);
printf("Sec: %.2f, Lat: %.5f %c, Lon: %.5f %c, Fix: %d, Sat: %d, Alt: %.1f M\r\n", fldTim, fldLat, fldN_S, fldLon, fldE_W, fldFix, fldSat, fldAlt);
if (clr == '2')
{
mylat = fldLat / (fldN_S == 'S' ? -100 : 100);
mylon = fldLon / (fldE_W == 'W' ? -100 : 100);
mytime = (uint32_t)fldTim;
mybatt = (fldSat & 0xF0 ? 0x0F : fldSat & 0x0F);
}
}
// Satellite status
if(strncmp(buf, "$GNGSA", 6) == 0)
{
printf("GNGSA> ");
//sscanf(cmd, "$GPGSA,%c,%d,%d", &tf, &fix, &nst);
//pc.printf("GPGSA Type fix: %c, 3D fix: %d, number of sat: %d\r\n", tf, fix, nst);
char fldTyp;
int fldDim, fldSat;
sscanf(buf, "$GNGSA,%c,%d,%d", &fldTyp, &fldDim, &fldSat);
printf("Typ: %c, Pos: %d, Sat: %d\r\n", fldTyp, fldDim, fldSat);
}
// Geographic position, Latitude and Longitude
if(strncmp(buf, "$GNGLL", 6) == 0)
{
printf("GNGLL> ");
//sscanf(cmd, "$GPGLL,%f,%c,%f,%c,%f", &latitude, &ns, &longitude, &ew, &timefix);
//pc.printf("GPGLL Latitude: %f %c, Longitude: %f %c, Fix taken at: %f\n", latitude, ns, longitude, ew, timefix);
float fldTim;
double fldLat, fldLon;
char fldN_S, fldE_W;
sscanf(buf, "$GNGLL,%lf,%c,%lf,%c,%f", &fldLat, &fldN_S, &fldLon, &fldE_W, &fldTim);
printf("Lat: %.5f %c, Lon: %.5f %c, Sec: %.2f\r\n", fldLat, fldN_S, fldLon, fldE_W, fldTim);
}
// Geographic position, Latitude and Longitude
if(strncmp(buf, "$GNRMC", 6) == 0)
{
printf("GNRMC> ");
//sscanf(cmd, "$GPRMC,%f,%c,%f,%c,%f,%c,%f,,%d", &timefix, &status, &latitude, &ns, &longitude, &ew, &speed, &date);
//pc.printf("GPRMC Fix taken at: %f, Status: %c, Latitude: %f %c, Longitude: %f %c, Speed: %f, Date: %d\n", timefix, status, latitude, ns, longitude, ew, speed, date);
float fldTim, fldSpd;
double fldLat, fldLon;
char fldSts, fldN_S, fldE_W;
int fldDat;
sscanf(buf, "$GNRMC,%f,%c,%lf,%c,%lf,%c,%f,,%d", &fldTim, &fldSts, &fldLat, &fldN_S, &fldLon, &fldE_W, &fldSpd, &fldDat);
printf("Sec: %.2f, Sts: %c, Lat: %.5f %c, Lon: %.5f %c, Spd: %.3f, Dat: %06d\r\n", fldTim, fldSts, fldLat, fldN_S, fldLon, fldE_W, fldSpd, fldDat);
}
pos = 0;
i2c.read(NEOM8M_ADR_GPS, &ret, 1);
}
else
{
printf("WARN: Expected '\n', received '%02x'.\r\n", ret);
}
}
else if (pos == 82)
{
buf[pos] = 0x00;
printf("GPS: |%s| ...\r\n", buf);
pos = 0;
i2c.read(NEOM8M_ADR_GPS, &ret, 1);
}
}
buf[pos] = 0x00;
gpsDone = true;
}
if (pos > 0)
printf("GPS: |%s|\r\n", buf);
/*
cmd[0] = LSM303_REG_ACC_STATUS_REG_AUX_A;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &rda, 1);
cmd[0] = LSM303_REG_ACC_OUT_TEMP_L_A;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &buf[0], 1);
cmd[0] = LSM303_REG_ACC_OUT_TEMP_H_A;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &buf[1], 1);
myTemp = (buf[0] | (buf[1] << 8));
printf("TMP: |%02X %02X %02X| (%d)\r\n", rda, buf[0], buf[1], myTemp);
*/
cmd[0] = LSM303_REG_ACC_STATUS_REG_AUX_A;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &rda, 1);
if (rda & 0x04)
{
cmd[0] = LSM303_REG_ACC_OUT_TEMP_L_A | 0x80;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &buf[0], 2);
myTemp = (int16_t)(buf[0] | (buf[1] << 8)) >> 6;
printf("TMP: |%02X %02X %02X| (%d)\r\n", rda, buf[0], buf[1], myTemp);
}
cmd[0] = LSM303_REG_MAG_STATUS_REG_M;
i2c.write(LSM303_ADR_MAG, cmd, 1);
i2c.read(LSM303_ADR_MAG, &rda, 1);
cmd[0] = LSM303_REG_MAG_OUTX_L_REG_M;
i2c.write(LSM303_ADR_MAG, cmd, 1);
i2c.read(LSM303_ADR_MAG, &buf[0], 1);
cmd[0] = LSM303_REG_MAG_OUTX_H_REG_M;
i2c.write(LSM303_ADR_MAG, cmd, 1);
i2c.read(LSM303_ADR_MAG, &buf[1], 1);
cmd[0] = LSM303_REG_MAG_OUTY_L_REG_M;
i2c.write(LSM303_ADR_MAG, cmd, 1);
i2c.read(LSM303_ADR_MAG, &buf[2], 1);
cmd[0] = LSM303_REG_MAG_OUTY_H_REG_M;
i2c.write(LSM303_ADR_MAG, cmd, 1);
i2c.read(LSM303_ADR_MAG, &buf[3], 1);
cmd[0] = LSM303_REG_MAG_OUTZ_L_REG_M;
i2c.write(LSM303_ADR_MAG, cmd, 1);
i2c.read(LSM303_ADR_MAG, &buf[4], 1);
cmd[0] = LSM303_REG_MAG_OUTZ_H_REG_M;
i2c.write(LSM303_ADR_MAG, cmd, 1);
i2c.read(LSM303_ADR_MAG, &buf[5], 1);
myMagX = (buf[0] | (buf[1] << 8));
myMagY = (buf[2] | (buf[3] << 8));
myMagZ = (buf[4] | (buf[5] << 8));
printf("MAG: |%02X %02X %02X %02X %02X %02X %02X| (%d,%d,%d)\r\n", rda, buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], myMagX, myMagY, myMagZ);
/*
cmd[0] = LSM303_REG_MAG_OFFSET_X_REG_L_M;
i2c.write(LSM303_ADR_MAG, cmd, 1);
i2c.read(LSM303_ADR_MAG, &buf[0], 1);
cmd[0] = LSM303_REG_MAG_OFFSET_X_REG_H_M;
i2c.write(LSM303_ADR_MAG, cmd, 1);
i2c.read(LSM303_ADR_MAG, &buf[1], 1);
cmd[0] = LSM303_REG_MAG_OFFSET_Y_REG_L_M;
i2c.write(LSM303_ADR_MAG, cmd, 1);
i2c.read(LSM303_ADR_MAG, &buf[2], 1);
cmd[0] = LSM303_REG_MAG_OFFSET_Y_REG_H_M;
i2c.write(LSM303_ADR_MAG, cmd, 1);
i2c.read(LSM303_ADR_MAG, &buf[3], 1);
cmd[0] = LSM303_REG_MAG_OFFSET_Z_REG_L_M;
i2c.write(LSM303_ADR_MAG, cmd, 1);
i2c.read(LSM303_ADR_MAG, &buf[4], 1);
cmd[0] = LSM303_REG_MAG_OFFSET_Z_REG_H_M;
i2c.write(LSM303_ADR_MAG, cmd, 1);
i2c.read(LSM303_ADR_MAG, &buf[5], 1);
myOffX = (buf[0] | (buf[1] << 8));
myOffY = (buf[2] | (buf[3] << 8));
myOffZ = (buf[4] | (buf[5] << 8));
printf("OFF: |%02X %02X %02X %02X %02X %02X| (%d,%d,%d)\r\n", buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], myOffX, myOffY, myOffZ);
*/
cmd[0] = LSM303_REG_ACC_STATUS_REG_A;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &rda, 1);
cmd[0] = LSM303_REG_ACC_OUT_X_L_A;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &buf[0], 1);
cmd[0] = LSM303_REG_ACC_OUT_X_H_A;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &buf[1], 1);
cmd[0] = LSM303_REG_ACC_OUT_Y_L_A;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &buf[2], 1);
cmd[0] = LSM303_REG_ACC_OUT_Y_H_A;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &buf[3], 1);
cmd[0] = LSM303_REG_ACC_OUT_Z_L_A;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &buf[4], 1);
cmd[0] = LSM303_REG_ACC_OUT_Z_H_A;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &buf[5], 1);
myAccX = ((int16_t)(buf[0] | (buf[1] << 8)) >> accShift);
myAccY = ((int16_t)(buf[2] | (buf[3] << 8)) >> accShift);
myAccZ = ((int16_t)(buf[4] | (buf[5] << 8)) >> accShift);
printf("ACC: |%02X %02X %02X %02X %02X %02X %02X| (%d,%d,%d)\r\n", rda, buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], myAccX, myAccY, myAccZ);
int ilat = (int)(mylat * 100000);
int ilon = (int)(mylon * 100000);
printf("TIM: %d, SAT: %d, LAT: %d, LON: %d\r\n", mytime, mybatt, ilat, ilon);
packet_len = 11;
tx_buffer[0] = (mytime >> 24) & 0xFF;
tx_buffer[1] = (mytime >> 16) & 0xFF;
tx_buffer[2] = (mytime >> 8) & 0xFF;
tx_buffer[3] = (mytime >> 0) & 0xFF;
tx_buffer[4] = ((mybatt << 4) & 0xF0) | ((ilat >> 22) & 0x0F);
tx_buffer[5] = (ilat >> 14) & 0xFF;
tx_buffer[6] = (ilat >> 6) & 0xFF;
tx_buffer[7] = ((ilat << 2) & 0xFC) | ((ilon >> 24) & 0x03);
tx_buffer[8] = (ilon >> 16) & 0xFF;
tx_buffer[9] = (ilon >> 8) & 0xFF;
tx_buffer[10] = (ilon >> 0) & 0xFF;
printf("\r\nBUF: |");
int i;
for (i = 0; i < packet_len; i++) { printf("%02x", tx_buffer[i]); }
printf("|\r\n");
retcode = lorawan.send(MBED_CONF_LORA_APP_PORT, tx_buffer, packet_len,
MSG_CONFIRMED_FLAG);
if (retcode < 0) {
retcode == LORAWAN_STATUS_WOULD_BLOCK ? printf("send - WOULD BLOCK\r\n")
: printf("\r\n send() - Error code %d \r\n", retcode);
if (retcode == LORAWAN_STATUS_WOULD_BLOCK) {
//retry in 3 seconds
if (MBED_CONF_LORA_DUTY_CYCLE_ON) {
ev_queue.call_in(3000, send_message);
}
}
return;
}
printf("\r\n %d bytes scheduled for transmission \r\n", retcode);
memset(tx_buffer, 0, sizeof(tx_buffer));
}
/**
* Receive a message from the Network Server
*/
static void receive_message()
{
int16_t retcode;
retcode = lorawan.receive(MBED_CONF_LORA_APP_PORT, rx_buffer,
sizeof(rx_buffer),
MSG_CONFIRMED_FLAG|MSG_UNCONFIRMED_FLAG);
if (retcode < 0) {
printf("\r\n receive() - Error code %d \r\n", retcode);
return;
}
printf(" Data:");
for (uint8_t i = 0; i < retcode; i++) {
printf("%x", rx_buffer[i]);
}
printf("\r\n Data Length: %d\r\n", retcode);
int startLoop = 0;
if (strncmp((char *)rx_buffer, cmdSendLoop, 8) == 0)
{
printf("SendLoop Command Received!\r\n");
startLoop = 1;
}
memset(rx_buffer, 0, sizeof(rx_buffer));
if (startLoop)
send_message();
}
/**
* Event handler
*/
static void lora_event_handler(lorawan_event_t event)
{
tr_debug("In lora_event_handler(%d)...", event);
switch (event) {
case CONNECTED:
printf("\r\n Connection - Successful \r\n");
if (MBED_CONF_LORA_DUTY_CYCLE_ON) {
send_message();
} else {
ev_queue.call_every(TX_TIMER, send_message);
}
break;
case DISCONNECTED:
ev_queue.break_dispatch();
printf("\r\n Disconnected Successfully \r\n");
break;
case TX_DONE:
printf("\r\n Message Sent to Network Server \r\n");
if (MBED_CONF_LORA_DUTY_CYCLE_ON) {
send_message();
}
break;
case TX_TIMEOUT:
case TX_ERROR:
case TX_CRYPTO_ERROR:
case TX_SCHEDULING_ERROR:
printf("\r\n Transmission Error - EventCode = %d \r\n", event);
// try again
if (MBED_CONF_LORA_DUTY_CYCLE_ON) {
send_message();
}
break;
case RX_DONE:
printf("\r\n Received message from Network Server \r\n");
receive_message();
break;
case RX_TIMEOUT:
case RX_ERROR:
printf("\r\n Error in reception - Code = %d \r\n", event);
break;
case JOIN_FAILURE:
printf("\r\n OTAA Failed - Check Keys \r\n");
break;
case UPLINK_REQUIRED:
printf("\r\n Uplink required by NS \r\n");
if (MBED_CONF_LORA_DUTY_CYCLE_ON) {
send_message();
}
break;
default:
MBED_ASSERT("Unknown Event");
}
}
// EOF
