The generic full-state feedback control libery

Fork of STATE_FEEDBACK by Project_WIPV_antiSlip

STATE_FEEDBACK.cpp

Committer:
benson516
Date:
2017-01-03
Revision:
3:7ff53317e0a4
Parent:
2:0544e16ea933
Child:
4:958c25c1b151

File content as of revision 3:7ff53317e0a4:

#include "STATE_FEEDBACK.h"
// The controller is for the plant with (p, n, q) system
// Dimensions:
//
// Inputs, u   |   States, x    |   outputs, y
//     p     -->      n        -->      q
//
//

STATE_FEEDBACK::STATE_FEEDBACK(size_t num_state, size_t num_in, size_t num_out, float samplingTime):
    n(num_state), p(num_in), q(num_out), Ts(samplingTime),
    K_full(num_in, vector<float>(num_state,0.0)),
    // N_xd(num_state, vector<float>(num_out, 0.0)),
    // N_ud(num_in, vector<float>(num_out, 0.0)),
    N_total(num_in, vector<float>(num_out,0.0))
{
    // Normally, q = p
    if (q > p)
        q = p;
    //
    zeros_n.assign(n, 0.0);
    zeros_p.assign(p, 0.0);
    zeros_q.assign(q, 0.0);
    //
    states = zeros_n;
    sys_inputs = zeros_p;
    sys_outputs = zeros_q;

    // Command (equalibrium state)
    // states_d = zeros_n;
    // inputs_d = zeros_p;
    sys_inputs_compensate = zeros_p;
    command = zeros_q; // q = p


}
// Assign Parameters
void STATE_FEEDBACK::assign_K_full(float* K_full_in, size_t p_in, size_t n_in){
    // K_full_in is the pointer of a mutidimentional array with size p_in by n_in
    if (n != n_in || p != p_in){
        n = n_in;
        p = p_in;
        zeros_n.resize(n, 0.0);
        zeros_p.resize(p, 0.0);
        K_full.assign(p, zeros_n);
    }
    //
    for (size_t i = 0; i < p; ++i){
        for (size_t j = 0; j < n; ++j){
            // K_full[i][j] = K_full_in[i][j];
            K_full[i][j] = *K_full_in;
            K_full_in++;
        }
    }
}
/*
void STATE_FEEDBACK::assign_N_xd(float* N_xd_in, size_t n_in, size_t q_in){
    // N_xd_in is the pointer of a mutidimentional array with size n_in by q_in
    if (n != n_in || q != q_in){
        n = n_in;
        q = q_in;
        zeros_n.resize(n, 0.0);
        zeros_q.resize(q, 0.0);
        N_xd.assign(n, zeros_q);
    }
    //
    for (size_t i = 0; i < n; ++i){
        for (size_t j = 0; j < q; ++j){
            // N_xd[i][j] = N_xd_in[i][j];
            N_xd[i][j] = *N_xd_in;
            N_xd_in++;
        }
    }
}
void STATE_FEEDBACK::assign_N_ud(float* N_ud_in, size_t p_in, size_t q_in){
    // N_ud_in is the pointer of a mutidimentional array with size p_in by q_in
    if (p != p_in || q != q_in){
        p = p_in;
        q = q_in;
        zeros_p.resize(p, 0.0);
        zeros_q.resize(q, 0.0);
        N_ud.assign(p, zeros_q);
    }
    //
    for (size_t i = 0; i < p; ++i){
        for (size_t j = 0; j < q; ++j){
            // N_ud[i][j] = N_ud_in[i][j];
            N_ud[i][j] = *N_ud_in;
            N_ud_in++;
        }
    }
}
*/
void STATE_FEEDBACK::assign_N_total(float* N_total_in, size_t p_in, size_t q_in){
    // N_total_in is the pointer of a mutidimentional array with size p_in by q_in
    if (p != p_in || q != q_in){
        p = p_in;
        q = q_in;
        zeros_p.resize(p, 0.0);
        zeros_q.resize(q, 0.0);
        N_total.assign(p, zeros_q);
    }
    //
    for (size_t i = 0; i < p; ++i){
        for (size_t j = 0; j < q; ++j){
            // N_total[i][j] = N_total_in[i][j];
            N_total[i][j] = *N_total_in;
            N_total_in++;
        }
    }
}
void STATE_FEEDBACK::fullStateFeedBack_calc(){
    // sys_inputs = Get_VectorScalarMultiply(Mat_multiply_Vec(K_full, states),-1.0);
    //
    // With command input
    get_inputs_compensate();
    // sys_inputs = Get_VectorPlus(inputs_d, Mat_multiply_Vec(K_full, Get_VectorPlus(states, states_d, true)), true); // minus
    sys_inputs = Get_VectorPlus(sys_inputs_compensate, Mat_multiply_Vec(K_full, states), true); // minus
}

// Private functions
// Command (equalibrium state) related calculation
void STATE_FEEDBACK::get_inputs_compensate(void){ // Calculate the compensation variable, states_d and sys_inputs_compensate
    // Mat_multiply_Vec(states_d, N_xd, command);
    // Mat_multiply_Vec(inputs_d, N_ud, command);
    //
    Mat_multiply_Vec(sys_inputs_compensate, N_total, command);

}
// Utilities
void STATE_FEEDBACK::Mat_multiply_Vec(vector<float> &v_out, const vector<vector<float> > &m_left, const vector<float> &v_right){ // v_out = m_left*v_right
    static vector<float>::iterator it_out;
    static vector<const float>::iterator it_m_row;
    static vector<const float>::iterator it_v;
    //
    it_out = v_out.begin();
    for (size_t i = 0; i < m_left.size(); ++i){
        *it_out = 0.0;
        it_m_row = m_left[i].begin();
        it_v = v_right.begin();
        for (size_t j = 0; j < m_left[i].size(); ++j){
            // *it_out += m_left[i][j] * v_right[j];
            if (*it_m_row != 0.0 && *it_v != 0.0){
                (*it_out) += (*it_m_row) * (*it_v);
            }else{
                // (*it_out) += 0.0
            }
            // (*it_out) += (*it_m_row) * (*it_v);
            //
            it_m_row++;
            it_v++;
        }
        it_out++;
    }
}
vector<float> STATE_FEEDBACK::Mat_multiply_Vec(const vector<vector<float> > &m_left, const vector<float> &v_right){ // v_out = m_left*v_right
    static vector<float> v_out;
    // Size check
    if (v_out.size() != m_left.size()){
        v_out.resize(m_left.size());
    }
    // Iterators
    static vector<float>::iterator it_out;
    static vector<const float>::iterator it_m_row;
    static vector<const float>::iterator it_v;
    //
    it_out = v_out.begin();
    for (size_t i = 0; i < m_left.size(); ++i){
        *it_out = 0.0;
        it_m_row = m_left[i].begin();
        it_v = v_right.begin();
        for (size_t j = 0; j < m_left[i].size(); ++j){
            // *it_out += m_left[i][j] * v_right[j];
            if (*it_m_row != 0.0 && *it_v != 0.0){
                (*it_out) += (*it_m_row) * (*it_v);
            }else{
                // (*it_out) += 0.0
            }
            // (*it_out) += (*it_m_row) * (*it_v);
            //
            it_m_row++;
            it_v++;
        }
        it_out++;
    }
    return v_out;
}
vector<float> STATE_FEEDBACK::Get_VectorPlus(const vector<float> &v_a, const vector<float> &v_b, bool is_minus) // v_a + (or -) v_b
{
    static vector<float> v_c;
    // Size check
    if (v_c.size() != v_a.size()){
        v_c.resize(v_a.size());
    }
    //
    for (size_t i = 0; i < v_a.size(); ++i){
        if (is_minus){
            v_c[i] = v_a[i] - v_b[i];
        }else{
            v_c[i] = v_a[i] + v_b[i];
        }
    }
    return v_c;
}
vector<float> STATE_FEEDBACK::Get_VectorScalarMultiply(const vector<float> &v_a, float scale) // scale*v_a
{
    static vector<float> v_c;
    // Size check
    if (v_c.size() != v_a.size()){
        v_c.resize(v_a.size());
    }
    // for pure negative
    if (scale == -1.0){
        for (size_t i = 0; i < v_a.size(); ++i){
            v_c[i] = -v_a[i];
        }
        return v_c;
    }
    // else
    for (size_t i = 0; i < v_a.size(); ++i){
        v_c[i] = scale*v_a[i];

    }
    return v_c;
}