MAX11410 high speed 24-bit Delta-Sigma ADC

Dependents:   MAX11410BOB_24bit_ADC MAX11410BOB_Serial_Tester

Committer:
whismanoid
Date:
Mon Apr 20 00:52:36 2020 +0000
Revision:
26:298726bd5a3f
Parent:
25:c4be3afbfafd
Child:
27:1cb6c42c6a93
On CAL_START, wait for CAL_RDY unless (cal_start=1 and pgaGain==1)

Who changed what in which revision?

UserRevisionLine numberNew contents of line
whismanoid 0:68e64068330f 1 // /*******************************************************************************
whismanoid 4:c169ba85d673 2 // * Copyright (C) 2020 Maxim Integrated Products, Inc., All Rights Reserved.
whismanoid 0:68e64068330f 3 // *
whismanoid 0:68e64068330f 4 // * Permission is hereby granted, free of charge, to any person obtaining a
whismanoid 0:68e64068330f 5 // * copy of this software and associated documentation files (the "Software"),
whismanoid 0:68e64068330f 6 // * to deal in the Software without restriction, including without limitation
whismanoid 0:68e64068330f 7 // * the rights to use, copy, modify, merge, publish, distribute, sublicense,
whismanoid 0:68e64068330f 8 // * and/or sell copies of the Software, and to permit persons to whom the
whismanoid 0:68e64068330f 9 // * Software is furnished to do so, subject to the following conditions:
whismanoid 0:68e64068330f 10 // *
whismanoid 0:68e64068330f 11 // * The above copyright notice and this permission notice shall be included
whismanoid 0:68e64068330f 12 // * in all copies or substantial portions of the Software.
whismanoid 0:68e64068330f 13 // *
whismanoid 0:68e64068330f 14 // * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
whismanoid 0:68e64068330f 15 // * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
whismanoid 0:68e64068330f 16 // * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
whismanoid 0:68e64068330f 17 // * IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
whismanoid 0:68e64068330f 18 // * OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
whismanoid 0:68e64068330f 19 // * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
whismanoid 0:68e64068330f 20 // * OTHER DEALINGS IN THE SOFTWARE.
whismanoid 0:68e64068330f 21 // *
whismanoid 0:68e64068330f 22 // * Except as contained in this notice, the name of Maxim Integrated
whismanoid 0:68e64068330f 23 // * Products, Inc. shall not be used except as stated in the Maxim Integrated
whismanoid 0:68e64068330f 24 // * Products, Inc. Branding Policy.
whismanoid 0:68e64068330f 25 // *
whismanoid 0:68e64068330f 26 // * The mere transfer of this software does not imply any licenses
whismanoid 0:68e64068330f 27 // * of trade secrets, proprietary technology, copyrights, patents,
whismanoid 0:68e64068330f 28 // * trademarks, maskwork rights, or any other form of intellectual
whismanoid 0:68e64068330f 29 // * property whatsoever. Maxim Integrated Products, Inc. retains all
whismanoid 0:68e64068330f 30 // * ownership rights.
whismanoid 0:68e64068330f 31 // *******************************************************************************
whismanoid 0:68e64068330f 32 // */
whismanoid 0:68e64068330f 33 // *********************************************************************
whismanoid 0:68e64068330f 34 // @file MAX11410.cpp
whismanoid 0:68e64068330f 35 // *********************************************************************
whismanoid 0:68e64068330f 36 // Device Driver file
whismanoid 0:68e64068330f 37 // DO NOT EDIT; except areas designated "CUSTOMIZE". Automatically generated file.
whismanoid 0:68e64068330f 38 // generated by XMLSystemOfDevicesToMBED.py
whismanoid 0:68e64068330f 39 // System Name = ExampleSystem
whismanoid 0:68e64068330f 40 // System Description = Device driver example
whismanoid 0:68e64068330f 41
whismanoid 0:68e64068330f 42 #include "MAX11410.h"
whismanoid 0:68e64068330f 43
whismanoid 0:68e64068330f 44 // Device Name = MAX11410
whismanoid 0:68e64068330f 45 // Device Description = 1.9ksps, Low-Power, Serial SPI 24-Bit, 10-Channel, Differential/Single-Ended Input, SAR ADC
whismanoid 0:68e64068330f 46 // Device DeviceBriefDescription = 24-bit 1.9ksps Delta-Sigma ADC
whismanoid 0:68e64068330f 47 // Device Manufacturer = Maxim Integrated
whismanoid 0:68e64068330f 48 // Device PartNumber = MAX11410ATI+
whismanoid 0:68e64068330f 49 // Device RegValue_Width = DataWidth16bit_HL
whismanoid 0:68e64068330f 50 //
whismanoid 0:68e64068330f 51 // ADC MaxOutputDataRate = 1.9ksps
whismanoid 0:68e64068330f 52 // ADC NumChannels = 10
whismanoid 0:68e64068330f 53 // ADC ResolutionBits = 24
whismanoid 0:68e64068330f 54 //
whismanoid 0:68e64068330f 55 // SPI CS = ActiveLow
whismanoid 0:68e64068330f 56 // SPI FrameStart = CS
whismanoid 0:68e64068330f 57 // SPI CPOL = 0
whismanoid 0:68e64068330f 58 // SPI CPHA = 0
whismanoid 0:68e64068330f 59 // SPI MOSI and MISO Data are both stable on Rising edge of SCLK
whismanoid 0:68e64068330f 60 // SPI SCLK Idle Low
whismanoid 0:68e64068330f 61 // SPI SCLKMaxMHz = 8
whismanoid 0:68e64068330f 62 // SPI SCLKMinMHz = 0
whismanoid 0:68e64068330f 63 //
whismanoid 0:68e64068330f 64
whismanoid 0:68e64068330f 65 // CODE GENERATOR: class constructor definition
whismanoid 0:68e64068330f 66 MAX11410::MAX11410(SPI &spi, DigitalOut &cs_pin, // SPI interface
whismanoid 0:68e64068330f 67 // CODE GENERATOR: class constructor definition gpio InputPin pins
whismanoid 0:68e64068330f 68 // CODE GENERATOR: class constructor definition gpio OutputPin pins
whismanoid 0:68e64068330f 69 // CODE GENERATOR: class constructor definition ic_variant
whismanoid 0:68e64068330f 70 MAX11410_ic_t ic_variant)
whismanoid 0:68e64068330f 71 // CODE GENERATOR: class constructor initializer list
whismanoid 0:68e64068330f 72 : m_spi(spi), m_cs_pin(cs_pin), // SPI interface
whismanoid 0:68e64068330f 73 // CODE GENERATOR: class constructor initializer list gpio InputPin pins
whismanoid 0:68e64068330f 74 // CODE GENERATOR: class constructor initializer list gpio OutputPin pins
whismanoid 0:68e64068330f 75 // CODE GENERATOR: class constructor initializer list ic_variant
whismanoid 0:68e64068330f 76 m_ic_variant(ic_variant)
whismanoid 0:68e64068330f 77 {
whismanoid 0:68e64068330f 78 // CODE GENERATOR: class constructor definition SPI interface initialization
whismanoid 0:68e64068330f 79 //
whismanoid 0:68e64068330f 80 // SPI CS = ActiveLow
whismanoid 0:68e64068330f 81 // SPI FrameStart = CS
whismanoid 0:68e64068330f 82 m_SPI_cs_state = 1;
whismanoid 13:df96a784cda6 83 if (m_cs_pin.is_connected()) { // avoid mbed runtime error if pin is NC not connected
whismanoid 13:df96a784cda6 84 m_cs_pin = m_SPI_cs_state;
whismanoid 13:df96a784cda6 85 }
whismanoid 0:68e64068330f 86
whismanoid 0:68e64068330f 87 // SPI CPOL = 0
whismanoid 0:68e64068330f 88 // SPI CPHA = 0
whismanoid 0:68e64068330f 89 // SPI MOSI and MISO Data are both stable on Rising edge of SCLK
whismanoid 0:68e64068330f 90 // SPI SCLK Idle Low
whismanoid 0:68e64068330f 91 m_SPI_dataMode = 0; //SPI_MODE0; // CPOL=0,CPHA=0: Rising Edge stable; SCLK idle Low
whismanoid 0:68e64068330f 92 m_spi.format(8,m_SPI_dataMode); // int bits_must_be_8, int mode=0_3 CPOL=0,CPHA=0
whismanoid 0:68e64068330f 93
whismanoid 0:68e64068330f 94 // SPI SCLKMaxMHz = 8
whismanoid 0:68e64068330f 95 // SPI SCLKMinMHz = 0
whismanoid 0:68e64068330f 96 //#define SPI_SCLK_Hz 48000000 // 48MHz
whismanoid 0:68e64068330f 97 //#define SPI_SCLK_Hz 24000000 // 24MHz
whismanoid 0:68e64068330f 98 //#define SPI_SCLK_Hz 12000000 // 12MHz
whismanoid 0:68e64068330f 99 //#define SPI_SCLK_Hz 6000000 // 6MHz
whismanoid 0:68e64068330f 100 //#define SPI_SCLK_Hz 4000000 // 4MHz
whismanoid 0:68e64068330f 101 //#define SPI_SCLK_Hz 2000000 // 2MHz
whismanoid 0:68e64068330f 102 //#define SPI_SCLK_Hz 1000000 // 1MHz
whismanoid 0:68e64068330f 103 m_SPI_SCLK_Hz = 8000000; // 8MHz; MAX11410 limit is 8MHz
whismanoid 0:68e64068330f 104 m_spi.frequency(m_SPI_SCLK_Hz);
whismanoid 0:68e64068330f 105
whismanoid 0:68e64068330f 106 }
whismanoid 0:68e64068330f 107
whismanoid 0:68e64068330f 108 // CODE GENERATOR: class destructor definition
whismanoid 0:68e64068330f 109 MAX11410::~MAX11410()
whismanoid 0:68e64068330f 110 {
whismanoid 0:68e64068330f 111 // do nothing
whismanoid 0:68e64068330f 112 }
whismanoid 0:68e64068330f 113
whismanoid 0:68e64068330f 114 // CODE GENERATOR: spi_frequency setter definition
whismanoid 0:68e64068330f 115 /// set SPI SCLK frequency
whismanoid 0:68e64068330f 116 void MAX11410::spi_frequency(int spi_sclk_Hz)
whismanoid 0:68e64068330f 117 {
whismanoid 0:68e64068330f 118 m_SPI_SCLK_Hz = spi_sclk_Hz;
whismanoid 0:68e64068330f 119 m_spi.frequency(m_SPI_SCLK_Hz);
whismanoid 0:68e64068330f 120 }
whismanoid 0:68e64068330f 121
whismanoid 0:68e64068330f 122 // CODE GENERATOR: omit global g_MAX11410_device
whismanoid 0:68e64068330f 123 // CODE GENERATOR: extern function declarations
whismanoid 0:68e64068330f 124 // CODE GENERATOR: extern function requirement MAX11410::SPIoutputCS
whismanoid 0:68e64068330f 125 // Assert SPI Chip Select
whismanoid 0:68e64068330f 126 // SPI chip-select for MAX11410
whismanoid 0:68e64068330f 127 //
whismanoid 12:daecd93dd33a 128 inline void MAX11410::SPIoutputCS(int isLogicHigh)
whismanoid 0:68e64068330f 129 {
whismanoid 0:68e64068330f 130 // CODE GENERATOR: extern function definition for function SPIoutputCS
whismanoid 0:68e64068330f 131 // CODE GENERATOR: extern function definition for standard SPI interface function SPIoutputCS(int isLogicHigh)
whismanoid 0:68e64068330f 132 m_SPI_cs_state = isLogicHigh;
whismanoid 13:df96a784cda6 133 if (m_cs_pin.is_connected()) { // avoid mbed runtime error if pin is NC not connected
whismanoid 13:df96a784cda6 134 m_cs_pin = m_SPI_cs_state;
whismanoid 13:df96a784cda6 135 }
whismanoid 0:68e64068330f 136 }
whismanoid 0:68e64068330f 137
whismanoid 0:68e64068330f 138 // CODE GENERATOR: extern function requirement MAX11410::SPIwrite16bits
whismanoid 0:68e64068330f 139 // SPI write 16 bits
whismanoid 0:68e64068330f 140 // SPI interface to MAX11410 shift 16 bits mosiData into MAX11410 DIN
whismanoid 0:68e64068330f 141 //
whismanoid 0:68e64068330f 142 void MAX11410::SPIwrite16bits(int16_t mosiData16)
whismanoid 0:68e64068330f 143 {
whismanoid 0:68e64068330f 144 // CODE GENERATOR: extern function definition for function SPIwrite16bits
whismanoid 0:68e64068330f 145 // TODO1: CODE GENERATOR: extern function definition for standard SPI interface function SPIwrite16bits(int16_t mosiData16)
whismanoid 0:68e64068330f 146 size_t byteCount = 2;
whismanoid 0:68e64068330f 147 static char mosiData[2];
whismanoid 0:68e64068330f 148 static char misoData[2];
whismanoid 0:68e64068330f 149 mosiData[0] = (char)((mosiData16 >> 8) & 0xFF); // MSByte
whismanoid 0:68e64068330f 150 mosiData[1] = (char)((mosiData16 >> 0) & 0xFF); // LSByte
whismanoid 0:68e64068330f 151 //
whismanoid 0:68e64068330f 152 // Arduino: begin critical section: noInterrupts() masks all interrupt sources; end critical section with interrupts()
whismanoid 0:68e64068330f 153 //~ noInterrupts();
whismanoid 0:68e64068330f 154 //
whismanoid 0:68e64068330f 155 //~ digitalWrite(Scope_Trigger_Pin, LOW); // diagnostic Scope_Trigger_Pin
whismanoid 0:68e64068330f 156 //
whismanoid 0:68e64068330f 157 unsigned int numBytesTransferred = m_spi.write(mosiData, byteCount, misoData, byteCount);
whismanoid 0:68e64068330f 158 //~ m_spi.transfer(mosiData8_FF0000);
whismanoid 0:68e64068330f 159 //~ m_spi.transfer(mosiData16_00FF00);
whismanoid 0:68e64068330f 160 //~ m_spi.transfer(mosiData16_0000FF);
whismanoid 0:68e64068330f 161 //
whismanoid 0:68e64068330f 162 //~ digitalWrite(Scope_Trigger_Pin, HIGH); // diagnostic Scope_Trigger_Pin
whismanoid 0:68e64068330f 163 //
whismanoid 0:68e64068330f 164 // Arduino: begin critical section: noInterrupts() masks all interrupt sources; end critical section with interrupts()
whismanoid 0:68e64068330f 165 //~ interrupts();
whismanoid 0:68e64068330f 166 // Optional Diagnostic function to print SPI transactions
whismanoid 0:68e64068330f 167 if (onSPIprint)
whismanoid 0:68e64068330f 168 {
whismanoid 0:68e64068330f 169 onSPIprint(byteCount, (uint8_t*)mosiData, (uint8_t*)misoData);
whismanoid 0:68e64068330f 170 }
whismanoid 0:68e64068330f 171 //
whismanoid 0:68e64068330f 172 // VERIFY: SPIwrite24bits print diagnostic information
whismanoid 0:68e64068330f 173 //cmdLine.serial().printf(" MOSI->"));
whismanoid 0:68e64068330f 174 //cmdLine.serial().printf(" 0x"));
whismanoid 0:68e64068330f 175 //Serial.print( (mosiData8_FF0000 & 0xFF), HEX);
whismanoid 0:68e64068330f 176 //cmdLine.serial().printf(" 0x"));
whismanoid 0:68e64068330f 177 //Serial.print( (mosiData16_00FF00 & 0xFF), HEX);
whismanoid 0:68e64068330f 178 //cmdLine.serial().printf(" 0x"));
whismanoid 0:68e64068330f 179 //Serial.print( (mosiData16_0000FF & 0xFF), HEX);
whismanoid 0:68e64068330f 180 // hex dump mosiData[0..byteCount-1]
whismanoid 0:68e64068330f 181 #if 0 // HAS_MICROUSBSERIAL
whismanoid 0:68e64068330f 182 cmdLine_microUSBserial.serial().printf("\r\nSPI");
whismanoid 0:68e64068330f 183 if (byteCount > 7) {
whismanoid 0:68e64068330f 184 cmdLine_microUSBserial.serial().printf(" byteCount:%d", byteCount);
whismanoid 0:68e64068330f 185 }
whismanoid 0:68e64068330f 186 cmdLine_microUSBserial.serial().printf(" MOSI->");
whismanoid 0:68e64068330f 187 for (unsigned int byteIndex = 0; byteIndex < byteCount; byteIndex++)
whismanoid 0:68e64068330f 188 {
whismanoid 0:68e64068330f 189 cmdLine_microUSBserial.serial().printf(" 0x%2.2X", mosiData[byteIndex]);
whismanoid 0:68e64068330f 190 }
whismanoid 0:68e64068330f 191 // hex dump misoData[0..byteCount-1]
whismanoid 25:c4be3afbfafd 192 cmdLine_microUSBserial.serial().printf(" MISO<-");
whismanoid 0:68e64068330f 193 for (unsigned int byteIndex = 0; byteIndex < numBytesTransferred; byteIndex++)
whismanoid 0:68e64068330f 194 {
whismanoid 0:68e64068330f 195 cmdLine_microUSBserial.serial().printf(" 0x%2.2X", misoData[byteIndex]);
whismanoid 0:68e64068330f 196 }
whismanoid 0:68e64068330f 197 cmdLine_microUSBserial.serial().printf(" ");
whismanoid 0:68e64068330f 198 #endif
whismanoid 0:68e64068330f 199 #if 0 // HAS_DAPLINK_SERIAL
whismanoid 0:68e64068330f 200 cmdLine_DAPLINKserial.serial().printf("\r\nSPI");
whismanoid 0:68e64068330f 201 if (byteCount > 7) {
whismanoid 0:68e64068330f 202 cmdLine_DAPLINKserial.serial().printf(" byteCount:%d", byteCount);
whismanoid 0:68e64068330f 203 }
whismanoid 0:68e64068330f 204 cmdLine_DAPLINKserial.serial().printf(" MOSI->");
whismanoid 0:68e64068330f 205 for (unsigned int byteIndex = 0; byteIndex < byteCount; byteIndex++)
whismanoid 0:68e64068330f 206 {
whismanoid 0:68e64068330f 207 cmdLine_DAPLINKserial.serial().printf(" 0x%2.2X", mosiData[byteIndex]);
whismanoid 0:68e64068330f 208 }
whismanoid 0:68e64068330f 209 // hex dump misoData[0..byteCount-1]
whismanoid 25:c4be3afbfafd 210 cmdLine_DAPLINKserial.serial().printf(" MISO<-");
whismanoid 0:68e64068330f 211 for (unsigned int byteIndex = 0; byteIndex < numBytesTransferred; byteIndex++)
whismanoid 0:68e64068330f 212 {
whismanoid 0:68e64068330f 213 cmdLine_DAPLINKserial.serial().printf(" 0x%2.2X", misoData[byteIndex]);
whismanoid 0:68e64068330f 214 }
whismanoid 0:68e64068330f 215 cmdLine_DAPLINKserial.serial().printf(" ");
whismanoid 0:68e64068330f 216 #endif
whismanoid 0:68e64068330f 217 // VERIFY: DIAGNOSTIC: print MAX5715 device register write
whismanoid 0:68e64068330f 218 // TODO: MAX5715_print_register_verbose(mosiData8_FF0000, mosiData16_00FFFF);
whismanoid 0:68e64068330f 219 // TODO: print_verbose_SPI_diagnostic(mosiData16_FF00, mosiData16_00FF, misoData16_FF00, misoData16_00FF);
whismanoid 0:68e64068330f 220 //
whismanoid 0:68e64068330f 221 // int misoData16 = (misoData16_FF00 << 8) | misoData16_00FF;
whismanoid 0:68e64068330f 222 // return misoData16;
whismanoid 0:68e64068330f 223 }
whismanoid 0:68e64068330f 224
whismanoid 0:68e64068330f 225 // CODE GENERATOR: extern function requirement MAX11410::SPIreadWrite16bits
whismanoid 0:68e64068330f 226 // SPI read and write 16 bits
whismanoid 0:68e64068330f 227 // SPI interface to MAX11410 shift 16 bits mosiData16 into MAX11410 DIN
whismanoid 0:68e64068330f 228 // while simultaneously capturing 16 bits miso data from MAX11410 DOUT
whismanoid 0:68e64068330f 229 //
whismanoid 0:68e64068330f 230 int16_t MAX11410::SPIreadWrite16bits(int16_t mosiData16)
whismanoid 0:68e64068330f 231 {
whismanoid 0:68e64068330f 232 // CODE GENERATOR: extern function definition for function SPIreadWrite16bits
whismanoid 0:68e64068330f 233 // TODO1: CODE GENERATOR: extern function definition for standard SPI interface function SPIreadWrite16bits(int16_t mosiData16)
whismanoid 0:68e64068330f 234 size_t byteCount = 2;
whismanoid 0:68e64068330f 235 static char mosiData[2];
whismanoid 0:68e64068330f 236 static char misoData[2];
whismanoid 0:68e64068330f 237 mosiData[0] = (char)((mosiData16 >> 8) & 0xFF); // MSByte
whismanoid 0:68e64068330f 238 mosiData[1] = (char)((mosiData16 >> 0) & 0xFF); // LSByte
whismanoid 0:68e64068330f 239 //
whismanoid 0:68e64068330f 240 // Arduino: begin critical section: noInterrupts() masks all interrupt sources; end critical section with interrupts()
whismanoid 0:68e64068330f 241 //~ noInterrupts();
whismanoid 0:68e64068330f 242 //
whismanoid 0:68e64068330f 243 //~ digitalWrite(Scope_Trigger_Pin, LOW); // diagnostic Scope_Trigger_Pin
whismanoid 0:68e64068330f 244 //
whismanoid 0:68e64068330f 245 unsigned int numBytesTransferred = m_spi.write(mosiData, byteCount, misoData, byteCount);
whismanoid 0:68e64068330f 246 //~ m_spi.transfer(mosiData8_FF0000);
whismanoid 0:68e64068330f 247 //~ m_spi.transfer(mosiData16_00FF00);
whismanoid 0:68e64068330f 248 //~ m_spi.transfer(mosiData16_0000FF);
whismanoid 0:68e64068330f 249 //
whismanoid 0:68e64068330f 250 //~ digitalWrite(Scope_Trigger_Pin, HIGH); // diagnostic Scope_Trigger_Pin
whismanoid 0:68e64068330f 251 //
whismanoid 0:68e64068330f 252 // Arduino: begin critical section: noInterrupts() masks all interrupt sources; end critical section with interrupts()
whismanoid 0:68e64068330f 253 //~ interrupts();
whismanoid 0:68e64068330f 254 // Optional Diagnostic function to print SPI transactions
whismanoid 0:68e64068330f 255 if (onSPIprint)
whismanoid 0:68e64068330f 256 {
whismanoid 0:68e64068330f 257 onSPIprint(byteCount, (uint8_t*)mosiData, (uint8_t*)misoData);
whismanoid 0:68e64068330f 258 }
whismanoid 0:68e64068330f 259 //
whismanoid 0:68e64068330f 260 // VERIFY: SPIwrite24bits print diagnostic information
whismanoid 0:68e64068330f 261 //cmdLine.serial().printf(" MOSI->"));
whismanoid 0:68e64068330f 262 //cmdLine.serial().printf(" 0x"));
whismanoid 0:68e64068330f 263 //Serial.print( (mosiData8_FF0000 & 0xFF), HEX);
whismanoid 0:68e64068330f 264 //cmdLine.serial().printf(" 0x"));
whismanoid 0:68e64068330f 265 //Serial.print( (mosiData16_00FF00 & 0xFF), HEX);
whismanoid 0:68e64068330f 266 //cmdLine.serial().printf(" 0x"));
whismanoid 0:68e64068330f 267 //Serial.print( (mosiData16_0000FF & 0xFF), HEX);
whismanoid 0:68e64068330f 268 // hex dump mosiData[0..byteCount-1]
whismanoid 0:68e64068330f 269 #if 0 // HAS_MICROUSBSERIAL
whismanoid 0:68e64068330f 270 cmdLine_microUSBserial.serial().printf("\r\nSPI");
whismanoid 0:68e64068330f 271 if (byteCount > 7) {
whismanoid 0:68e64068330f 272 cmdLine_microUSBserial.serial().printf(" byteCount:%d", byteCount);
whismanoid 0:68e64068330f 273 }
whismanoid 0:68e64068330f 274 cmdLine_microUSBserial.serial().printf(" MOSI->");
whismanoid 0:68e64068330f 275 for (unsigned int byteIndex = 0; byteIndex < byteCount; byteIndex++)
whismanoid 0:68e64068330f 276 {
whismanoid 0:68e64068330f 277 cmdLine_microUSBserial.serial().printf(" 0x%2.2X", mosiData[byteIndex]);
whismanoid 0:68e64068330f 278 }
whismanoid 0:68e64068330f 279 // hex dump misoData[0..byteCount-1]
whismanoid 25:c4be3afbfafd 280 cmdLine_microUSBserial.serial().printf(" MISO<-");
whismanoid 0:68e64068330f 281 for (unsigned int byteIndex = 0; byteIndex < numBytesTransferred; byteIndex++)
whismanoid 0:68e64068330f 282 {
whismanoid 0:68e64068330f 283 cmdLine_microUSBserial.serial().printf(" 0x%2.2X", misoData[byteIndex]);
whismanoid 0:68e64068330f 284 }
whismanoid 0:68e64068330f 285 cmdLine_microUSBserial.serial().printf(" ");
whismanoid 0:68e64068330f 286 #endif
whismanoid 0:68e64068330f 287 #if 0 // HAS_DAPLINK_SERIAL
whismanoid 0:68e64068330f 288 cmdLine_DAPLINKserial.serial().printf("\r\nSPI");
whismanoid 0:68e64068330f 289 if (byteCount > 7) {
whismanoid 0:68e64068330f 290 cmdLine_DAPLINKserial.serial().printf(" byteCount:%d", byteCount);
whismanoid 0:68e64068330f 291 }
whismanoid 0:68e64068330f 292 cmdLine_DAPLINKserial.serial().printf(" MOSI->");
whismanoid 0:68e64068330f 293 for (unsigned int byteIndex = 0; byteIndex < byteCount; byteIndex++)
whismanoid 0:68e64068330f 294 {
whismanoid 0:68e64068330f 295 cmdLine_DAPLINKserial.serial().printf(" 0x%2.2X", mosiData[byteIndex]);
whismanoid 0:68e64068330f 296 }
whismanoid 0:68e64068330f 297 // hex dump misoData[0..byteCount-1]
whismanoid 25:c4be3afbfafd 298 cmdLine_DAPLINKserial.serial().printf(" MISO<-");
whismanoid 0:68e64068330f 299 for (unsigned int byteIndex = 0; byteIndex < numBytesTransferred; byteIndex++)
whismanoid 0:68e64068330f 300 {
whismanoid 0:68e64068330f 301 cmdLine_DAPLINKserial.serial().printf(" 0x%2.2X", misoData[byteIndex]);
whismanoid 0:68e64068330f 302 }
whismanoid 0:68e64068330f 303 cmdLine_DAPLINKserial.serial().printf(" ");
whismanoid 0:68e64068330f 304 #endif
whismanoid 0:68e64068330f 305 // VERIFY: DIAGNOSTIC: print MAX5715 device register write
whismanoid 0:68e64068330f 306 // TODO: MAX5715_print_register_verbose(mosiData8_FF0000, mosiData16_00FFFF);
whismanoid 0:68e64068330f 307 // TODO: print_verbose_SPI_diagnostic(mosiData16_FF00, mosiData16_00FF, misoData16_FF00, misoData16_00FF);
whismanoid 0:68e64068330f 308 //
whismanoid 0:68e64068330f 309 //int misoData16 = (misoData16_FF00 << 8) | misoData16_00FF;
whismanoid 0:68e64068330f 310 int misoData16 = (misoData[0] << 8) | misoData[1];
whismanoid 0:68e64068330f 311 return misoData16;
whismanoid 0:68e64068330f 312 }
whismanoid 0:68e64068330f 313
whismanoid 0:68e64068330f 314 // CODE GENERATOR: extern function requirement MAX11410::SPIreadWrite32bits
whismanoid 0:68e64068330f 315 // SPI read and write 32 bits
whismanoid 0:68e64068330f 316 // SPI interface to MAX11410 shift 32 bits mosiData into MAX11410 DIN
whismanoid 0:68e64068330f 317 // while simultaneously capturing 32 bits miso data from MAX11410 DOUT
whismanoid 0:68e64068330f 318 //
whismanoid 0:68e64068330f 319 int32_t MAX11410::SPIreadWrite32bits(int32_t mosiData32)
whismanoid 0:68e64068330f 320 {
whismanoid 0:68e64068330f 321 // CODE GENERATOR: extern function definition for function SPIreadWrite32bits
whismanoid 0:68e64068330f 322 // TODO1: CODE GENERATOR: extern function definition for standard SPI interface function SPIreadWrite32bits(int32_t mosiData32)
whismanoid 0:68e64068330f 323 size_t byteCount = 4;
whismanoid 0:68e64068330f 324 static char mosiData[4];
whismanoid 0:68e64068330f 325 static char misoData[4];
whismanoid 0:68e64068330f 326 mosiData[0] = (char)((mosiData32 >> 24) & 0xFF); // MSByte
whismanoid 0:68e64068330f 327 mosiData[1] = (char)((mosiData32 >> 16) & 0xFF);
whismanoid 0:68e64068330f 328 mosiData[2] = (char)((mosiData32 >> 8) & 0xFF);
whismanoid 0:68e64068330f 329 mosiData[3] = (char)((mosiData32 >> 0) & 0xFF); // LSByte
whismanoid 0:68e64068330f 330 //
whismanoid 0:68e64068330f 331 // Arduino: begin critical section: noInterrupts() masks all interrupt sources; end critical section with interrupts()
whismanoid 0:68e64068330f 332 //~ noInterrupts();
whismanoid 0:68e64068330f 333 //
whismanoid 0:68e64068330f 334 //~ digitalWrite(Scope_Trigger_Pin, LOW); // diagnostic Scope_Trigger_Pin
whismanoid 0:68e64068330f 335 //
whismanoid 0:68e64068330f 336 unsigned int numBytesTransferred = m_spi.write(mosiData, byteCount, misoData, byteCount);
whismanoid 0:68e64068330f 337 //~ m_spi.transfer(mosiData8_FF0000);
whismanoid 0:68e64068330f 338 //~ m_spi.transfer(mosiData16_00FF00);
whismanoid 0:68e64068330f 339 //~ m_spi.transfer(mosiData16_0000FF);
whismanoid 0:68e64068330f 340 //
whismanoid 0:68e64068330f 341 //~ digitalWrite(Scope_Trigger_Pin, HIGH); // diagnostic Scope_Trigger_Pin
whismanoid 0:68e64068330f 342 //
whismanoid 0:68e64068330f 343 // Arduino: begin critical section: noInterrupts() masks all interrupt sources; end critical section with interrupts()
whismanoid 0:68e64068330f 344 //~ interrupts();
whismanoid 0:68e64068330f 345 // Optional Diagnostic function to print SPI transactions
whismanoid 0:68e64068330f 346 if (onSPIprint)
whismanoid 0:68e64068330f 347 {
whismanoid 0:68e64068330f 348 onSPIprint(byteCount, (uint8_t*)mosiData, (uint8_t*)misoData);
whismanoid 0:68e64068330f 349 }
whismanoid 0:68e64068330f 350 //
whismanoid 0:68e64068330f 351 // VERIFY: SPIwrite24bits print diagnostic information
whismanoid 0:68e64068330f 352 //cmdLine.serial().printf(" MOSI->"));
whismanoid 0:68e64068330f 353 //cmdLine.serial().printf(" 0x"));
whismanoid 0:68e64068330f 354 //Serial.print( (mosiData8_FF0000 & 0xFF), HEX);
whismanoid 0:68e64068330f 355 //cmdLine.serial().printf(" 0x"));
whismanoid 0:68e64068330f 356 //Serial.print( (mosiData16_00FF00 & 0xFF), HEX);
whismanoid 0:68e64068330f 357 //cmdLine.serial().printf(" 0x"));
whismanoid 0:68e64068330f 358 //Serial.print( (mosiData16_0000FF & 0xFF), HEX);
whismanoid 0:68e64068330f 359 // hex dump mosiData[0..byteCount-1]
whismanoid 0:68e64068330f 360 #if 0 // HAS_MICROUSBSERIAL
whismanoid 0:68e64068330f 361 cmdLine_microUSBserial.serial().printf("\r\nSPI");
whismanoid 0:68e64068330f 362 if (byteCount > 7) {
whismanoid 0:68e64068330f 363 cmdLine_microUSBserial.serial().printf(" byteCount:%d", byteCount);
whismanoid 0:68e64068330f 364 }
whismanoid 0:68e64068330f 365 cmdLine_microUSBserial.serial().printf(" MOSI->");
whismanoid 0:68e64068330f 366 for (unsigned int byteIndex = 0; byteIndex < byteCount; byteIndex++)
whismanoid 0:68e64068330f 367 {
whismanoid 0:68e64068330f 368 cmdLine_microUSBserial.serial().printf(" 0x%2.2X", mosiData[byteIndex]);
whismanoid 0:68e64068330f 369 }
whismanoid 0:68e64068330f 370 // hex dump misoData[0..byteCount-1]
whismanoid 25:c4be3afbfafd 371 cmdLine_microUSBserial.serial().printf(" MISO<-");
whismanoid 0:68e64068330f 372 for (unsigned int byteIndex = 0; byteIndex < numBytesTransferred; byteIndex++)
whismanoid 0:68e64068330f 373 {
whismanoid 0:68e64068330f 374 cmdLine_microUSBserial.serial().printf(" 0x%2.2X", misoData[byteIndex]);
whismanoid 0:68e64068330f 375 }
whismanoid 0:68e64068330f 376 cmdLine_microUSBserial.serial().printf(" ");
whismanoid 0:68e64068330f 377 #endif
whismanoid 0:68e64068330f 378 #if 0 // HAS_DAPLINK_SERIAL
whismanoid 0:68e64068330f 379 cmdLine_DAPLINKserial.serial().printf("\r\nSPI");
whismanoid 0:68e64068330f 380 if (byteCount > 7) {
whismanoid 0:68e64068330f 381 cmdLine_DAPLINKserial.serial().printf(" byteCount:%d", byteCount);
whismanoid 0:68e64068330f 382 }
whismanoid 0:68e64068330f 383 cmdLine_DAPLINKserial.serial().printf(" MOSI->");
whismanoid 0:68e64068330f 384 for (unsigned int byteIndex = 0; byteIndex < byteCount; byteIndex++)
whismanoid 0:68e64068330f 385 {
whismanoid 0:68e64068330f 386 cmdLine_DAPLINKserial.serial().printf(" 0x%2.2X", mosiData[byteIndex]);
whismanoid 0:68e64068330f 387 }
whismanoid 0:68e64068330f 388 // hex dump misoData[0..byteCount-1]
whismanoid 25:c4be3afbfafd 389 cmdLine_DAPLINKserial.serial().printf(" MISO<-");
whismanoid 0:68e64068330f 390 for (unsigned int byteIndex = 0; byteIndex < numBytesTransferred; byteIndex++)
whismanoid 0:68e64068330f 391 {
whismanoid 0:68e64068330f 392 cmdLine_DAPLINKserial.serial().printf(" 0x%2.2X", misoData[byteIndex]);
whismanoid 0:68e64068330f 393 }
whismanoid 0:68e64068330f 394 cmdLine_DAPLINKserial.serial().printf(" ");
whismanoid 0:68e64068330f 395 #endif
whismanoid 0:68e64068330f 396 // VERIFY: DIAGNOSTIC: print MAX5715 device register write
whismanoid 0:68e64068330f 397 // TODO: MAX5715_print_register_verbose(mosiData8_FF0000, mosiData16_00FFFF);
whismanoid 0:68e64068330f 398 // TODO: print_verbose_SPI_diagnostic(mosiData16_FF00, mosiData16_00FF, misoData16_FF00, misoData16_00FF);
whismanoid 0:68e64068330f 399 //
whismanoid 0:68e64068330f 400 //int misoData32 = (misoData32_FF000000 << 24) | (misoData32_FF0000 << 16) | (misoData32_0000FF00 << 8) | misoData32_000000FF;
whismanoid 0:68e64068330f 401 int misoData32 = (misoData[0] << 24) | (misoData[1] << 16) | (misoData[2] << 8) | misoData[3];
whismanoid 0:68e64068330f 402 return misoData32;
whismanoid 0:68e64068330f 403 }
whismanoid 0:68e64068330f 404
whismanoid 0:68e64068330f 405 // CODE GENERATOR: class member function definitions
whismanoid 0:68e64068330f 406 //----------------------------------------
whismanoid 0:68e64068330f 407 // Menu item '!'
whismanoid 0:68e64068330f 408 // Initialize device
whismanoid 19:50cf5da53d36 409 //
whismanoid 19:50cf5da53d36 410 // TODO1: #169 MAX11410 Self Test for Test Fixture Firmware
whismanoid 19:50cf5da53d36 411 // @test Init() expect 1
whismanoid 19:50cf5da53d36 412 //
whismanoid 19:50cf5da53d36 413 // @future test xxxxxx // comment
whismanoid 19:50cf5da53d36 414 //
whismanoid 19:50cf5da53d36 415 // TODO1: #169 SelfTest support RegRead
whismanoid 22:c6812214a933 416 // @test group POR // verify initial register values (enabled by default)
whismanoid 20:fb7527415308 417 // @future test tinyTester.print("PART_ID value")
whismanoid 22:c6812214a933 418 // @test group POR RegRead(MAX11410::CMD_r001_0001_xxxx_xxxx_xxxx_xxxx_xxxx_xddd_PART_ID, buffer) expect 1 expect-buffer 0x000F02
whismanoid 20:fb7527415308 419 //
whismanoid 20:fb7527415308 420 // @future test tinyTester.print("POR value 0x04 CMD_r000_0100_dddd_xddd_GP0_CTRL")
whismanoid 22:c6812214a933 421 // @test group POR RegRead(MAX11410::CMD_r000_0100_dddd_xddd_GP0_CTRL, buffer) expect 1 expect-buffer 0x00
whismanoid 20:fb7527415308 422 //
whismanoid 20:fb7527415308 423 // @future test tinyTester.print("POR value 0x05 CMD_r000_0101_dddd_xddd_GP1_CTRL")
whismanoid 22:c6812214a933 424 // @test group POR RegRead(MAX11410::CMD_r000_0101_dddd_xddd_GP1_CTRL, buffer) expect 1 expect-buffer 0x00
whismanoid 20:fb7527415308 425 //
whismanoid 20:fb7527415308 426 // @future test tinyTester.print("POR value 0x07 CMD_r000_0111_xddd_dddd_GP_SEQ_ADDR")
whismanoid 22:c6812214a933 427 // @test group POR RegRead(MAX11410::CMD_r000_0111_xddd_dddd_GP_SEQ_ADDR, buffer) expect 1 expect-buffer 0x00003a
whismanoid 19:50cf5da53d36 428 //
whismanoid 19:50cf5da53d36 429 // TODO1: #169 SelfTest support RegWrite and custom enum types
whismanoid 20:fb7527415308 430 // @future test tinyTester.print("POR value 0x08 CMD_r000_1000_x0dd_dddd_FILTER")
whismanoid 22:c6812214a933 431 // @test group POR RegRead(MAX11410::CMD_r000_1000_x0dd_dddd_FILTER, buffer) expect 1 expect-buffer 0x00
whismanoid 20:fb7527415308 432 // could also be stated as RegRead(0x08, buffer) expect 1 expect-buffer 0x00
whismanoid 20:fb7527415308 433 //
whismanoid 20:fb7527415308 434 // @future test tinyTester.print("POR value 0x09 CMD_r000_1001_dddd_dddd_CTRL")
whismanoid 22:c6812214a933 435 // @test group POR RegRead(MAX11410::CMD_r000_1001_dddd_dddd_CTRL, buffer) expect 1 expect-buffer 0x000001
whismanoid 20:fb7527415308 436 //
whismanoid 20:fb7527415308 437 // @future test tinyTester.print("POR value 0x0a CMD_r000_1010_dddd_dddd_SOURCE")
whismanoid 22:c6812214a933 438 // @test group POR RegRead(MAX11410::CMD_r000_1010_dddd_dddd_SOURCE, buffer) expect 1 expect-buffer 0x00
whismanoid 20:fb7527415308 439 //
whismanoid 20:fb7527415308 440 // @future test tinyTester.print("POR value 0x0b CMD_r000_1011_dddd_dddd_MUX_CTRL0")
whismanoid 22:c6812214a933 441 // @test group POR RegRead(MAX11410::CMD_r000_1011_dddd_dddd_MUX_CTRL0, buffer) expect 1 expect-buffer 0x0000ff
whismanoid 20:fb7527415308 442 //
whismanoid 20:fb7527415308 443 // @future test tinyTester.print("POR value 0x0c CMD_r000_1100_dddd_dddd_MUX_CTRL1")
whismanoid 22:c6812214a933 444 // @test group POR RegRead(MAX11410::CMD_r000_1100_dddd_dddd_MUX_CTRL1, buffer) expect 1 expect-buffer 0x0000ff
whismanoid 20:fb7527415308 445 //
whismanoid 20:fb7527415308 446 // @future test tinyTester.print("POR value 0x0d CMD_r000_1101_dddd_dddd_MUX_CTRL2")
whismanoid 22:c6812214a933 447 // @test group POR RegRead(MAX11410::CMD_r000_1101_dddd_dddd_MUX_CTRL2, buffer) expect 1 expect-buffer 0x00
whismanoid 20:fb7527415308 448 //
whismanoid 23:22e7830bcccb 449 // @future test tinyTester.print("POR value 0x0e CMD_r000_1110_00ss_0ggg_PGA")
whismanoid 23:22e7830bcccb 450 // @test group POR RegRead(MAX11410::CMD_r000_1110_00ss_0ggg_PGA, buffer) expect 1 expect-buffer 0x00
whismanoid 20:fb7527415308 451 //
whismanoid 20:fb7527415308 452 // @future test CMD_r000_1111_dddd_dddd_WAIT_EXT = 0x0f, //!< 0b0001111
whismanoid 20:fb7527415308 453 // @future test CMD_r001_0000_xxxx_xxxx_WAIT_START = 0x10, //!< 0b0010000
whismanoid 20:fb7527415308 454 //
whismanoid 22:c6812214a933 455 // @test group RES1KA0A1TOGND // measure a 1kohm resistor between (AIN0,AIN1) and AGND to verify ref2_v (disabled by default)
whismanoid 22:c6812214a933 456 // @test group RES1KA0A1TOGNDMORE // measure a 1kohm resistor between (AIN0,AIN1) and AGND to verify ref2_v in more detail
whismanoid 22:c6812214a933 457 // @test group RES1KA0A1TOGNDMORE tinyTester.print("measure a 1kohm resistor between (AIN0,AIN1) and AGND to verify ref2_v")
whismanoid 22:c6812214a933 458 // @test group RES1KA0A1TOGND tinyTester.settle_time_msec = 1000 // default 250
whismanoid 22:c6812214a933 459 // @test group RES1KA0A1TOGND RegWrite(0x0C, 0xF1) expect 1 // *mux_ctrl1=0xf1 drives current source from AIN1
whismanoid 22:c6812214a933 460 //
whismanoid 22:c6812214a933 461 // @test group RES1KA0A1TOGNDMORE RegWrite(0x0A, 0x03) expect 1 // *source=0x03 idac_mode=100uA, 1k resistor 0.1V
whismanoid 22:c6812214a933 462 // @test group RES1KA0A1TOGNDMORE tinyTester.print("idac_mode=100uA, 1k resistor 0.1V")
whismanoid 22:c6812214a933 463 // @test group RES1KA0A1TOGNDMORE tinyTester.Wait_Output_Settling()
whismanoid 22:c6812214a933 464 // @test group RES1KA0A1TOGNDMORE Measure_Voltage(0,10) expect 0.1
whismanoid 22:c6812214a933 465 // @test group RES1KA0A1TOGNDMORE AINcode[0] expect (uint32_t)337731 within 33773 // idac_mode=100uA, 1k resistor 0.1V
whismanoid 22:c6812214a933 466 //
whismanoid 22:c6812214a933 467 // @test group RES1KA0A1TOGNDMORE RegWrite(0x0A, 0x0D) expect 1 // *source=0x0d idac_mode=800uA, 1k resistor 0.8V
whismanoid 22:c6812214a933 468 // @test group RES1KA0A1TOGNDMORE tinyTester.print("idac_mode=800uA, 1k resistor 0.8V")
whismanoid 22:c6812214a933 469 // @test group RES1KA0A1TOGNDMORE tinyTester.Wait_Output_Settling()
whismanoid 22:c6812214a933 470 // @test group RES1KA0A1TOGNDMORE Measure_Voltage(0,10) expect 0.8
whismanoid 22:c6812214a933 471 // @test group RES1KA0A1TOGNDMORE AINcode[0] expect (uint32_t)2724467 within 33773 // idac_mode=800uA, 1k resistor 0.8V
whismanoid 22:c6812214a933 472 //
whismanoid 22:c6812214a933 473 // @test group RES1KA0A1TOGND RegWrite(0x0A, 0x0B) expect 1 // *source=0x0b idac_mode=400uA, 1k resistor 0.4V
whismanoid 22:c6812214a933 474 // @test group RES1KA0A1TOGNDMORE tinyTester.print("idac_mode=400uA, 1k resistor 0.4V")
whismanoid 22:c6812214a933 475 // @test group RES1KA0A1TOGND tinyTester.Wait_Output_Settling()
whismanoid 22:c6812214a933 476 // @test group RES1KA0A1TOGND Measure_Voltage(0,10) expect 0.4
whismanoid 22:c6812214a933 477 // @test group RES1KA0A1TOGNDMORE AINcode[0] expect (uint32_t)1343163 within 33773 // idac_mode=400uA, 1k resistor 0.4V
whismanoid 20:fb7527415308 478 //
whismanoid 20:fb7527415308 479 //
whismanoid 20:fb7527415308 480 //
whismanoid 19:50cf5da53d36 481 // @test tinyTester.print("check filter register is writeable")
whismanoid 19:50cf5da53d36 482 // @future test tinyTester.print("this is a real mess dealing with the custom types")
whismanoid 19:50cf5da53d36 483 // @test RegWrite(0x08, 0x34) expect 1
whismanoid 19:50cf5da53d36 484 // @future test tinyTester.print("error: no matching function for call to 'MaximTinyTester::FunctionCall_Expect(const char [18], uint8_t (&)(MAX11410::CMD_enum_t, uint32_t), MAX11410::CMD_enum_t, uint32_t, int)'")
whismanoid 19:50cf5da53d36 485 // @future test RegWrite(CMD_r000_1000_x0dd_dddd_FILTER, 0x34) expect 1
whismanoid 19:50cf5da53d36 486 // @future test RegWrite(CMD_enum_t::CMD_r000_1000_x0dd_dddd_FILTER, 0x34) expect 1
whismanoid 19:50cf5da53d36 487 // @future test RegWrite(MAX11410::CMD_enum_t::CMD_r000_1000_x0dd_dddd_FILTER, 0x34) expect 1
whismanoid 19:50cf5da53d36 488 //
whismanoid 19:50cf5da53d36 489 // TODO1: #169 SelfTest support RegRead
whismanoid 19:50cf5da53d36 490 // @test tinyTester.print("check filter register is readable")
whismanoid 19:50cf5da53d36 491 // @test RegRead(0x08, buffer) expect 1 expect-buffer 0x34
whismanoid 19:50cf5da53d36 492 // @future test RegRead(MAX11410::CMD_enum_t::CMD_r000_1000_x0dd_dddd_FILTER, &buffer) expect 1 expect-buffer 0x34
whismanoid 19:50cf5da53d36 493 //
whismanoid 19:50cf5da53d36 494 // @test tinyTester.settle_time_msec = 250 // default 250
whismanoid 19:50cf5da53d36 495 // @test tinyTester.blink_time_msec = 75 // default 75 resume hardware self test
whismanoid 19:50cf5da53d36 496 // @test tinyTester.input_timeout_time_msec = 250 // default 250
whismanoid 19:50cf5da53d36 497 // @test tinyTester.settle_time_msec = 20 // default 250
whismanoid 19:50cf5da53d36 498 // @test tinyTester.blink_time_msec = 20 // quickly speed through the software verification
whismanoid 19:50cf5da53d36 499 // @test tinyTester.input_timeout_time_msec = 100 // default 250
whismanoid 19:50cf5da53d36 500 //
whismanoid 19:50cf5da53d36 501 // @test tinyTester.Wait_Output_Settling()
whismanoid 19:50cf5da53d36 502 //
whismanoid 19:50cf5da53d36 503 // @future test tinyTester.DigitalIn_Read_Expect_WarnOnly(DigitalIn& digitalInPin, const char* pinName, int expect_result, const char *expect_description)
whismanoid 19:50cf5da53d36 504 //
whismanoid 19:50cf5da53d36 505 // TODO1: #169 SelfTest support tinyTester.max541.Set_Code
whismanoid 19:50cf5da53d36 506 // @future test tinyTester.max541.Set_Code(0x8000)
whismanoid 19:50cf5da53d36 507 //
whismanoid 0:68e64068330f 508 // @return 1 on success; 0 on failure
whismanoid 0:68e64068330f 509 uint8_t MAX11410::Init(void)
whismanoid 0:68e64068330f 510 {
whismanoid 0:68e64068330f 511
whismanoid 0:68e64068330f 512 //----------------------------------------
whismanoid 1:d57c1a2cb83c 513 // AIN0-AIN1 reference voltage, in Volts
whismanoid 22:c6812214a933 514 ref0_v = 2.500;
whismanoid 1:d57c1a2cb83c 515
whismanoid 1:d57c1a2cb83c 516 //----------------------------------------
whismanoid 1:d57c1a2cb83c 517 // REF1P-REF1N reference resistance, in Ohms
whismanoid 22:c6812214a933 518 ref1_v = 4999;
whismanoid 1:d57c1a2cb83c 519
whismanoid 1:d57c1a2cb83c 520 //----------------------------------------
whismanoid 1:d57c1a2cb83c 521 // REF2P-REF2N reference voltage, in Volts
whismanoid 22:c6812214a933 522 ref2_v = 2.500;
whismanoid 1:d57c1a2cb83c 523
whismanoid 1:d57c1a2cb83c 524 //----------------------------------------
whismanoid 1:d57c1a2cb83c 525 // AVDD-AGND supply voltage, in Volts
whismanoid 22:c6812214a933 526 avdd_v = 3.300;
whismanoid 1:d57c1a2cb83c 527
whismanoid 1:d57c1a2cb83c 528 //----------------------------------------
whismanoid 5:a2e74357cfc0 529 // RTD Resistance measurement; Thermocouple Cold Junction, in Ohms
whismanoid 22:c6812214a933 530 rtd_ohm = 1000.0;
whismanoid 5:a2e74357cfc0 531
whismanoid 5:a2e74357cfc0 532 //----------------------------------------
whismanoid 3:658a93dfb2d8 533 // Temperature calculated from RTD Resistance; Thermocouple Cold Junction, in degrees C
whismanoid 22:c6812214a933 534 rtd_degc = 25.0;
whismanoid 3:658a93dfb2d8 535
whismanoid 3:658a93dfb2d8 536 //----------------------------------------
whismanoid 1:d57c1a2cb83c 537 // shadow of register ctrl CMD_r000_1001_dddd_dddd_CTRL
whismanoid 1:d57c1a2cb83c 538 ctrl = 0x01;
whismanoid 1:d57c1a2cb83c 539
whismanoid 1:d57c1a2cb83c 540 //----------------------------------------
whismanoid 23:22e7830bcccb 541 // set by Configure_PGA gain index register pga CMD_r000_1110_00ss_0ggg_PGA
whismanoid 9:06ca88952f1c 542 pgaGain = 1;
whismanoid 9:06ca88952f1c 543
whismanoid 9:06ca88952f1c 544 //----------------------------------------
whismanoid 21:847b2220e96e 545 // When driver polls status of a pin signal or a register status bit,
whismanoid 21:847b2220e96e 546 // and there is no device physically connected, the driver must
whismanoid 21:847b2220e96e 547 // be able to halt and report failure if too many tries. Each attempt
whismanoid 22:c6812214a933 548 // counts down until loop_limit is reached or exceeded.
whismanoid 21:847b2220e96e 549 //
whismanoid 21:847b2220e96e 550 // If driver seems to hang or takes too long to decide that device
whismanoid 21:847b2220e96e 551 // is not connected, reduce the futility countdown limit value.
whismanoid 21:847b2220e96e 552 //
whismanoid 21:847b2220e96e 553 // If driver sometimes works but sometimes intermittently fails to
whismanoid 21:847b2220e96e 554 // recognize device is attached, increase the futility countdown limit.
whismanoid 22:c6812214a933 555 loop_limit = 30;
whismanoid 22:c6812214a933 556
whismanoid 22:c6812214a933 557 //----------------------------------------
whismanoid 22:c6812214a933 558 // timing delay after enable RTD bias current in Measure_RTD()
whismanoid 22:c6812214a933 559 rtd_ms = 100;
whismanoid 21:847b2220e96e 560
whismanoid 21:847b2220e96e 561 //----------------------------------------
whismanoid 23:22e7830bcccb 562 // filter register configuration in Measure_RTD() -- 0x34 LINEF_11_SINC4 RATE_0100 output data rate 60SPS
whismanoid 23:22e7830bcccb 563 rtd_filter = 0x34;
whismanoid 23:22e7830bcccb 564
whismanoid 23:22e7830bcccb 565 //----------------------------------------
whismanoid 23:22e7830bcccb 566 // ctrl register configuration in Measure_RTD() -- 0x40 unipolar, 0x01 REF_SEL_001_REF1P_REF1N
whismanoid 23:22e7830bcccb 567 rtd_ctrl = 0x41;
whismanoid 23:22e7830bcccb 568
whismanoid 23:22e7830bcccb 569 //----------------------------------------
whismanoid 23:22e7830bcccb 570 // source register configuration in Measure_RTD() -- 0x0B IDAC_MODE_1011_400uA
whismanoid 23:22e7830bcccb 571 rtd_source = 0x0B;
whismanoid 23:22e7830bcccb 572
whismanoid 23:22e7830bcccb 573 //----------------------------------------
whismanoid 23:22e7830bcccb 574 // pga register configuration in Measure_RTD() -- 0x21 SIG_PATH_10_PGA GAIN_001_2
whismanoid 23:22e7830bcccb 575 rtd_pga = 0x21;
whismanoid 23:22e7830bcccb 576
whismanoid 23:22e7830bcccb 577 //----------------------------------------
whismanoid 21:847b2220e96e 578 // list of registers to be read by menu item * with no arguments
whismanoid 21:847b2220e96e 579 static MAX11410::MAX11410_CMD_enum_t readAllStatusListValues[] = {
whismanoid 21:847b2220e96e 580 MAX11410::CMD_r000_0000_xxxx_xxdd_PD,
whismanoid 21:847b2220e96e 581 MAX11410::CMD_r000_0001_xddd_xxdd_CONV_START,
whismanoid 21:847b2220e96e 582 MAX11410::CMD_r000_0010_xddd_dddd_SEQ_START,
whismanoid 21:847b2220e96e 583 MAX11410::CMD_r000_0011_xxxx_xddd_CAL_START,
whismanoid 21:847b2220e96e 584 MAX11410::CMD_r000_0100_dddd_xddd_GP0_CTRL,
whismanoid 21:847b2220e96e 585 MAX11410::CMD_r000_0101_dddd_xddd_GP1_CTRL,
whismanoid 21:847b2220e96e 586 MAX11410::CMD_r000_0110_xddd_xxdd_GP_CONV,
whismanoid 21:847b2220e96e 587 MAX11410::CMD_r000_0111_xddd_dddd_GP_SEQ_ADDR,
whismanoid 21:847b2220e96e 588 MAX11410::CMD_r000_1000_x0dd_dddd_FILTER,
whismanoid 21:847b2220e96e 589 MAX11410::CMD_r000_1001_dddd_dddd_CTRL,
whismanoid 21:847b2220e96e 590 MAX11410::CMD_r000_1010_dddd_dddd_SOURCE,
whismanoid 21:847b2220e96e 591 MAX11410::CMD_r000_1011_dddd_dddd_MUX_CTRL0,
whismanoid 21:847b2220e96e 592 MAX11410::CMD_r000_1100_dddd_dddd_MUX_CTRL1,
whismanoid 21:847b2220e96e 593 MAX11410::CMD_r000_1101_dddd_dddd_MUX_CTRL2,
whismanoid 23:22e7830bcccb 594 MAX11410::CMD_r000_1110_00ss_0ggg_PGA,
whismanoid 21:847b2220e96e 595 MAX11410::CMD_r000_1111_dddd_dddd_WAIT_EXT,
whismanoid 21:847b2220e96e 596 MAX11410::CMD_r001_0000_xxxx_xxxx_WAIT_START,
whismanoid 21:847b2220e96e 597 };
whismanoid 21:847b2220e96e 598 readAllStatusList = readAllStatusListValues;
whismanoid 21:847b2220e96e 599
whismanoid 21:847b2220e96e 600 //----------------------------------------
whismanoid 21:847b2220e96e 601 // number of registers to be read by menu item * with no arguments
whismanoid 21:847b2220e96e 602 readAllStatusListLen = 17;
whismanoid 21:847b2220e96e 603
whismanoid 21:847b2220e96e 604 //----------------------------------------
whismanoid 9:06ca88952f1c 605 // Device ID Validation
whismanoid 9:06ca88952f1c 606 const uint32_t part_id_expect = 0x000F02;
whismanoid 9:06ca88952f1c 607 uint32_t part_id_readback;
whismanoid 9:06ca88952f1c 608 RegRead(CMD_r001_0001_xxxx_xxxx_xxxx_xxxx_xxxx_xddd_PART_ID, &part_id_readback);
whismanoid 9:06ca88952f1c 609 if (part_id_readback != part_id_expect) return 0;
whismanoid 9:06ca88952f1c 610
whismanoid 9:06ca88952f1c 611 //----------------------------------------
whismanoid 1:d57c1a2cb83c 612 // write8 0x00 PD = 0x03 (Reset Registers; enter Standby mode)
whismanoid 1:d57c1a2cb83c 613 RegWrite(CMD_r000_0000_xxxx_xxdd_PD, PD_11_Reset);
whismanoid 1:d57c1a2cb83c 614
whismanoid 1:d57c1a2cb83c 615 //----------------------------------------
whismanoid 1:d57c1a2cb83c 616 // write8 0x00 PD = 0x00 (NOP)
whismanoid 1:d57c1a2cb83c 617 RegWrite(CMD_r000_0000_xxxx_xxdd_PD, PD_00_Normal);
whismanoid 0:68e64068330f 618
whismanoid 0:68e64068330f 619 //----------------------------------------
whismanoid 0:68e64068330f 620 // success
whismanoid 0:68e64068330f 621 return 1;
whismanoid 0:68e64068330f 622 }
whismanoid 0:68e64068330f 623
whismanoid 0:68e64068330f 624 //----------------------------------------
whismanoid 1:d57c1a2cb83c 625 // Return the physical voltage corresponding to conversion result,
whismanoid 1:d57c1a2cb83c 626 // for unipolar mode.
whismanoid 0:68e64068330f 627 // Does not perform any offset or gain correction.
whismanoid 0:68e64068330f 628 //
whismanoid 1:d57c1a2cb83c 629 // @pre CTRL::U_BN = 1 -- Unipolar mode
whismanoid 1:d57c1a2cb83c 630 // @pre CTRL::FORMAT = x
whismanoid 0:68e64068330f 631 // @pre VRef = Voltage of REF input, in Volts
whismanoid 0:68e64068330f 632 // @param[in] value_u24: raw 24-bit MAX11410 code (right justified).
whismanoid 0:68e64068330f 633 // @return physical voltage corresponding to MAX11410 code.
whismanoid 14:b49eecf7e4d8 634 //
whismanoid 21:847b2220e96e 635 // @test group UNIPOLAR // Verify function VoltageOfCode_Unipolar
whismanoid 21:847b2220e96e 636 // @test group UNIPOLAR tinyTester.blink_time_msec = 20 // quickly speed through the software verification
whismanoid 21:847b2220e96e 637 // @test group UNIPOLAR Configure_CTRL_REF(2) expect 1 // These tests require REF2 = 2.500V
whismanoid 21:847b2220e96e 638 // @test group UNIPOLAR Configure_PGA(0,0) expect 1 // These tests require PGA gain=1
whismanoid 19:50cf5da53d36 639 // @test group UNIPOLAR VoltageOfCode_Unipolar(0xFFFFFF) expect 2.500 within 0.030 // Full Scale
whismanoid 19:50cf5da53d36 640 // @test group UNIPOLAR VoltageOfCode_Unipolar(0xFFFFFE) expect 2.500 // Full Scale
whismanoid 19:50cf5da53d36 641 // @test group UNIPOLAR VoltageOfCode_Unipolar(0xCCCCCC) expect 2.000 // Two Volts
whismanoid 19:50cf5da53d36 642 // @test group UNIPOLAR VoltageOfCode_Unipolar(0xC00000) expect 1.875 // 75% Scale
whismanoid 19:50cf5da53d36 643 // @test group UNIPOLAR VoltageOfCode_Unipolar(0x800000) expect 1.250 // Mid Scale
whismanoid 19:50cf5da53d36 644 // @test group UNIPOLAR VoltageOfCode_Unipolar(0x666666) expect 1.000 // One Volt
whismanoid 19:50cf5da53d36 645 // @test group UNIPOLAR VoltageOfCode_Unipolar(0x400000) expect 0.625 // 25% Scale
whismanoid 19:50cf5da53d36 646 // @test group UNIPOLAR VoltageOfCode_Unipolar(0x0A3D70) expect 0.100 // 100mV
whismanoid 19:50cf5da53d36 647 // @test group UNIPOLAR VoltageOfCode_Unipolar(0x000064) expect 0.000014901162 // 100 LSB
whismanoid 19:50cf5da53d36 648 // @test group UNIPOLAR VoltageOfCode_Unipolar(0x00000A) expect 0.0000014901162 // Ten LSB
whismanoid 19:50cf5da53d36 649 // @test group UNIPOLAR VoltageOfCode_Unipolar(0x000003) expect 0.00000044703483 // Three LSB
whismanoid 19:50cf5da53d36 650 // @test group UNIPOLAR VoltageOfCode_Unipolar(0x000002) expect 0.00000029802326 // Two LSB
whismanoid 19:50cf5da53d36 651 // @test group UNIPOLAR VoltageOfCode_Unipolar(0x000001) expect 0.00000014901162 // One LSB
whismanoid 19:50cf5da53d36 652 // @test group UNIPOLAR VoltageOfCode_Unipolar(0x000000) expect 0.0 // Zero Scale
whismanoid 21:847b2220e96e 653 // @test group UNIPOLAR tinyTester.blink_time_msec = 75 // default 75 resume hardware self test
whismanoid 1:d57c1a2cb83c 654 //
whismanoid 1:d57c1a2cb83c 655 double MAX11410::VoltageOfCode_Unipolar(uint32_t value_u24)
whismanoid 0:68e64068330f 656 {
whismanoid 0:68e64068330f 657
whismanoid 0:68e64068330f 658 //----------------------------------------
whismanoid 0:68e64068330f 659 // Linear map min and max endpoints
whismanoid 22:c6812214a933 660 double VRef = ref2_v;
whismanoid 1:d57c1a2cb83c 661 uint8_t ref_sel = (ctrl & 0x03); // MAX11410_REF_SEL_enum_t
whismanoid 1:d57c1a2cb83c 662 switch(ref_sel)
whismanoid 1:d57c1a2cb83c 663 {
whismanoid 22:c6812214a933 664 case REF_SEL_000_AIN0_AIN1: VRef = ref0_v; break;
whismanoid 22:c6812214a933 665 case REF_SEL_001_REF1P_REF1N: VRef = ref1_v; break;
whismanoid 22:c6812214a933 666 case REF_SEL_010_REF2P_REF2N: VRef = ref2_v; break;
whismanoid 22:c6812214a933 667 case REF_SEL_011_AVDD_AGND: VRef = avdd_v; break;
whismanoid 22:c6812214a933 668 case REF_SEL_100_AIN0_AGND: VRef = ref0_v; break;
whismanoid 22:c6812214a933 669 case REF_SEL_101_REF1P_AGND: VRef = ref1_v; break;
whismanoid 22:c6812214a933 670 case REF_SEL_110_REF2P_AGND: VRef = ref2_v; break;
whismanoid 22:c6812214a933 671 case REF_SEL_111_AVDD_AGND: VRef = avdd_v; break;
whismanoid 1:d57c1a2cb83c 672 }
whismanoid 0:68e64068330f 673 double MaxScaleVoltage = VRef; // voltage of maximum code 0xffffff
whismanoid 0:68e64068330f 674 double MinScaleVoltage = 0.0; // voltage of minimum code 0x000
whismanoid 0:68e64068330f 675 const uint32_t FULL_SCALE_CODE_24BIT = 0xffffff;
whismanoid 0:68e64068330f 676 const uint32_t MaxCode = FULL_SCALE_CODE_24BIT;
whismanoid 0:68e64068330f 677 const uint32_t MinCode = 0x000;
whismanoid 0:68e64068330f 678 double codeFraction = ((double)value_u24 - MinCode) / (MaxCode - MinCode + 1);
whismanoid 1:d57c1a2cb83c 679 return (MinScaleVoltage + ((MaxScaleVoltage - MinScaleVoltage) * codeFraction)) / pgaGain;
whismanoid 1:d57c1a2cb83c 680 }
whismanoid 1:d57c1a2cb83c 681
whismanoid 1:d57c1a2cb83c 682 //----------------------------------------
whismanoid 1:d57c1a2cb83c 683 // Return the physical voltage corresponding to conversion result,
whismanoid 1:d57c1a2cb83c 684 // when conversion format is Bipolar mode, offset binary.
whismanoid 1:d57c1a2cb83c 685 // Does not perform any offset or gain correction.
whismanoid 1:d57c1a2cb83c 686 //
whismanoid 1:d57c1a2cb83c 687 // @pre CTRL::U_BN = 0 -- Bipolar mode
whismanoid 1:d57c1a2cb83c 688 // @pre CTRL::FORMAT = 1 -- offset binary
whismanoid 1:d57c1a2cb83c 689 // @pre VRef = Voltage of REF input, in Volts
whismanoid 1:d57c1a2cb83c 690 // @param[in] value_u24: raw 24-bit MAX11410 code (right justified).
whismanoid 1:d57c1a2cb83c 691 // @return physical voltage corresponding to MAX11410 code.
whismanoid 14:b49eecf7e4d8 692 //
whismanoid 21:847b2220e96e 693 // @test group BIPOB // Verify function VoltageOfCode_Bipolar_OffsetBinary
whismanoid 21:847b2220e96e 694 // @test group BIPOB tinyTester.blink_time_msec = 20 // quickly speed through the software verification
whismanoid 21:847b2220e96e 695 // @test group BIPOB Configure_CTRL_REF(2) expect 1 // These tests require REF2 = 2.500V
whismanoid 21:847b2220e96e 696 // @test group BIPOB Configure_PGA(0,0) expect 1 // These tests require PGA gain=1
whismanoid 19:50cf5da53d36 697 // @test group BIPOB VoltageOfCode_Bipolar_OffsetBinary(0xFFFFFF) expect 2.5 within 0.030 // Full Scale
whismanoid 19:50cf5da53d36 698 // @test group BIPOB VoltageOfCode_Bipolar_OffsetBinary(0xFFFFFE) expect 2.5 // Full Scale
whismanoid 19:50cf5da53d36 699 // @test group BIPOB VoltageOfCode_Bipolar_OffsetBinary(0xC00000) expect 1.25 // Mid Scale
whismanoid 19:50cf5da53d36 700 // @test group BIPOB VoltageOfCode_Bipolar_OffsetBinary(0x800003) expect 0.00000894069671 // Three LSB
whismanoid 19:50cf5da53d36 701 // @test group BIPOB VoltageOfCode_Bipolar_OffsetBinary(0x800002) expect 0.00000596046447 // Two LSB
whismanoid 19:50cf5da53d36 702 // @test group BIPOB VoltageOfCode_Bipolar_OffsetBinary(0x800001) expect 0.0000029802326 // One LSB
whismanoid 19:50cf5da53d36 703 // @test group BIPOB VoltageOfCode_Bipolar_OffsetBinary(0x800000) expect 0.0 // Zero Scale
whismanoid 19:50cf5da53d36 704 // @test group BIPOB VoltageOfCode_Bipolar_OffsetBinary(0x7FFFFF) expect -0.0000029802326 // Negative One LSB
whismanoid 19:50cf5da53d36 705 // @test group BIPOB VoltageOfCode_Bipolar_OffsetBinary(0x7FFFFE) expect -0.0000059604644 // Negative Two LSB
whismanoid 19:50cf5da53d36 706 // @test group BIPOB VoltageOfCode_Bipolar_OffsetBinary(0x7FFFFD) expect -0.0000089406967 // Negative Three LSB
whismanoid 19:50cf5da53d36 707 // @test group BIPOB VoltageOfCode_Bipolar_OffsetBinary(0x400000) expect -1.25 // Negative Mid Scale
whismanoid 19:50cf5da53d36 708 // @test group BIPOB VoltageOfCode_Bipolar_OffsetBinary(0x000001) expect -2.5 // Negative Full Scale
whismanoid 19:50cf5da53d36 709 // @test group BIPOB VoltageOfCode_Bipolar_OffsetBinary(0x000000) expect -2.5 // Negative Full Scale
whismanoid 21:847b2220e96e 710 // @test group BIPOB tinyTester.blink_time_msec = 75 // default 75 resume hardware self test
whismanoid 1:d57c1a2cb83c 711 //
whismanoid 1:d57c1a2cb83c 712 double MAX11410::VoltageOfCode_Bipolar_OffsetBinary(uint32_t value_u24)
whismanoid 1:d57c1a2cb83c 713 {
whismanoid 1:d57c1a2cb83c 714
whismanoid 1:d57c1a2cb83c 715 //----------------------------------------
whismanoid 1:d57c1a2cb83c 716 // Linear map min and max endpoints
whismanoid 22:c6812214a933 717 double VRef = ref2_v;
whismanoid 1:d57c1a2cb83c 718 uint8_t ref_sel = (ctrl & 0x03); // MAX11410_REF_SEL_enum_t
whismanoid 1:d57c1a2cb83c 719 switch(ref_sel)
whismanoid 1:d57c1a2cb83c 720 {
whismanoid 22:c6812214a933 721 case REF_SEL_000_AIN0_AIN1: VRef = ref0_v; break;
whismanoid 22:c6812214a933 722 case REF_SEL_001_REF1P_REF1N: VRef = ref1_v; break;
whismanoid 22:c6812214a933 723 case REF_SEL_010_REF2P_REF2N: VRef = ref2_v; break;
whismanoid 22:c6812214a933 724 case REF_SEL_011_AVDD_AGND: VRef = avdd_v; break;
whismanoid 22:c6812214a933 725 case REF_SEL_100_AIN0_AGND: VRef = ref0_v; break;
whismanoid 22:c6812214a933 726 case REF_SEL_101_REF1P_AGND: VRef = ref1_v; break;
whismanoid 22:c6812214a933 727 case REF_SEL_110_REF2P_AGND: VRef = ref2_v; break;
whismanoid 22:c6812214a933 728 case REF_SEL_111_AVDD_AGND: VRef = avdd_v; break;
whismanoid 1:d57c1a2cb83c 729 }
whismanoid 1:d57c1a2cb83c 730 double MaxScaleVoltage = 2*VRef; // voltage of maximum code 0x7fffff
whismanoid 1:d57c1a2cb83c 731 double MinScaleVoltage = 0; // voltage of minimum code 0x800000;
whismanoid 1:d57c1a2cb83c 732 const uint32_t FULL_SCALE_CODE_24BIT = 0x7fffff;
whismanoid 1:d57c1a2cb83c 733 const uint32_t MaxCode = FULL_SCALE_CODE_24BIT;
whismanoid 1:d57c1a2cb83c 734 const int32_t CodeSpan = 0x1000000;
whismanoid 1:d57c1a2cb83c 735 const uint32_t MinCode = 0x800000;
whismanoid 1:d57c1a2cb83c 736 double codeFraction = ((double)value_u24 - MinCode) / CodeSpan;
whismanoid 1:d57c1a2cb83c 737 return (MinScaleVoltage + ((MaxScaleVoltage - MinScaleVoltage) * codeFraction)) / pgaGain;
whismanoid 1:d57c1a2cb83c 738 }
whismanoid 1:d57c1a2cb83c 739
whismanoid 1:d57c1a2cb83c 740 //----------------------------------------
whismanoid 1:d57c1a2cb83c 741 // Return the physical voltage corresponding to conversion result,
whismanoid 1:d57c1a2cb83c 742 // when conversion format is Bipolar mode, 2's complement.
whismanoid 1:d57c1a2cb83c 743 // Does not perform any offset or gain correction.
whismanoid 1:d57c1a2cb83c 744 //
whismanoid 1:d57c1a2cb83c 745 // @pre CTRL::U_BN = 0 -- Bipolar mode
whismanoid 1:d57c1a2cb83c 746 // @pre CTRL::FORMAT = 0 -- 2's complement
whismanoid 1:d57c1a2cb83c 747 // @pre VRef = Voltage of REF input, in Volts
whismanoid 1:d57c1a2cb83c 748 // @param[in] value_u24: raw 24-bit MAX11410 code (right justified).
whismanoid 1:d57c1a2cb83c 749 // @return physical voltage corresponding to MAX11410 code.
whismanoid 14:b49eecf7e4d8 750 //
whismanoid 21:847b2220e96e 751 // @test group BIP2C // Verify function VoltageOfCode_Bipolar_2sComplement
whismanoid 21:847b2220e96e 752 // @test group BIP2C tinyTester.blink_time_msec = 20 // quickly speed through the software verification
whismanoid 21:847b2220e96e 753 // @test group BIP2C Configure_CTRL_REF(2) expect 1 // These tests require REF2 = 2.500V
whismanoid 21:847b2220e96e 754 // @test group BIP2C Configure_PGA(0,0) expect 1 // These tests require PGA gain=1
whismanoid 19:50cf5da53d36 755 // @test group BIP2C VoltageOfCode_Bipolar_2sComplement(0x7FFFFF) expect 2.500 within 0.030 // Full Scale
whismanoid 19:50cf5da53d36 756 // @test group BIP2C VoltageOfCode_Bipolar_2sComplement(0x7FFFFE) expect 2.500 // Full Scale
whismanoid 19:50cf5da53d36 757 // @test group BIP2C VoltageOfCode_Bipolar_2sComplement(0x666666) expect 2.000 // Two Volts
whismanoid 19:50cf5da53d36 758 // @test group BIP2C VoltageOfCode_Bipolar_2sComplement(0x600000) expect 1.875 // 75% Scale
whismanoid 19:50cf5da53d36 759 // @test group BIP2C VoltageOfCode_Bipolar_2sComplement(0x400000) expect 1.250 // Mid Scale
whismanoid 19:50cf5da53d36 760 // @test group BIP2C VoltageOfCode_Bipolar_2sComplement(0x333333) expect 1.000 // One Volt
whismanoid 19:50cf5da53d36 761 // @test group BIP2C VoltageOfCode_Bipolar_2sComplement(0x200000) expect 0.625 // 25% Scale
whismanoid 19:50cf5da53d36 762 // @test group BIP2C VoltageOfCode_Bipolar_2sComplement(0x051eb8) expect 0.100 // 100mV
whismanoid 19:50cf5da53d36 763 // @test group BIP2C VoltageOfCode_Bipolar_2sComplement(0x000003) expect 0.00000894069671 // Three LSB
whismanoid 19:50cf5da53d36 764 // @test group BIP2C VoltageOfCode_Bipolar_2sComplement(0x000002) expect 0.00000596046447 // Two LSB
whismanoid 19:50cf5da53d36 765 // @test group BIP2C VoltageOfCode_Bipolar_2sComplement(0x000001) expect 0.0000029802326 // One LSB
whismanoid 19:50cf5da53d36 766 // @test group BIP2C VoltageOfCode_Bipolar_2sComplement(0x000000) expect 0.0 // Zero Scale
whismanoid 19:50cf5da53d36 767 // @test group BIP2C VoltageOfCode_Bipolar_2sComplement(0xFFFFFF) expect -0.0000029802326 // Negative One LSB
whismanoid 19:50cf5da53d36 768 // @test group BIP2C VoltageOfCode_Bipolar_2sComplement(0xFFFFFE) expect -0.0000059604644 // Negative Two LSB
whismanoid 19:50cf5da53d36 769 // @test group BIP2C VoltageOfCode_Bipolar_2sComplement(0xFFFFFD) expect -0.0000089406967 // Negative Three LSB
whismanoid 19:50cf5da53d36 770 // @test group BIP2C VoltageOfCode_Bipolar_2sComplement(0xFAE148) expect -0.100 // Negative 100mV
whismanoid 19:50cf5da53d36 771 // @test group BIP2C VoltageOfCode_Bipolar_2sComplement(0xE00000) expect -0.625 // Negative 25% Scale
whismanoid 19:50cf5da53d36 772 // @test group BIP2C VoltageOfCode_Bipolar_2sComplement(0xCCCCCD) expect -1.000 // Negative One Volt
whismanoid 19:50cf5da53d36 773 // @test group BIP2C VoltageOfCode_Bipolar_2sComplement(0xC00000) expect -1.250 // Negative Mid Scale
whismanoid 19:50cf5da53d36 774 // @test group BIP2C VoltageOfCode_Bipolar_2sComplement(0xA00000) expect -1.875 // Negative 75% Scale
whismanoid 19:50cf5da53d36 775 // @test group BIP2C VoltageOfCode_Bipolar_2sComplement(0x99999A) expect -2.000 // Negative Two Volts
whismanoid 19:50cf5da53d36 776 // @test group BIP2C VoltageOfCode_Bipolar_2sComplement(0x800001) expect -2.500 // Negative Full Scale
whismanoid 19:50cf5da53d36 777 // @test group BIP2C VoltageOfCode_Bipolar_2sComplement(0x800000) expect -2.500 // Negative Full Scale
whismanoid 21:847b2220e96e 778 // @test group BIP2C tinyTester.blink_time_msec = 75 // default 75 resume hardware self test
whismanoid 1:d57c1a2cb83c 779 //
whismanoid 1:d57c1a2cb83c 780 double MAX11410::VoltageOfCode_Bipolar_2sComplement(uint32_t value_u24)
whismanoid 1:d57c1a2cb83c 781 {
whismanoid 1:d57c1a2cb83c 782
whismanoid 1:d57c1a2cb83c 783 //----------------------------------------
whismanoid 1:d57c1a2cb83c 784 // Linear map min and max endpoints
whismanoid 22:c6812214a933 785 double VRef = ref2_v;
whismanoid 1:d57c1a2cb83c 786 uint8_t ref_sel = (ctrl & 0x03); // MAX11410_REF_SEL_enum_t
whismanoid 1:d57c1a2cb83c 787 switch(ref_sel)
whismanoid 1:d57c1a2cb83c 788 {
whismanoid 22:c6812214a933 789 case REF_SEL_000_AIN0_AIN1: VRef = ref0_v; break;
whismanoid 22:c6812214a933 790 case REF_SEL_001_REF1P_REF1N: VRef = ref1_v; break;
whismanoid 22:c6812214a933 791 case REF_SEL_010_REF2P_REF2N: VRef = ref2_v; break;
whismanoid 22:c6812214a933 792 case REF_SEL_011_AVDD_AGND: VRef = avdd_v; break;
whismanoid 22:c6812214a933 793 case REF_SEL_100_AIN0_AGND: VRef = ref0_v; break;
whismanoid 22:c6812214a933 794 case REF_SEL_101_REF1P_AGND: VRef = ref1_v; break;
whismanoid 22:c6812214a933 795 case REF_SEL_110_REF2P_AGND: VRef = ref2_v; break;
whismanoid 22:c6812214a933 796 case REF_SEL_111_AVDD_AGND: VRef = avdd_v; break;
whismanoid 1:d57c1a2cb83c 797 }
whismanoid 1:d57c1a2cb83c 798 double MaxScaleVoltage = 2 * VRef; // voltage of maximum code 0x7fffff
whismanoid 1:d57c1a2cb83c 799 double MinScaleVoltage = 0; // voltage of minimum code 0x800000
whismanoid 1:d57c1a2cb83c 800 const int32_t FULL_SCALE_CODE_24BIT_2S_COMPLEMENT = 0x7fffff;
whismanoid 1:d57c1a2cb83c 801 const int32_t SIGN_BIT_24BIT_2S_COMPLEMENT = 0x800000;
whismanoid 1:d57c1a2cb83c 802 if (value_u24 >= SIGN_BIT_24BIT_2S_COMPLEMENT) { value_u24 = value_u24 - (2 * SIGN_BIT_24BIT_2S_COMPLEMENT); }
whismanoid 1:d57c1a2cb83c 803 const int32_t MaxCode = FULL_SCALE_CODE_24BIT_2S_COMPLEMENT;
whismanoid 1:d57c1a2cb83c 804 const int32_t CodeSpan = 0x1000000;
whismanoid 1:d57c1a2cb83c 805 const int32_t MinCode = 0;
whismanoid 1:d57c1a2cb83c 806 double codeFraction = ((double)((int32_t)value_u24) - MinCode) / CodeSpan;
whismanoid 1:d57c1a2cb83c 807 return (MinScaleVoltage + ((MaxScaleVoltage - MinScaleVoltage) * codeFraction)) / pgaGain;
whismanoid 1:d57c1a2cb83c 808 }
whismanoid 1:d57c1a2cb83c 809
whismanoid 1:d57c1a2cb83c 810 //----------------------------------------
whismanoid 1:d57c1a2cb83c 811 // Return the physical voltage corresponding to conversion result,
whismanoid 1:d57c1a2cb83c 812 // when conversion format is determined by the CTRL register.
whismanoid 1:d57c1a2cb83c 813 // Does not perform any offset or gain correction.
whismanoid 1:d57c1a2cb83c 814 //
whismanoid 1:d57c1a2cb83c 815 // @pre CTRL::U_BN and CTRL::FORMAT = 0 select offset binary, 2's complement, or straight binary
whismanoid 1:d57c1a2cb83c 816 // @pre VRef = Voltage of REF input, in Volts
whismanoid 1:d57c1a2cb83c 817 // @param[in] value_u24: raw 24-bit MAX11410 code (right justified).
whismanoid 1:d57c1a2cb83c 818 // @return physical voltage corresponding to MAX11410 code.
whismanoid 1:d57c1a2cb83c 819 double MAX11410::VoltageOfCode(uint32_t value_u24)
whismanoid 1:d57c1a2cb83c 820 {
whismanoid 1:d57c1a2cb83c 821
whismanoid 1:d57c1a2cb83c 822 //----------------------------------------
whismanoid 1:d57c1a2cb83c 823 // Determine format from CTRL register U_BN and FORMAT
whismanoid 1:d57c1a2cb83c 824 uint8_t u_bn_bitmask = (1 << 6);
whismanoid 1:d57c1a2cb83c 825 uint8_t format_bitmask = (1 << 5);
whismanoid 1:d57c1a2cb83c 826 if ((ctrl & u_bn_bitmask) != 0)
whismanoid 1:d57c1a2cb83c 827 {
whismanoid 1:d57c1a2cb83c 828 return VoltageOfCode_Unipolar(value_u24);
whismanoid 1:d57c1a2cb83c 829 }
whismanoid 1:d57c1a2cb83c 830 if ((ctrl & format_bitmask) != 0)
whismanoid 1:d57c1a2cb83c 831 {
whismanoid 1:d57c1a2cb83c 832 return VoltageOfCode_Bipolar_OffsetBinary(value_u24);
whismanoid 1:d57c1a2cb83c 833 }
whismanoid 1:d57c1a2cb83c 834 return VoltageOfCode_Bipolar_2sComplement(value_u24);
whismanoid 0:68e64068330f 835 }
whismanoid 0:68e64068330f 836
whismanoid 0:68e64068330f 837 //----------------------------------------
whismanoid 0:68e64068330f 838 // Write a MAX11410 register.
whismanoid 0:68e64068330f 839 //
whismanoid 11:abde565b8497 840 // CMDOP_1aaa_aaaa_ReadRegister bit is cleared 0 indicating a write operation.
whismanoid 0:68e64068330f 841 //
whismanoid 0:68e64068330f 842 // MAX11410 register length can be determined by function RegSize.
whismanoid 0:68e64068330f 843 //
whismanoid 0:68e64068330f 844 // For 8-bit register size:
whismanoid 0:68e64068330f 845 //
whismanoid 0:68e64068330f 846 // SPI 16-bit transfer
whismanoid 0:68e64068330f 847 //
whismanoid 0:68e64068330f 848 // SPI MOSI = 0aaa_aaaa_dddd_dddd
whismanoid 0:68e64068330f 849 //
whismanoid 0:68e64068330f 850 // SPI MISO = xxxx_xxxx_xxxx_xxxx
whismanoid 0:68e64068330f 851 //
whismanoid 0:68e64068330f 852 // For 16-bit register size:
whismanoid 0:68e64068330f 853 //
whismanoid 0:68e64068330f 854 // SPI 24-bit or 32-bit transfer
whismanoid 0:68e64068330f 855 //
whismanoid 0:68e64068330f 856 // SPI MOSI = 0aaa_aaaa_dddd_dddd_dddd_dddd
whismanoid 0:68e64068330f 857 //
whismanoid 0:68e64068330f 858 // SPI MISO = xxxx_xxxx_xxxx_xxxx_xxxx_xxxx
whismanoid 0:68e64068330f 859 //
whismanoid 0:68e64068330f 860 // For 24-bit register size:
whismanoid 0:68e64068330f 861 //
whismanoid 0:68e64068330f 862 // SPI 32-bit transfer
whismanoid 0:68e64068330f 863 //
whismanoid 0:68e64068330f 864 // SPI MOSI = 0aaa_aaaa_dddd_dddd_dddd_dddd_dddd_dddd
whismanoid 0:68e64068330f 865 //
whismanoid 0:68e64068330f 866 // SPI MISO = xxxx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx
whismanoid 0:68e64068330f 867 //
whismanoid 0:68e64068330f 868 // @return 1 on success; 0 on failure
whismanoid 10:7adee48a7f82 869 uint8_t MAX11410::RegWrite(MAX11410_CMD_enum_t commandByte, uint32_t regData)
whismanoid 0:68e64068330f 870 {
whismanoid 0:68e64068330f 871
whismanoid 0:68e64068330f 872 //----------------------------------------
whismanoid 21:847b2220e96e 873 // switch based on register address size RegSize(commandByte)
whismanoid 11:abde565b8497 874 commandByte = (MAX11410_CMD_enum_t)((commandByte &~ CMDOP_1aaa_aaaa_ReadRegister) & 0xFF);
whismanoid 10:7adee48a7f82 875 switch(RegSize(commandByte))
whismanoid 0:68e64068330f 876 {
whismanoid 0:68e64068330f 877 case 8: // 8-bit register size
whismanoid 0:68e64068330f 878 {
whismanoid 0:68e64068330f 879 // SPI 16-bit transfer
whismanoid 0:68e64068330f 880 // SPI MOSI = 0aaa_aaaa_dddd_dddd
whismanoid 0:68e64068330f 881 // SPI MISO = xxxx_xxxx_xxxx_xxxx
whismanoid 10:7adee48a7f82 882 int16_t mosiData16 = ((int16_t)commandByte << 8) | ((int16_t)regData & 0xFF);
whismanoid 0:68e64068330f 883 SPIoutputCS(0);
whismanoid 0:68e64068330f 884 SPIwrite16bits(mosiData16);
whismanoid 0:68e64068330f 885 SPIoutputCS(1);
whismanoid 24:428b7670e45f 886 //
whismanoid 26:298726bd5a3f 887 if (commandByte == CMD_r000_1110_00ss_0ggg_PGA)
whismanoid 26:298726bd5a3f 888 {
whismanoid 26:298726bd5a3f 889 // update pgaGain with 1, 2, 4, 8, 16, 32, 64, or 128 based on gain index
whismanoid 26:298726bd5a3f 890 static uint8_t pgaGainTable[8] = {1, 2, 4, 8, 16, 32, 64, 128};
whismanoid 26:298726bd5a3f 891 pgaGain = (((regData >> 4) & 2) == SIG_PATH_10_PGA)
whismanoid 26:298726bd5a3f 892 ? pgaGainTable[(uint8_t)(regData & 7)]
whismanoid 26:298726bd5a3f 893 : 1;
whismanoid 26:298726bd5a3f 894 }
whismanoid 24:428b7670e45f 895 if (commandByte == CMD_r000_0011_xxxx_xddd_CAL_START)
whismanoid 24:428b7670e45f 896 {
whismanoid 24:428b7670e45f 897 // after RegWrite CMD_r000_0011_xxxx_xddd_CAL_START, poll status until 0x000004 CAL_RDY
whismanoid 24:428b7670e45f 898 RegRead(CMD_r011_1000_dddd_dddd_dddd_dddd_dxxx_dddd_STATUS, &status);
whismanoid 24:428b7670e45f 899 // wait until /* MAX11410_STATUS_enum_t:: */ STATUS_000004_CAL_RDY indicates calibration is ready
whismanoid 25:c4be3afbfafd 900 // Two conversions will execute at the rate
whismanoid 25:c4be3afbfafd 901 // controlled by the FILTER register. The SELF_OFFSET and SELF_GAIN_1
whismanoid 25:c4be3afbfafd 902 // registers will be updated.
whismanoid 25:c4be3afbfafd 903 // Worst-case (longest) calibration time = 2 x 1 sample/second = 2 seconds
whismanoid 24:428b7670e45f 904 // A bad SPI interface can cause bit slippage, which makes this loop get stuck. Expect *PART_ID? = 0x000F02
whismanoid 24:428b7670e45f 905 // while ((status & /* MAX11410_STATUS_enum_t:: */ STATUS_000010_DATA_RDY) == 0) {
whismanoid 24:428b7670e45f 906 // possible infinite loop; need a timeout or futility countdown to escape
whismanoid 26:298726bd5a3f 907 // with one exception: skip the wait loop in the corner case where
whismanoid 26:298726bd5a3f 908 // cal_start=1 and pga is either buffer, bypass, or GAIN_000_1 --
whismanoid 26:298726bd5a3f 909 // these are effectively 1V/V gain path, and since it's already handled
whismanoid 26:298726bd5a3f 910 // by self calibration, the pga calibration command behaves as a no-operation.
whismanoid 26:298726bd5a3f 911 if ((regData != 1) || (pgaGain != 1))
whismanoid 24:428b7670e45f 912 {
whismanoid 26:298726bd5a3f 913 // wait for CAL_RDY unless (cal_start=1 and pgaGain==1)
whismanoid 26:298726bd5a3f 914 for (int futility_countdown = loop_limit;
whismanoid 26:298726bd5a3f 915 ((futility_countdown > 0) &&
whismanoid 25:c4be3afbfafd 916 ((status & /* MAX11410_STATUS_enum_t:: */ STATUS_000004_CAL_RDY) == 0));
whismanoid 26:298726bd5a3f 917 futility_countdown--)
whismanoid 25:c4be3afbfafd 918 {
whismanoid 26:298726bd5a3f 919 for (int futility_countdown_inner = 32767;
whismanoid 26:298726bd5a3f 920 ((futility_countdown_inner > 0) &&
whismanoid 26:298726bd5a3f 921 ((status & /* MAX11410_STATUS_enum_t:: */ STATUS_000004_CAL_RDY) == 0));
whismanoid 26:298726bd5a3f 922 futility_countdown_inner--)
whismanoid 26:298726bd5a3f 923 {
whismanoid 26:298726bd5a3f 924 RegRead(CMD_r011_1000_dddd_dddd_dddd_dddd_dxxx_dddd_STATUS, &status);
whismanoid 26:298726bd5a3f 925 }
whismanoid 25:c4be3afbfafd 926 }
whismanoid 24:428b7670e45f 927 }
whismanoid 24:428b7670e45f 928 }
whismanoid 0:68e64068330f 929 }
whismanoid 0:68e64068330f 930 break;
whismanoid 0:68e64068330f 931 case 16: // 16-bit register size
whismanoid 0:68e64068330f 932 #warning "Not Verified Yet: MAX11410::RegWrite 16-bit SPIreadWrite32bits"
whismanoid 0:68e64068330f 933 {
whismanoid 0:68e64068330f 934 // SPI 24-bit or 32-bit transfer
whismanoid 0:68e64068330f 935 // SPI MOSI = 0aaa_aaaa_dddd_dddd_dddd_dddd
whismanoid 0:68e64068330f 936 // SPI MISO = xxxx_xxxx_xxxx_xxxx_xxxx_xxxx
whismanoid 0:68e64068330f 937 // SPI MOSI = 0aaa_aaaa_dddd_dddd_dddd_dddd_0000_0000
whismanoid 0:68e64068330f 938 // SPI MISO = xxxx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx
whismanoid 10:7adee48a7f82 939 int32_t mosiData32 = ((int32_t)commandByte << 24) | (((int32_t)regData & 0xFFFF) << 8);
whismanoid 0:68e64068330f 940 SPIoutputCS(0);
whismanoid 0:68e64068330f 941 SPIreadWrite32bits(mosiData32);
whismanoid 0:68e64068330f 942 SPIoutputCS(1);
whismanoid 0:68e64068330f 943 }
whismanoid 0:68e64068330f 944 break;
whismanoid 0:68e64068330f 945 case 24: // 24-bit register size
whismanoid 0:68e64068330f 946 {
whismanoid 0:68e64068330f 947 // SPI 32-bit transfer
whismanoid 0:68e64068330f 948 // SPI MOSI = 0aaa_aaaa_dddd_dddd_dddd_dddd_dddd_dddd
whismanoid 0:68e64068330f 949 // SPI MISO = xxxx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx
whismanoid 10:7adee48a7f82 950 int32_t mosiData32 = ((int32_t)commandByte << 24) | ((int32_t)regData & 0x00FFFFFF);
whismanoid 0:68e64068330f 951 SPIoutputCS(0);
whismanoid 0:68e64068330f 952 SPIreadWrite32bits(mosiData32);
whismanoid 0:68e64068330f 953 SPIoutputCS(1);
whismanoid 0:68e64068330f 954 }
whismanoid 0:68e64068330f 955 break;
whismanoid 0:68e64068330f 956 }
whismanoid 0:68e64068330f 957
whismanoid 0:68e64068330f 958 //----------------------------------------
whismanoid 0:68e64068330f 959 // success
whismanoid 0:68e64068330f 960 return 1;
whismanoid 0:68e64068330f 961 }
whismanoid 0:68e64068330f 962
whismanoid 0:68e64068330f 963 //----------------------------------------
whismanoid 0:68e64068330f 964 // Read an 8-bit MAX11410 register
whismanoid 0:68e64068330f 965 //
whismanoid 11:abde565b8497 966 // CMDOP_1aaa_aaaa_ReadRegister bit is set 1 indicating a read operation.
whismanoid 0:68e64068330f 967 //
whismanoid 0:68e64068330f 968 // MAX11410 register length can be determined by function RegSize.
whismanoid 0:68e64068330f 969 //
whismanoid 0:68e64068330f 970 // For 8-bit register size:
whismanoid 0:68e64068330f 971 //
whismanoid 0:68e64068330f 972 // SPI 16-bit transfer
whismanoid 0:68e64068330f 973 //
whismanoid 0:68e64068330f 974 // SPI MOSI = 1aaa_aaaa_0000_0000
whismanoid 0:68e64068330f 975 //
whismanoid 0:68e64068330f 976 // SPI MISO = xxxx_xxxx_dddd_dddd
whismanoid 0:68e64068330f 977 //
whismanoid 0:68e64068330f 978 // For 16-bit register size:
whismanoid 0:68e64068330f 979 //
whismanoid 0:68e64068330f 980 // SPI 24-bit or 32-bit transfer
whismanoid 0:68e64068330f 981 //
whismanoid 0:68e64068330f 982 // SPI MOSI = 1aaa_aaaa_0000_0000_0000_0000
whismanoid 0:68e64068330f 983 //
whismanoid 0:68e64068330f 984 // SPI MISO = xxxx_xxxx_dddd_dddd_dddd_dddd
whismanoid 0:68e64068330f 985 //
whismanoid 0:68e64068330f 986 // For 24-bit register size:
whismanoid 0:68e64068330f 987 //
whismanoid 0:68e64068330f 988 // SPI 32-bit transfer
whismanoid 0:68e64068330f 989 //
whismanoid 0:68e64068330f 990 // SPI MOSI = 1aaa_aaaa_0000_0000_0000_0000_0000_0000
whismanoid 0:68e64068330f 991 //
whismanoid 0:68e64068330f 992 // SPI MISO = xxxx_xxxx_dddd_dddd_dddd_dddd_dddd_dddd
whismanoid 0:68e64068330f 993 //
whismanoid 0:68e64068330f 994 //
whismanoid 0:68e64068330f 995 // @return 1 on success; 0 on failure
whismanoid 10:7adee48a7f82 996 uint8_t MAX11410::RegRead(MAX11410_CMD_enum_t commandByte, uint32_t* ptrRegData)
whismanoid 0:68e64068330f 997 {
whismanoid 0:68e64068330f 998
whismanoid 0:68e64068330f 999 //----------------------------------------
whismanoid 21:847b2220e96e 1000 // switch based on register address size RegSize(regAddress)
whismanoid 11:abde565b8497 1001 commandByte = (MAX11410_CMD_enum_t)((commandByte &~ CMDOP_1aaa_aaaa_ReadRegister) & 0xFF);
whismanoid 10:7adee48a7f82 1002 switch(RegSize(commandByte))
whismanoid 0:68e64068330f 1003 {
whismanoid 0:68e64068330f 1004 case 8: // 8-bit register size
whismanoid 0:68e64068330f 1005 {
whismanoid 0:68e64068330f 1006 // SPI 16-bit transfer
whismanoid 0:68e64068330f 1007 // SPI MOSI = 1aaa_aaaa_0000_0000
whismanoid 0:68e64068330f 1008 // SPI MISO = xxxx_xxxx_dddd_dddd
whismanoid 11:abde565b8497 1009 int16_t mosiData16 = ((CMDOP_1aaa_aaaa_ReadRegister | (int16_t)commandByte) << 8) | ((int16_t)0);
whismanoid 0:68e64068330f 1010 SPIoutputCS(0);
whismanoid 0:68e64068330f 1011 int16_t misoData16 = SPIreadWrite16bits(mosiData16);
whismanoid 0:68e64068330f 1012 SPIoutputCS(1);
whismanoid 0:68e64068330f 1013 (*ptrRegData) = (misoData16 & 0x00FF);
whismanoid 0:68e64068330f 1014 }
whismanoid 0:68e64068330f 1015 break;
whismanoid 0:68e64068330f 1016 case 16: // 16-bit register size
whismanoid 0:68e64068330f 1017 #warning "Not Verified Yet: MAX11410::RegRead 16-bit SPIreadWrite32bits"
whismanoid 0:68e64068330f 1018 {
whismanoid 0:68e64068330f 1019 // SPI 24-bit or 32-bit transfer
whismanoid 0:68e64068330f 1020 // SPI MOSI = 1aaa_aaaa_0000_0000_0000_0000
whismanoid 0:68e64068330f 1021 // SPI MISO = xxxx_xxxx_dddd_dddd_dddd_dddd
whismanoid 0:68e64068330f 1022 // SPI MOSI = 1aaa_aaaa_0000_0000_0000_0000_0000_0000
whismanoid 0:68e64068330f 1023 // SPI MISO = xxxx_xxxx_dddd_dddd_dddd_dddd_xxxx_xxxx
whismanoid 11:abde565b8497 1024 int32_t mosiData32 = ((CMDOP_1aaa_aaaa_ReadRegister | (int32_t)commandByte) << 24);
whismanoid 0:68e64068330f 1025 SPIoutputCS(0);
whismanoid 0:68e64068330f 1026 int32_t misoData32 = SPIreadWrite32bits(mosiData32);
whismanoid 0:68e64068330f 1027 SPIoutputCS(1);
whismanoid 0:68e64068330f 1028 (*ptrRegData) = ((misoData32 >> 8) & 0x00FFFF);
whismanoid 0:68e64068330f 1029 }
whismanoid 0:68e64068330f 1030 break;
whismanoid 0:68e64068330f 1031 case 24: // 24-bit register size
whismanoid 0:68e64068330f 1032 {
whismanoid 0:68e64068330f 1033 // SPI 32-bit transfer
whismanoid 0:68e64068330f 1034 // SPI MOSI = 1aaa_aaaa_0000_0000_0000_0000_0000_0000
whismanoid 0:68e64068330f 1035 // SPI MISO = xxxx_xxxx_dddd_dddd_dddd_dddd_dddd_dddd
whismanoid 11:abde565b8497 1036 int32_t mosiData32 = ((CMDOP_1aaa_aaaa_ReadRegister | (int32_t)commandByte) << 24);
whismanoid 0:68e64068330f 1037 SPIoutputCS(0);
whismanoid 0:68e64068330f 1038 int32_t misoData32 = SPIreadWrite32bits(mosiData32);
whismanoid 0:68e64068330f 1039 SPIoutputCS(1);
whismanoid 0:68e64068330f 1040 (*ptrRegData) = (misoData32 & 0x00FFFFFF);
whismanoid 0:68e64068330f 1041 }
whismanoid 0:68e64068330f 1042 break;
whismanoid 0:68e64068330f 1043 }
whismanoid 0:68e64068330f 1044
whismanoid 0:68e64068330f 1045 //----------------------------------------
whismanoid 0:68e64068330f 1046 // success
whismanoid 0:68e64068330f 1047 return 1;
whismanoid 0:68e64068330f 1048 }
whismanoid 0:68e64068330f 1049
whismanoid 0:68e64068330f 1050 //----------------------------------------
whismanoid 0:68e64068330f 1051 // Return the size of a MAX11410 register
whismanoid 0:68e64068330f 1052 //
whismanoid 0:68e64068330f 1053 // @return 8 for 8-bit, 16 for 16-bit, 24 for 24-bit, else 0 for undefined register size
whismanoid 10:7adee48a7f82 1054 uint8_t MAX11410::RegSize(MAX11410_CMD_enum_t commandByte)
whismanoid 0:68e64068330f 1055 {
whismanoid 0:68e64068330f 1056
whismanoid 0:68e64068330f 1057 //----------------------------------------
whismanoid 0:68e64068330f 1058 // switch based on register address value regAddress
whismanoid 11:abde565b8497 1059 commandByte = (MAX11410_CMD_enum_t)((commandByte &~ CMDOP_1aaa_aaaa_ReadRegister) & 0xFF);
whismanoid 10:7adee48a7f82 1060 switch(commandByte)
whismanoid 0:68e64068330f 1061 {
whismanoid 0:68e64068330f 1062 default:
whismanoid 0:68e64068330f 1063 return 0; // undefined register size
whismanoid 0:68e64068330f 1064 case CMD_r000_0000_xxxx_xxdd_PD:
whismanoid 0:68e64068330f 1065 case CMD_r000_0001_xddd_xxdd_CONV_START:
whismanoid 0:68e64068330f 1066 case CMD_r000_0010_xddd_dddd_SEQ_START:
whismanoid 0:68e64068330f 1067 case CMD_r000_0011_xxxx_xddd_CAL_START:
whismanoid 0:68e64068330f 1068 case CMD_r000_0100_dddd_xddd_GP0_CTRL:
whismanoid 0:68e64068330f 1069 case CMD_r000_0101_dddd_xddd_GP1_CTRL:
whismanoid 0:68e64068330f 1070 case CMD_r000_0110_xddd_xxdd_GP_CONV:
whismanoid 0:68e64068330f 1071 case CMD_r000_0111_xddd_dddd_GP_SEQ_ADDR:
whismanoid 0:68e64068330f 1072 case CMD_r000_1000_x0dd_dddd_FILTER:
whismanoid 0:68e64068330f 1073 case CMD_r000_1001_dddd_dddd_CTRL:
whismanoid 0:68e64068330f 1074 case CMD_r000_1010_dddd_dddd_SOURCE:
whismanoid 0:68e64068330f 1075 case CMD_r000_1011_dddd_dddd_MUX_CTRL0:
whismanoid 0:68e64068330f 1076 case CMD_r000_1100_dddd_dddd_MUX_CTRL1:
whismanoid 0:68e64068330f 1077 case CMD_r000_1101_dddd_dddd_MUX_CTRL2:
whismanoid 23:22e7830bcccb 1078 case CMD_r000_1110_00ss_0ggg_PGA:
whismanoid 0:68e64068330f 1079 case CMD_r000_1111_dddd_dddd_WAIT_EXT:
whismanoid 0:68e64068330f 1080 case CMD_r001_0000_xxxx_xxxx_WAIT_START:
whismanoid 0:68e64068330f 1081 return 8; // 8-bit register size
whismanoid 0:68e64068330f 1082 case CMD_r001_0001_xxxx_xxxx_xxxx_xxxx_xxxx_xddd_PART_ID:
whismanoid 0:68e64068330f 1083 case CMD_r001_0010_xxxx_xxxx_dddd_xxdd_dddd_dddd_SYSC_SEL:
whismanoid 0:68e64068330f 1084 case CMD_r001_0011_dddd_dddd_dddd_dddd_dddd_dddd_SYS_OFF_A:
whismanoid 0:68e64068330f 1085 case CMD_r001_0100_dddd_dddd_dddd_dddd_dddd_dddd_SYS_OFF_B:
whismanoid 0:68e64068330f 1086 case CMD_r001_0101_dddd_dddd_dddd_dddd_dddd_dddd_SYS_GAIN_A:
whismanoid 0:68e64068330f 1087 case CMD_r001_0110_dddd_dddd_dddd_dddd_dddd_dddd_SYS_GAIN_B:
whismanoid 0:68e64068330f 1088 case CMD_r001_0111_dddd_dddd_dddd_dddd_dddd_dddd_SELF_OFF:
whismanoid 0:68e64068330f 1089 case CMD_r001_1000_dddd_dddd_dddd_dddd_dddd_dddd_SELF_GAIN_1:
whismanoid 0:68e64068330f 1090 case CMD_r001_1001_dddd_dddd_dddd_dddd_dddd_dddd_SELF_GAIN_2:
whismanoid 0:68e64068330f 1091 case CMD_r001_1010_dddd_dddd_dddd_dddd_dddd_dddd_SELF_GAIN_4:
whismanoid 0:68e64068330f 1092 case CMD_r001_1011_dddd_dddd_dddd_dddd_dddd_dddd_SELF_GAIN_8:
whismanoid 0:68e64068330f 1093 case CMD_r001_1100_dddd_dddd_dddd_dddd_dddd_dddd_SELF_GAIN_16:
whismanoid 0:68e64068330f 1094 case CMD_r001_1101_dddd_dddd_dddd_dddd_dddd_dddd_SELF_GAIN_32:
whismanoid 0:68e64068330f 1095 case CMD_r001_1110_dddd_dddd_dddd_dddd_dddd_dddd_SELF_GAIN_64:
whismanoid 0:68e64068330f 1096 case CMD_r001_1111_dddd_dddd_dddd_dddd_dddd_dddd_SELF_GAIN_128:
whismanoid 0:68e64068330f 1097 case CMD_r010_0000_dddd_dddd_dddd_dddd_dddd_dddd_LTHRESH0:
whismanoid 0:68e64068330f 1098 case CMD_r010_0001_dddd_dddd_dddd_dddd_dddd_dddd_LTHRESH1:
whismanoid 0:68e64068330f 1099 case CMD_r010_0010_dddd_dddd_dddd_dddd_dddd_dddd_LTHRESH2:
whismanoid 0:68e64068330f 1100 case CMD_r010_0011_dddd_dddd_dddd_dddd_dddd_dddd_LTHRESH3:
whismanoid 0:68e64068330f 1101 case CMD_r010_0100_dddd_dddd_dddd_dddd_dddd_dddd_LTHRESH4:
whismanoid 0:68e64068330f 1102 case CMD_r010_0101_dddd_dddd_dddd_dddd_dddd_dddd_LTHRESH5:
whismanoid 0:68e64068330f 1103 case CMD_r010_0110_dddd_dddd_dddd_dddd_dddd_dddd_LTHRESH6:
whismanoid 0:68e64068330f 1104 case CMD_r010_0111_dddd_dddd_dddd_dddd_dddd_dddd_LTHRESH7:
whismanoid 0:68e64068330f 1105 case CMD_r010_1000_dddd_dddd_dddd_dddd_dddd_dddd_UTHRESH0:
whismanoid 0:68e64068330f 1106 case CMD_r010_1001_dddd_dddd_dddd_dddd_dddd_dddd_UTHRESH1:
whismanoid 0:68e64068330f 1107 case CMD_r010_1010_dddd_dddd_dddd_dddd_dddd_dddd_UTHRESH2:
whismanoid 0:68e64068330f 1108 case CMD_r010_1011_dddd_dddd_dddd_dddd_dddd_dddd_UTHRESH3:
whismanoid 0:68e64068330f 1109 case CMD_r010_1100_dddd_dddd_dddd_dddd_dddd_dddd_UTHRESH4:
whismanoid 0:68e64068330f 1110 case CMD_r010_1101_dddd_dddd_dddd_dddd_dddd_dddd_UTHRESH5:
whismanoid 0:68e64068330f 1111 case CMD_r010_1110_dddd_dddd_dddd_dddd_dddd_dddd_UTHRESH6:
whismanoid 0:68e64068330f 1112 case CMD_r010_1111_dddd_dddd_dddd_dddd_dddd_dddd_UTHRESH7:
whismanoid 0:68e64068330f 1113 case CMD_r011_0000_dddd_dddd_dddd_dddd_dddd_dddd_DATA0:
whismanoid 0:68e64068330f 1114 case CMD_r011_0001_dddd_dddd_dddd_dddd_dddd_dddd_DATA1:
whismanoid 0:68e64068330f 1115 case CMD_r011_0010_dddd_dddd_dddd_dddd_dddd_dddd_DATA2:
whismanoid 0:68e64068330f 1116 case CMD_r011_0011_dddd_dddd_dddd_dddd_dddd_dddd_DATA3:
whismanoid 0:68e64068330f 1117 case CMD_r011_0100_dddd_dddd_dddd_dddd_dddd_dddd_DATA4:
whismanoid 0:68e64068330f 1118 case CMD_r011_0101_dddd_dddd_dddd_dddd_dddd_dddd_DATA5:
whismanoid 0:68e64068330f 1119 case CMD_r011_0110_dddd_dddd_dddd_dddd_dddd_dddd_DATA6:
whismanoid 0:68e64068330f 1120 case CMD_r011_0111_dddd_dddd_dddd_dddd_dddd_dddd_DATA7:
whismanoid 0:68e64068330f 1121 case CMD_r011_1000_dddd_dddd_dddd_dddd_dxxx_dddd_STATUS:
whismanoid 0:68e64068330f 1122 case CMD_r011_1001_dddd_dddd_dddd_dddd_dxxd_dddd_STATUS_IE:
whismanoid 0:68e64068330f 1123 return 24; // 24-bit register size
whismanoid 0:68e64068330f 1124 case CMD_r011_1010_xaaa_aaaa_dddd_dddd_UC_0:
whismanoid 0:68e64068330f 1125 case CMD_r011_1011_xaaa_aaaa_dddd_dddd_UC_1:
whismanoid 0:68e64068330f 1126 case CMD_r011_1100_xaaa_aaaa_dddd_dddd_UC_2:
whismanoid 0:68e64068330f 1127 case CMD_r011_1101_xaaa_aaaa_dddd_dddd_UC_3:
whismanoid 0:68e64068330f 1128 case CMD_r011_1110_xaaa_aaaa_dddd_dddd_UC_4:
whismanoid 0:68e64068330f 1129 case CMD_r011_1111_xaaa_aaaa_dddd_dddd_UC_5:
whismanoid 0:68e64068330f 1130 case CMD_r100_0000_xaaa_aaaa_dddd_dddd_UC_6:
whismanoid 0:68e64068330f 1131 case CMD_r100_0001_xaaa_aaaa_dddd_dddd_UC_7:
whismanoid 0:68e64068330f 1132 case CMD_r100_0010_xaaa_aaaa_dddd_dddd_UC_8:
whismanoid 0:68e64068330f 1133 case CMD_r100_0011_xaaa_aaaa_dddd_dddd_UC_9:
whismanoid 0:68e64068330f 1134 case CMD_r100_0100_xaaa_aaaa_dddd_dddd_UC_10:
whismanoid 0:68e64068330f 1135 case CMD_r100_0101_xaaa_aaaa_dddd_dddd_UC_11:
whismanoid 0:68e64068330f 1136 case CMD_r100_0110_xaaa_aaaa_dddd_dddd_UC_12:
whismanoid 0:68e64068330f 1137 case CMD_r100_0111_xaaa_aaaa_dddd_dddd_UC_13:
whismanoid 0:68e64068330f 1138 case CMD_r100_1000_xaaa_aaaa_dddd_dddd_UC_14:
whismanoid 0:68e64068330f 1139 case CMD_r100_1001_xaaa_aaaa_dddd_dddd_UC_15:
whismanoid 0:68e64068330f 1140 case CMD_r100_1010_xaaa_aaaa_dddd_dddd_UC_16:
whismanoid 0:68e64068330f 1141 case CMD_r100_1011_xaaa_aaaa_dddd_dddd_UC_17:
whismanoid 0:68e64068330f 1142 case CMD_r100_1100_xaaa_aaaa_dddd_dddd_UC_18:
whismanoid 0:68e64068330f 1143 case CMD_r100_1101_xaaa_aaaa_dddd_dddd_UC_19:
whismanoid 0:68e64068330f 1144 case CMD_r100_1110_xaaa_aaaa_dddd_dddd_UC_20:
whismanoid 0:68e64068330f 1145 case CMD_r100_1111_xaaa_aaaa_dddd_dddd_UC_21:
whismanoid 0:68e64068330f 1146 case CMD_r101_0000_xaaa_aaaa_dddd_dddd_UC_22:
whismanoid 0:68e64068330f 1147 case CMD_r101_0001_xaaa_aaaa_dddd_dddd_UC_23:
whismanoid 0:68e64068330f 1148 case CMD_r101_0010_xaaa_aaaa_dddd_dddd_UC_24:
whismanoid 0:68e64068330f 1149 case CMD_r101_0011_xaaa_aaaa_dddd_dddd_UC_25:
whismanoid 0:68e64068330f 1150 case CMD_r101_0100_xaaa_aaaa_dddd_dddd_UC_26:
whismanoid 0:68e64068330f 1151 case CMD_r101_0101_xaaa_aaaa_dddd_dddd_UC_27:
whismanoid 0:68e64068330f 1152 case CMD_r101_0110_xaaa_aaaa_dddd_dddd_UC_28:
whismanoid 0:68e64068330f 1153 case CMD_r101_0111_xaaa_aaaa_dddd_dddd_UC_29:
whismanoid 0:68e64068330f 1154 case CMD_r101_1000_xaaa_aaaa_dddd_dddd_UC_30:
whismanoid 0:68e64068330f 1155 case CMD_r101_1001_xaaa_aaaa_dddd_dddd_UC_31:
whismanoid 0:68e64068330f 1156 case CMD_r101_1010_xaaa_aaaa_dddd_dddd_UC_32:
whismanoid 0:68e64068330f 1157 case CMD_r101_1011_xaaa_aaaa_dddd_dddd_UC_33:
whismanoid 0:68e64068330f 1158 case CMD_r101_1100_xaaa_aaaa_dddd_dddd_UC_34:
whismanoid 0:68e64068330f 1159 case CMD_r101_1101_xaaa_aaaa_dddd_dddd_UC_35:
whismanoid 0:68e64068330f 1160 case CMD_r101_1110_xaaa_aaaa_dddd_dddd_UC_36:
whismanoid 0:68e64068330f 1161 case CMD_r101_1111_xaaa_aaaa_dddd_dddd_UC_37:
whismanoid 0:68e64068330f 1162 case CMD_r110_0000_xaaa_aaaa_dddd_dddd_UC_38:
whismanoid 0:68e64068330f 1163 case CMD_r110_0001_xaaa_aaaa_dddd_dddd_UC_39:
whismanoid 0:68e64068330f 1164 case CMD_r110_0010_xaaa_aaaa_dddd_dddd_UC_40:
whismanoid 0:68e64068330f 1165 case CMD_r110_0011_xaaa_aaaa_dddd_dddd_UC_41:
whismanoid 0:68e64068330f 1166 case CMD_r110_0100_xaaa_aaaa_dddd_dddd_UC_42:
whismanoid 0:68e64068330f 1167 case CMD_r110_0101_xaaa_aaaa_dddd_dddd_UC_43:
whismanoid 0:68e64068330f 1168 case CMD_r110_0110_xaaa_aaaa_dddd_dddd_UC_44:
whismanoid 0:68e64068330f 1169 case CMD_r110_0111_xaaa_aaaa_dddd_dddd_UC_45:
whismanoid 0:68e64068330f 1170 case CMD_r110_1000_xaaa_aaaa_dddd_dddd_UC_46:
whismanoid 0:68e64068330f 1171 case CMD_r110_1001_xaaa_aaaa_dddd_dddd_UC_47:
whismanoid 0:68e64068330f 1172 case CMD_r110_1010_xaaa_aaaa_dddd_dddd_UC_48:
whismanoid 0:68e64068330f 1173 case CMD_r110_1011_xaaa_aaaa_dddd_dddd_UC_49:
whismanoid 0:68e64068330f 1174 case CMD_r110_1100_xaaa_aaaa_dddd_dddd_UC_50:
whismanoid 0:68e64068330f 1175 case CMD_r110_1101_xaaa_aaaa_dddd_dddd_UC_51:
whismanoid 0:68e64068330f 1176 case CMD_r110_1110_xaaa_aaaa_dddd_dddd_UC_52:
whismanoid 0:68e64068330f 1177 case CMD_r110_1111_xxxx_xxxx_xaaa_aaaa_UCADDR:
whismanoid 0:68e64068330f 1178 return 16; // 16-bit register size
whismanoid 0:68e64068330f 1179 }
whismanoid 0:68e64068330f 1180 }
whismanoid 0:68e64068330f 1181
whismanoid 0:68e64068330f 1182 //----------------------------------------
whismanoid 11:abde565b8497 1183 // Decode operation from commandByte
whismanoid 11:abde565b8497 1184 //
whismanoid 11:abde565b8497 1185 // @return operation such as idle, read register, write register, etc.
whismanoid 11:abde565b8497 1186 MAX11410::MAX11410_CMDOP_enum_t MAX11410::DecodeCommand(MAX11410_CMD_enum_t commandByte)
whismanoid 11:abde565b8497 1187 {
whismanoid 11:abde565b8497 1188
whismanoid 11:abde565b8497 1189 //----------------------------------------
whismanoid 11:abde565b8497 1190 // decode operation from command byte
whismanoid 11:abde565b8497 1191 switch (commandByte & 0x80)
whismanoid 11:abde565b8497 1192 {
whismanoid 11:abde565b8497 1193 default:
whismanoid 11:abde565b8497 1194 case CMDOP_0aaa_aaaa_WriteRegister:
whismanoid 11:abde565b8497 1195 return CMDOP_0aaa_aaaa_WriteRegister;
whismanoid 11:abde565b8497 1196 case CMDOP_1aaa_aaaa_ReadRegister:
whismanoid 11:abde565b8497 1197 return CMDOP_1aaa_aaaa_ReadRegister;
whismanoid 11:abde565b8497 1198 }
whismanoid 11:abde565b8497 1199 }
whismanoid 11:abde565b8497 1200
whismanoid 11:abde565b8497 1201 //----------------------------------------
whismanoid 10:7adee48a7f82 1202 // Return the address field of a MAX11410 register
whismanoid 10:7adee48a7f82 1203 //
whismanoid 10:7adee48a7f82 1204 // @return register address field as given in datasheet
whismanoid 10:7adee48a7f82 1205 uint8_t MAX11410::RegAddrOfCommand(MAX11410_CMD_enum_t commandByte)
whismanoid 10:7adee48a7f82 1206 {
whismanoid 10:7adee48a7f82 1207
whismanoid 10:7adee48a7f82 1208 //----------------------------------------
whismanoid 10:7adee48a7f82 1209 // extract register address value from command byte
whismanoid 11:abde565b8497 1210 return (uint8_t)((commandByte &~ CMDOP_1aaa_aaaa_ReadRegister) & 0xFF);
whismanoid 10:7adee48a7f82 1211 }
whismanoid 10:7adee48a7f82 1212
whismanoid 10:7adee48a7f82 1213 //----------------------------------------
whismanoid 10:7adee48a7f82 1214 // Test whether a command byte is a register read command
whismanoid 10:7adee48a7f82 1215 //
whismanoid 10:7adee48a7f82 1216 // @return true if command byte is a register read command
whismanoid 10:7adee48a7f82 1217 uint8_t MAX11410::IsRegReadCommand(MAX11410_CMD_enum_t commandByte)
whismanoid 10:7adee48a7f82 1218 {
whismanoid 10:7adee48a7f82 1219
whismanoid 10:7adee48a7f82 1220 //----------------------------------------
whismanoid 10:7adee48a7f82 1221 // Test whether a command byte is a register read command
whismanoid 11:abde565b8497 1222 return (commandByte & CMDOP_1aaa_aaaa_ReadRegister) ? 1 : 0;
whismanoid 10:7adee48a7f82 1223 }
whismanoid 10:7adee48a7f82 1224
whismanoid 10:7adee48a7f82 1225 //----------------------------------------
whismanoid 0:68e64068330f 1226 // Return the name of a MAX11410 register
whismanoid 0:68e64068330f 1227 //
whismanoid 0:68e64068330f 1228 // @return null-terminated constant C string containing register name or empty string
whismanoid 10:7adee48a7f82 1229 const char* MAX11410::RegName(MAX11410_CMD_enum_t commandByte)
whismanoid 0:68e64068330f 1230 {
whismanoid 0:68e64068330f 1231
whismanoid 0:68e64068330f 1232 //----------------------------------------
whismanoid 0:68e64068330f 1233 // switch based on register address value regAddress
whismanoid 11:abde565b8497 1234 commandByte = (MAX11410_CMD_enum_t)((commandByte &~ CMDOP_1aaa_aaaa_ReadRegister) & 0xFF);
whismanoid 10:7adee48a7f82 1235 switch(commandByte)
whismanoid 0:68e64068330f 1236 {
whismanoid 0:68e64068330f 1237 default:
whismanoid 0:68e64068330f 1238 return ""; // undefined register
whismanoid 0:68e64068330f 1239 case CMD_r000_0000_xxxx_xxdd_PD: return "PD";
whismanoid 0:68e64068330f 1240 case CMD_r000_0001_xddd_xxdd_CONV_START: return "CONV_START";
whismanoid 0:68e64068330f 1241 case CMD_r000_0010_xddd_dddd_SEQ_START: return "SEQ_START";
whismanoid 0:68e64068330f 1242 case CMD_r000_0011_xxxx_xddd_CAL_START: return "CAL_START";
whismanoid 0:68e64068330f 1243 case CMD_r000_0100_dddd_xddd_GP0_CTRL: return "GP0_CTRL";
whismanoid 0:68e64068330f 1244 case CMD_r000_0101_dddd_xddd_GP1_CTRL: return "GP1_CTRL";
whismanoid 0:68e64068330f 1245 case CMD_r000_0110_xddd_xxdd_GP_CONV: return "GP_CONV";
whismanoid 0:68e64068330f 1246 case CMD_r000_0111_xddd_dddd_GP_SEQ_ADDR: return "GP_SEQ_ADDR";
whismanoid 0:68e64068330f 1247 case CMD_r000_1000_x0dd_dddd_FILTER: return "FILTER";
whismanoid 0:68e64068330f 1248 case CMD_r000_1001_dddd_dddd_CTRL: return "CTRL";
whismanoid 0:68e64068330f 1249 case CMD_r000_1010_dddd_dddd_SOURCE: return "SOURCE";
whismanoid 0:68e64068330f 1250 case CMD_r000_1011_dddd_dddd_MUX_CTRL0: return "MUX_CTRL0";
whismanoid 0:68e64068330f 1251 case CMD_r000_1100_dddd_dddd_MUX_CTRL1: return "MUX_CTRL1";
whismanoid 0:68e64068330f 1252 case CMD_r000_1101_dddd_dddd_MUX_CTRL2: return "MUX_CTRL2";
whismanoid 23:22e7830bcccb 1253 case CMD_r000_1110_00ss_0ggg_PGA: return "PGA";
whismanoid 0:68e64068330f 1254 case CMD_r000_1111_dddd_dddd_WAIT_EXT: return "WAIT_EXT";
whismanoid 0:68e64068330f 1255 case CMD_r001_0000_xxxx_xxxx_WAIT_START: return "WAIT_START";
whismanoid 0:68e64068330f 1256 case CMD_r001_0001_xxxx_xxxx_xxxx_xxxx_xxxx_xddd_PART_ID: return "PART_ID";
whismanoid 0:68e64068330f 1257 case CMD_r001_0010_xxxx_xxxx_dddd_xxdd_dddd_dddd_SYSC_SEL: return "SYSC_SEL";
whismanoid 0:68e64068330f 1258 case CMD_r001_0011_dddd_dddd_dddd_dddd_dddd_dddd_SYS_OFF_A: return "SYS_OFF_A";
whismanoid 0:68e64068330f 1259 case CMD_r001_0100_dddd_dddd_dddd_dddd_dddd_dddd_SYS_OFF_B: return "SYS_OFF_B";
whismanoid 0:68e64068330f 1260 case CMD_r001_0101_dddd_dddd_dddd_dddd_dddd_dddd_SYS_GAIN_A: return "SYS_GAIN_A";
whismanoid 0:68e64068330f 1261 case CMD_r001_0110_dddd_dddd_dddd_dddd_dddd_dddd_SYS_GAIN_B: return "SYS_GAIN_B";
whismanoid 0:68e64068330f 1262 case CMD_r001_0111_dddd_dddd_dddd_dddd_dddd_dddd_SELF_OFF: return "SELF_OFF";
whismanoid 0:68e64068330f 1263 case CMD_r001_1000_dddd_dddd_dddd_dddd_dddd_dddd_SELF_GAIN_1: return "SELF_GAIN_1";
whismanoid 0:68e64068330f 1264 case CMD_r001_1001_dddd_dddd_dddd_dddd_dddd_dddd_SELF_GAIN_2: return "SELF_GAIN_2";
whismanoid 0:68e64068330f 1265 case CMD_r001_1010_dddd_dddd_dddd_dddd_dddd_dddd_SELF_GAIN_4: return "SELF_GAIN_4";
whismanoid 0:68e64068330f 1266 case CMD_r001_1011_dddd_dddd_dddd_dddd_dddd_dddd_SELF_GAIN_8: return "SELF_GAIN_8";
whismanoid 0:68e64068330f 1267 case CMD_r001_1100_dddd_dddd_dddd_dddd_dddd_dddd_SELF_GAIN_16: return "SELF_GAIN_16";
whismanoid 0:68e64068330f 1268 case CMD_r001_1101_dddd_dddd_dddd_dddd_dddd_dddd_SELF_GAIN_32: return "SELF_GAIN_32";
whismanoid 0:68e64068330f 1269 case CMD_r001_1110_dddd_dddd_dddd_dddd_dddd_dddd_SELF_GAIN_64: return "SELF_GAIN_64";
whismanoid 0:68e64068330f 1270 case CMD_r001_1111_dddd_dddd_dddd_dddd_dddd_dddd_SELF_GAIN_128: return "SELF_GAIN_128";
whismanoid 0:68e64068330f 1271 case CMD_r010_0000_dddd_dddd_dddd_dddd_dddd_dddd_LTHRESH0: return "LTHRESH0";
whismanoid 0:68e64068330f 1272 case CMD_r010_0001_dddd_dddd_dddd_dddd_dddd_dddd_LTHRESH1: return "LTHRESH1";
whismanoid 0:68e64068330f 1273 case CMD_r010_0010_dddd_dddd_dddd_dddd_dddd_dddd_LTHRESH2: return "LTHRESH2";
whismanoid 0:68e64068330f 1274 case CMD_r010_0011_dddd_dddd_dddd_dddd_dddd_dddd_LTHRESH3: return "LTHRESH3";
whismanoid 0:68e64068330f 1275 case CMD_r010_0100_dddd_dddd_dddd_dddd_dddd_dddd_LTHRESH4: return "LTHRESH4";
whismanoid 0:68e64068330f 1276 case CMD_r010_0101_dddd_dddd_dddd_dddd_dddd_dddd_LTHRESH5: return "LTHRESH5";
whismanoid 0:68e64068330f 1277 case CMD_r010_0110_dddd_dddd_dddd_dddd_dddd_dddd_LTHRESH6: return "LTHRESH6";
whismanoid 0:68e64068330f 1278 case CMD_r010_0111_dddd_dddd_dddd_dddd_dddd_dddd_LTHRESH7: return "LTHRESH7";
whismanoid 0:68e64068330f 1279 case CMD_r010_1000_dddd_dddd_dddd_dddd_dddd_dddd_UTHRESH0: return "UTHRESH0";
whismanoid 0:68e64068330f 1280 case CMD_r010_1001_dddd_dddd_dddd_dddd_dddd_dddd_UTHRESH1: return "UTHRESH1";
whismanoid 0:68e64068330f 1281 case CMD_r010_1010_dddd_dddd_dddd_dddd_dddd_dddd_UTHRESH2: return "UTHRESH2";
whismanoid 0:68e64068330f 1282 case CMD_r010_1011_dddd_dddd_dddd_dddd_dddd_dddd_UTHRESH3: return "UTHRESH3";
whismanoid 0:68e64068330f 1283 case CMD_r010_1100_dddd_dddd_dddd_dddd_dddd_dddd_UTHRESH4: return "UTHRESH4";
whismanoid 0:68e64068330f 1284 case CMD_r010_1101_dddd_dddd_dddd_dddd_dddd_dddd_UTHRESH5: return "UTHRESH5";
whismanoid 0:68e64068330f 1285 case CMD_r010_1110_dddd_dddd_dddd_dddd_dddd_dddd_UTHRESH6: return "UTHRESH6";
whismanoid 0:68e64068330f 1286 case CMD_r010_1111_dddd_dddd_dddd_dddd_dddd_dddd_UTHRESH7: return "UTHRESH7";
whismanoid 0:68e64068330f 1287 case CMD_r011_0000_dddd_dddd_dddd_dddd_dddd_dddd_DATA0: return "DATA0";
whismanoid 0:68e64068330f 1288 case CMD_r011_0001_dddd_dddd_dddd_dddd_dddd_dddd_DATA1: return "DATA1";
whismanoid 0:68e64068330f 1289 case CMD_r011_0010_dddd_dddd_dddd_dddd_dddd_dddd_DATA2: return "DATA2";
whismanoid 0:68e64068330f 1290 case CMD_r011_0011_dddd_dddd_dddd_dddd_dddd_dddd_DATA3: return "DATA3";
whismanoid 0:68e64068330f 1291 case CMD_r011_0100_dddd_dddd_dddd_dddd_dddd_dddd_DATA4: return "DATA4";
whismanoid 0:68e64068330f 1292 case CMD_r011_0101_dddd_dddd_dddd_dddd_dddd_dddd_DATA5: return "DATA5";
whismanoid 0:68e64068330f 1293 case CMD_r011_0110_dddd_dddd_dddd_dddd_dddd_dddd_DATA6: return "DATA6";
whismanoid 0:68e64068330f 1294 case CMD_r011_0111_dddd_dddd_dddd_dddd_dddd_dddd_DATA7: return "DATA7";
whismanoid 0:68e64068330f 1295 case CMD_r011_1000_dddd_dddd_dddd_dddd_dxxx_dddd_STATUS: return "STATUS";
whismanoid 0:68e64068330f 1296 case CMD_r011_1001_dddd_dddd_dddd_dddd_dxxd_dddd_STATUS_IE: return "STATUS_IE";
whismanoid 0:68e64068330f 1297 case CMD_r011_1010_xaaa_aaaa_dddd_dddd_UC_0: return "UC_0";
whismanoid 0:68e64068330f 1298 case CMD_r011_1011_xaaa_aaaa_dddd_dddd_UC_1: return "UC_1";
whismanoid 0:68e64068330f 1299 case CMD_r011_1100_xaaa_aaaa_dddd_dddd_UC_2: return "UC_2";
whismanoid 0:68e64068330f 1300 case CMD_r011_1101_xaaa_aaaa_dddd_dddd_UC_3: return "UC_3";
whismanoid 0:68e64068330f 1301 case CMD_r011_1110_xaaa_aaaa_dddd_dddd_UC_4: return "UC_4";
whismanoid 0:68e64068330f 1302 case CMD_r011_1111_xaaa_aaaa_dddd_dddd_UC_5: return "UC_5";
whismanoid 0:68e64068330f 1303 case CMD_r100_0000_xaaa_aaaa_dddd_dddd_UC_6: return "UC_6";
whismanoid 0:68e64068330f 1304 case CMD_r100_0001_xaaa_aaaa_dddd_dddd_UC_7: return "UC_7";
whismanoid 0:68e64068330f 1305 case CMD_r100_0010_xaaa_aaaa_dddd_dddd_UC_8: return "UC_8";
whismanoid 0:68e64068330f 1306 case CMD_r100_0011_xaaa_aaaa_dddd_dddd_UC_9: return "UC_9";
whismanoid 0:68e64068330f 1307 case CMD_r100_0100_xaaa_aaaa_dddd_dddd_UC_10: return "UC_10";
whismanoid 0:68e64068330f 1308 case CMD_r100_0101_xaaa_aaaa_dddd_dddd_UC_11: return "UC_11";
whismanoid 0:68e64068330f 1309 case CMD_r100_0110_xaaa_aaaa_dddd_dddd_UC_12: return "UC_12";
whismanoid 0:68e64068330f 1310 case CMD_r100_0111_xaaa_aaaa_dddd_dddd_UC_13: return "UC_13";
whismanoid 0:68e64068330f 1311 case CMD_r100_1000_xaaa_aaaa_dddd_dddd_UC_14: return "UC_14";
whismanoid 0:68e64068330f 1312 case CMD_r100_1001_xaaa_aaaa_dddd_dddd_UC_15: return "UC_15";
whismanoid 0:68e64068330f 1313 case CMD_r100_1010_xaaa_aaaa_dddd_dddd_UC_16: return "UC_16";
whismanoid 0:68e64068330f 1314 case CMD_r100_1011_xaaa_aaaa_dddd_dddd_UC_17: return "UC_17";
whismanoid 0:68e64068330f 1315 case CMD_r100_1100_xaaa_aaaa_dddd_dddd_UC_18: return "UC_18";
whismanoid 0:68e64068330f 1316 case CMD_r100_1101_xaaa_aaaa_dddd_dddd_UC_19: return "UC_19";
whismanoid 0:68e64068330f 1317 case CMD_r100_1110_xaaa_aaaa_dddd_dddd_UC_20: return "UC_20";
whismanoid 0:68e64068330f 1318 case CMD_r100_1111_xaaa_aaaa_dddd_dddd_UC_21: return "UC_21";
whismanoid 0:68e64068330f 1319 case CMD_r101_0000_xaaa_aaaa_dddd_dddd_UC_22: return "UC_22";
whismanoid 0:68e64068330f 1320 case CMD_r101_0001_xaaa_aaaa_dddd_dddd_UC_23: return "UC_23";
whismanoid 0:68e64068330f 1321 case CMD_r101_0010_xaaa_aaaa_dddd_dddd_UC_24: return "UC_24";
whismanoid 0:68e64068330f 1322 case CMD_r101_0011_xaaa_aaaa_dddd_dddd_UC_25: return "UC_25";
whismanoid 0:68e64068330f 1323 case CMD_r101_0100_xaaa_aaaa_dddd_dddd_UC_26: return "UC_26";
whismanoid 0:68e64068330f 1324 case CMD_r101_0101_xaaa_aaaa_dddd_dddd_UC_27: return "UC_27";
whismanoid 0:68e64068330f 1325 case CMD_r101_0110_xaaa_aaaa_dddd_dddd_UC_28: return "UC_28";
whismanoid 0:68e64068330f 1326 case CMD_r101_0111_xaaa_aaaa_dddd_dddd_UC_29: return "UC_29";
whismanoid 0:68e64068330f 1327 case CMD_r101_1000_xaaa_aaaa_dddd_dddd_UC_30: return "UC_30";
whismanoid 0:68e64068330f 1328 case CMD_r101_1001_xaaa_aaaa_dddd_dddd_UC_31: return "UC_31";
whismanoid 0:68e64068330f 1329 case CMD_r101_1010_xaaa_aaaa_dddd_dddd_UC_32: return "UC_32";
whismanoid 0:68e64068330f 1330 case CMD_r101_1011_xaaa_aaaa_dddd_dddd_UC_33: return "UC_33";
whismanoid 0:68e64068330f 1331 case CMD_r101_1100_xaaa_aaaa_dddd_dddd_UC_34: return "UC_34";
whismanoid 0:68e64068330f 1332 case CMD_r101_1101_xaaa_aaaa_dddd_dddd_UC_35: return "UC_35";
whismanoid 0:68e64068330f 1333 case CMD_r101_1110_xaaa_aaaa_dddd_dddd_UC_36: return "UC_36";
whismanoid 0:68e64068330f 1334 case CMD_r101_1111_xaaa_aaaa_dddd_dddd_UC_37: return "UC_37";
whismanoid 0:68e64068330f 1335 case CMD_r110_0000_xaaa_aaaa_dddd_dddd_UC_38: return "UC_38";
whismanoid 0:68e64068330f 1336 case CMD_r110_0001_xaaa_aaaa_dddd_dddd_UC_39: return "UC_39";
whismanoid 0:68e64068330f 1337 case CMD_r110_0010_xaaa_aaaa_dddd_dddd_UC_40: return "UC_40";
whismanoid 0:68e64068330f 1338 case CMD_r110_0011_xaaa_aaaa_dddd_dddd_UC_41: return "UC_41";
whismanoid 0:68e64068330f 1339 case CMD_r110_0100_xaaa_aaaa_dddd_dddd_UC_42: return "UC_42";
whismanoid 0:68e64068330f 1340 case CMD_r110_0101_xaaa_aaaa_dddd_dddd_UC_43: return "UC_43";
whismanoid 0:68e64068330f 1341 case CMD_r110_0110_xaaa_aaaa_dddd_dddd_UC_44: return "UC_44";
whismanoid 0:68e64068330f 1342 case CMD_r110_0111_xaaa_aaaa_dddd_dddd_UC_45: return "UC_45";
whismanoid 0:68e64068330f 1343 case CMD_r110_1000_xaaa_aaaa_dddd_dddd_UC_46: return "UC_46";
whismanoid 0:68e64068330f 1344 case CMD_r110_1001_xaaa_aaaa_dddd_dddd_UC_47: return "UC_47";
whismanoid 0:68e64068330f 1345 case CMD_r110_1010_xaaa_aaaa_dddd_dddd_UC_48: return "UC_48";
whismanoid 0:68e64068330f 1346 case CMD_r110_1011_xaaa_aaaa_dddd_dddd_UC_49: return "UC_49";
whismanoid 0:68e64068330f 1347 case CMD_r110_1100_xaaa_aaaa_dddd_dddd_UC_50: return "UC_50";
whismanoid 0:68e64068330f 1348 case CMD_r110_1101_xaaa_aaaa_dddd_dddd_UC_51: return "UC_51";
whismanoid 0:68e64068330f 1349 case CMD_r110_1110_xaaa_aaaa_dddd_dddd_UC_52: return "UC_52";
whismanoid 0:68e64068330f 1350 case CMD_r110_1111_xxxx_xxxx_xaaa_aaaa_UCADDR: return "UCADDR";
whismanoid 0:68e64068330f 1351 }
whismanoid 0:68e64068330f 1352 }
whismanoid 0:68e64068330f 1353
whismanoid 0:68e64068330f 1354 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1355 // Menu item 'XF'
whismanoid 1:d57c1a2cb83c 1356 //
whismanoid 1:d57c1a2cb83c 1357 // FILTER Select Filter and Rate.
whismanoid 1:d57c1a2cb83c 1358 // Sets conversion rate based on RATE, LINEF, and CONV_TYPE value. See Table 9a through Table 9d for details.
whismanoid 1:d57c1a2cb83c 1359 // For CONV_TYPE_01_Continuous, linef=LINEF_11_SINC4, rate=RATE_0100 selects output data rate 60SPS.
whismanoid 1:d57c1a2cb83c 1360 //
whismanoid 1:d57c1a2cb83c 1361 // @param[in] linef = filter type, default=MAX11410::LINEF_enum_t::LINEF_11_SINC4
whismanoid 1:d57c1a2cb83c 1362 // @param[in] rate = output data rate selection, default=MAX11410::RATE_enum_t::RATE_0100
whismanoid 1:d57c1a2cb83c 1363 //
whismanoid 1:d57c1a2cb83c 1364 // @return 1 on success; 0 on failure
whismanoid 1:d57c1a2cb83c 1365 uint8_t MAX11410::Configure_FILTER(uint8_t linef, uint8_t rate)
whismanoid 1:d57c1a2cb83c 1366 {
whismanoid 1:d57c1a2cb83c 1367
whismanoid 1:d57c1a2cb83c 1368 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1369 // write8 0x08 FILTER
whismanoid 1:d57c1a2cb83c 1370 RegWrite(CMD_r000_1000_x0dd_dddd_FILTER, (uint8_t)(0
whismanoid 1:d57c1a2cb83c 1371 | (((uint8_t)linef & 3) << 4)
whismanoid 1:d57c1a2cb83c 1372 | (((uint8_t)rate & 15) << 0)
whismanoid 1:d57c1a2cb83c 1373 ));
whismanoid 1:d57c1a2cb83c 1374
whismanoid 1:d57c1a2cb83c 1375 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1376 // success
whismanoid 1:d57c1a2cb83c 1377 return 1;
whismanoid 1:d57c1a2cb83c 1378 }
whismanoid 1:d57c1a2cb83c 1379
whismanoid 1:d57c1a2cb83c 1380 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1381 // Menu item 'XP'
whismanoid 1:d57c1a2cb83c 1382 //
whismanoid 1:d57c1a2cb83c 1383 // PGA Select Gain and Signal Path.
whismanoid 1:d57c1a2cb83c 1384 //
whismanoid 1:d57c1a2cb83c 1385 // @param[in] sigpath = signal path, default=MAX11410::SIG_PATH_enum_t::SIG_PATH_00_BUFFERED
whismanoid 1:d57c1a2cb83c 1386 // @param[in] gain = gain selection, default=MAX11410::GAIN_enum_t::GAIN_000_1
whismanoid 1:d57c1a2cb83c 1387 //
whismanoid 1:d57c1a2cb83c 1388 // @return 1 on success; 0 on failure
whismanoid 1:d57c1a2cb83c 1389 uint8_t MAX11410::Configure_PGA(uint8_t sigpath, uint8_t gain)
whismanoid 1:d57c1a2cb83c 1390 {
whismanoid 1:d57c1a2cb83c 1391
whismanoid 1:d57c1a2cb83c 1392 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1393 // write8 0x0E PGA
whismanoid 23:22e7830bcccb 1394 RegWrite(CMD_r000_1110_00ss_0ggg_PGA, (uint8_t)(0
whismanoid 1:d57c1a2cb83c 1395 | (((uint8_t)sigpath & 2) << 4)
whismanoid 1:d57c1a2cb83c 1396 | (((uint8_t)gain & 7) << 0)
whismanoid 1:d57c1a2cb83c 1397 ));
whismanoid 1:d57c1a2cb83c 1398
whismanoid 1:d57c1a2cb83c 1399 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1400 // success
whismanoid 1:d57c1a2cb83c 1401 return 1;
whismanoid 1:d57c1a2cb83c 1402 }
whismanoid 1:d57c1a2cb83c 1403
whismanoid 1:d57c1a2cb83c 1404 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1405 // Menu item 'XC'
whismanoid 1:d57c1a2cb83c 1406 //
whismanoid 1:d57c1a2cb83c 1407 // CTRL Select clock, format, and reference.
whismanoid 1:d57c1a2cb83c 1408 //
whismanoid 1:d57c1a2cb83c 1409 // @param[in] extclk = external clock enable, default=0
whismanoid 1:d57c1a2cb83c 1410 // @param[in] u_bn = unipolar input range enable, default=0
whismanoid 1:d57c1a2cb83c 1411 // @param[in] format = offset binary format enable, default=0
whismanoid 1:d57c1a2cb83c 1412 // @param[in] refbufp_en = REFP reference buffer enable, default=0
whismanoid 1:d57c1a2cb83c 1413 // @param[in] refbufn_en = REFN reference buffer enable, default=0
whismanoid 1:d57c1a2cb83c 1414 // @param[in] ref_sel = reference selection, default=MAX11410::REF_SEL_enum_t::REF_SEL_001_REF1P_REF1N
whismanoid 1:d57c1a2cb83c 1415 //
whismanoid 1:d57c1a2cb83c 1416 // @return 1 on success; 0 on failure
whismanoid 1:d57c1a2cb83c 1417 uint8_t MAX11410::Configure_CTRL(uint8_t extclk, uint8_t u_bn, uint8_t format, uint8_t refbufp_en, uint8_t refbufn_en, uint8_t ref_sel)
whismanoid 1:d57c1a2cb83c 1418 {
whismanoid 1:d57c1a2cb83c 1419
whismanoid 1:d57c1a2cb83c 1420 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1421 // shadow of register CMD_r000_1001_dddd_dddd_CTRL
whismanoid 1:d57c1a2cb83c 1422 ctrl = (uint8_t)(0
whismanoid 1:d57c1a2cb83c 1423 | (((uint8_t)extclk & 1) << 7)
whismanoid 1:d57c1a2cb83c 1424 | (((uint8_t)u_bn & 1) << 6)
whismanoid 1:d57c1a2cb83c 1425 | (((uint8_t)format & 1) << 5)
whismanoid 1:d57c1a2cb83c 1426 | (((uint8_t)refbufp_en & 1) << 4)
whismanoid 1:d57c1a2cb83c 1427 | (((uint8_t)refbufn_en & 1) << 3)
whismanoid 1:d57c1a2cb83c 1428 | (((uint8_t)ref_sel & 7) << 0)
whismanoid 1:d57c1a2cb83c 1429 );
whismanoid 1:d57c1a2cb83c 1430
whismanoid 1:d57c1a2cb83c 1431 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1432 // write8 0x09 CTRL
whismanoid 1:d57c1a2cb83c 1433 RegWrite(CMD_r000_1001_dddd_dddd_CTRL, ctrl);
whismanoid 1:d57c1a2cb83c 1434
whismanoid 1:d57c1a2cb83c 1435 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1436 // success
whismanoid 1:d57c1a2cb83c 1437 return 1;
whismanoid 1:d57c1a2cb83c 1438 }
whismanoid 1:d57c1a2cb83c 1439
whismanoid 1:d57c1a2cb83c 1440 //----------------------------------------
whismanoid 14:b49eecf7e4d8 1441 // Menu item 'XR'
whismanoid 14:b49eecf7e4d8 1442 //
whismanoid 14:b49eecf7e4d8 1443 // CTRL select reference, without changing the other fields.
whismanoid 14:b49eecf7e4d8 1444 //
whismanoid 14:b49eecf7e4d8 1445 // @pre ctrl = shadow of CTRL register
whismanoid 14:b49eecf7e4d8 1446 // @param[in] ref_sel = reference selection, default=MAX11410::REF_SEL_enum_t::REF_SEL_001_REF1P_REF1N
whismanoid 14:b49eecf7e4d8 1447 //
whismanoid 14:b49eecf7e4d8 1448 // @return 1 on success; 0 on failure
whismanoid 14:b49eecf7e4d8 1449 uint8_t MAX11410::Configure_CTRL_REF(uint8_t ref_sel)
whismanoid 14:b49eecf7e4d8 1450 {
whismanoid 14:b49eecf7e4d8 1451
whismanoid 14:b49eecf7e4d8 1452 //----------------------------------------
whismanoid 14:b49eecf7e4d8 1453 // shadow of register CMD_r000_1001_dddd_dddd_CTRL
whismanoid 14:b49eecf7e4d8 1454 ctrl = (ctrl & ((~ 7) << 0))
whismanoid 14:b49eecf7e4d8 1455 | (((uint8_t)ref_sel & 7) << 0);
whismanoid 14:b49eecf7e4d8 1456
whismanoid 14:b49eecf7e4d8 1457 //----------------------------------------
whismanoid 14:b49eecf7e4d8 1458 // write8 0x09 CTRL
whismanoid 14:b49eecf7e4d8 1459 RegWrite(CMD_r000_1001_dddd_dddd_CTRL, ctrl);
whismanoid 14:b49eecf7e4d8 1460
whismanoid 14:b49eecf7e4d8 1461 //----------------------------------------
whismanoid 14:b49eecf7e4d8 1462 // success
whismanoid 14:b49eecf7e4d8 1463 return 1;
whismanoid 14:b49eecf7e4d8 1464 }
whismanoid 14:b49eecf7e4d8 1465
whismanoid 14:b49eecf7e4d8 1466 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1467 // Menu item 'XS'
whismanoid 1:d57c1a2cb83c 1468 //
whismanoid 1:d57c1a2cb83c 1469 // SOURCE Configure voltage bias source, current source, burnout mode
whismanoid 1:d57c1a2cb83c 1470 //
whismanoid 1:d57c1a2cb83c 1471 // @param[in] vbias_mode = _______, default=MAX11410::VBIAS_MODE_enum_t::VBIAS_MODE_00_Active
whismanoid 1:d57c1a2cb83c 1472 // @param[in] brn_mode = _______, default=MAX11410::BRN_MODE_enum_t::BRN_MODE_00_disabled
whismanoid 1:d57c1a2cb83c 1473 // @param[in] idac_mode = _______, default=MAX11410::IDAC_MODE_enum_t::IDAC_MODE_0000_10uA
whismanoid 1:d57c1a2cb83c 1474 //
whismanoid 1:d57c1a2cb83c 1475 // @return 1 on success; 0 on failure
whismanoid 1:d57c1a2cb83c 1476 uint8_t MAX11410::Configure_SOURCE(uint8_t vbias_mode, uint8_t brn_mode, uint8_t idac_mode)
whismanoid 1:d57c1a2cb83c 1477 {
whismanoid 1:d57c1a2cb83c 1478
whismanoid 1:d57c1a2cb83c 1479 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1480 // warning -- WIP work in progress
whismanoid 1:d57c1a2cb83c 1481 #warning "Not Tested Yet: MAX11410::Configure_SOURCE..."
whismanoid 1:d57c1a2cb83c 1482
whismanoid 1:d57c1a2cb83c 1483 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1484 // write8 0x0A SOURCE
whismanoid 1:d57c1a2cb83c 1485 RegWrite(CMD_r000_1010_dddd_dddd_SOURCE, (uint8_t)(0
whismanoid 1:d57c1a2cb83c 1486 | (((uint8_t)vbias_mode & 3) << 6)
whismanoid 1:d57c1a2cb83c 1487 | (((uint8_t)brn_mode & 3) << 4)
whismanoid 1:d57c1a2cb83c 1488 | (((uint8_t)idac_mode & 15) << 0)
whismanoid 1:d57c1a2cb83c 1489 ));
whismanoid 1:d57c1a2cb83c 1490
whismanoid 1:d57c1a2cb83c 1491 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1492 // success
whismanoid 1:d57c1a2cb83c 1493 return 1;
whismanoid 1:d57c1a2cb83c 1494 }
whismanoid 1:d57c1a2cb83c 1495
whismanoid 1:d57c1a2cb83c 1496 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1497 // Menu item 'XM'
whismanoid 1:d57c1a2cb83c 1498 //
whismanoid 1:d57c1a2cb83c 1499 // MUX_CTRL0 Select pins for analog input AINP and AINN
whismanoid 1:d57c1a2cb83c 1500 //
whismanoid 1:d57c1a2cb83c 1501 // @param[in] ainp = channel high side, default=MAX11410::AINP_SEL_enum_t::AINP_SEL_0000_AIN0
whismanoid 1:d57c1a2cb83c 1502 // @param[in] ainn = channel low side, default=MAX11410::AINN_SEL_enum_t::AINN_SEL_1010_GND
whismanoid 1:d57c1a2cb83c 1503 //
whismanoid 1:d57c1a2cb83c 1504 // @return 1 on success; 0 on failure
whismanoid 1:d57c1a2cb83c 1505 uint8_t MAX11410::Configure_MUX_CTRL0(uint8_t ainp, uint8_t ainn)
whismanoid 1:d57c1a2cb83c 1506 {
whismanoid 1:d57c1a2cb83c 1507
whismanoid 1:d57c1a2cb83c 1508 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1509 // warning -- WIP work in progress
whismanoid 1:d57c1a2cb83c 1510 #warning "Not Tested Yet: MAX11410::Configure_MUX_CTRL0..."
whismanoid 1:d57c1a2cb83c 1511
whismanoid 1:d57c1a2cb83c 1512 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1513 // write8 0x0B MUX_CTRL0
whismanoid 1:d57c1a2cb83c 1514 RegWrite(CMD_r000_1011_dddd_dddd_MUX_CTRL0, (uint8_t)(0
whismanoid 1:d57c1a2cb83c 1515 | (((uint8_t)ainp & 15) << 4)
whismanoid 1:d57c1a2cb83c 1516 | (((uint8_t)ainn & 15) << 0)
whismanoid 1:d57c1a2cb83c 1517 ));
whismanoid 1:d57c1a2cb83c 1518
whismanoid 1:d57c1a2cb83c 1519 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1520 // success
whismanoid 1:d57c1a2cb83c 1521 return 1;
whismanoid 1:d57c1a2cb83c 1522 }
whismanoid 1:d57c1a2cb83c 1523
whismanoid 1:d57c1a2cb83c 1524 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1525 // Menu item 'XI'
whismanoid 1:d57c1a2cb83c 1526 //
whismanoid 1:d57c1a2cb83c 1527 // MUX_CTRL1 Select pins for current source
whismanoid 1:d57c1a2cb83c 1528 //
whismanoid 1:d57c1a2cb83c 1529 // @param[in] idac1_sel = channel high side, default=MAX11410::IDAC1_SEL_enum_t::IDAC1_SEL_1111_unconnected
whismanoid 1:d57c1a2cb83c 1530 // @param[in] idac0_sel = channel low side, default=MAX11410::IDAC0_SEL_enum_t::IDAC0_SEL_1111_unconnected
whismanoid 1:d57c1a2cb83c 1531 //
whismanoid 1:d57c1a2cb83c 1532 // @return 1 on success; 0 on failure
whismanoid 1:d57c1a2cb83c 1533 uint8_t MAX11410::Configure_MUX_CTRL1(uint8_t idac1_sel, uint8_t idac0_sel)
whismanoid 1:d57c1a2cb83c 1534 {
whismanoid 1:d57c1a2cb83c 1535
whismanoid 1:d57c1a2cb83c 1536 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1537 // warning -- WIP work in progress
whismanoid 1:d57c1a2cb83c 1538 #warning "Not Tested Yet: MAX11410::Configure_MUX_CTRL1..."
whismanoid 1:d57c1a2cb83c 1539
whismanoid 1:d57c1a2cb83c 1540 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1541 // write8 0x0C MUX_CTRL1
whismanoid 1:d57c1a2cb83c 1542 RegWrite(CMD_r000_1100_dddd_dddd_MUX_CTRL1, (uint8_t)(0
whismanoid 1:d57c1a2cb83c 1543 | (((uint8_t)idac1_sel & 15) << 4)
whismanoid 1:d57c1a2cb83c 1544 | (((uint8_t)idac0_sel & 15) << 0)
whismanoid 1:d57c1a2cb83c 1545 ));
whismanoid 1:d57c1a2cb83c 1546
whismanoid 1:d57c1a2cb83c 1547 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1548 // success
whismanoid 1:d57c1a2cb83c 1549 return 1;
whismanoid 1:d57c1a2cb83c 1550 }
whismanoid 1:d57c1a2cb83c 1551
whismanoid 1:d57c1a2cb83c 1552 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1553 // Menu item 'XV'
whismanoid 1:d57c1a2cb83c 1554 //
whismanoid 1:d57c1a2cb83c 1555 // MUX_CTRL2 Select pins for voltage bias source
whismanoid 1:d57c1a2cb83c 1556 //
whismanoid 1:d57c1a2cb83c 1557 // @param[in] vbias_ain7_ain0_bitmap = bit map of AIN7..AIN0 enables for voltage bias, default=0
whismanoid 1:d57c1a2cb83c 1558 //
whismanoid 1:d57c1a2cb83c 1559 // @return 1 on success; 0 on failure
whismanoid 1:d57c1a2cb83c 1560 uint8_t MAX11410::Configure_MUX_CTRL2(uint8_t vbias_ain7_ain0_bitmap)
whismanoid 1:d57c1a2cb83c 1561 {
whismanoid 1:d57c1a2cb83c 1562
whismanoid 1:d57c1a2cb83c 1563 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1564 // warning -- WIP work in progress
whismanoid 1:d57c1a2cb83c 1565 #warning "Not Tested Yet: MAX11410::Configure_MUX_CTRL2..."
whismanoid 1:d57c1a2cb83c 1566
whismanoid 1:d57c1a2cb83c 1567 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1568 // write8 0x0D MUX_CTRL2
whismanoid 1:d57c1a2cb83c 1569 RegWrite(CMD_r000_1101_dddd_dddd_MUX_CTRL2, vbias_ain7_ain0_bitmap);
whismanoid 1:d57c1a2cb83c 1570
whismanoid 1:d57c1a2cb83c 1571 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1572 // success
whismanoid 1:d57c1a2cb83c 1573 return 1;
whismanoid 1:d57c1a2cb83c 1574 }
whismanoid 1:d57c1a2cb83c 1575
whismanoid 1:d57c1a2cb83c 1576 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1577 // Menu item 'X0'
whismanoid 1:d57c1a2cb83c 1578 //
whismanoid 1:d57c1a2cb83c 1579 // CAL_START Calibrate Self Offset and Gain.
whismanoid 1:d57c1a2cb83c 1580 //
whismanoid 1:d57c1a2cb83c 1581 // @return 1 on success; 0 on failure
whismanoid 1:d57c1a2cb83c 1582 uint8_t MAX11410::Calibrate_Self_Offset_Gain(void)
whismanoid 1:d57c1a2cb83c 1583 {
whismanoid 1:d57c1a2cb83c 1584
whismanoid 1:d57c1a2cb83c 1585 //----------------------------------------
whismanoid 25:c4be3afbfafd 1586 // write8 0x03 CAL_START -- RegWrite will poll status until CAL_RDY
whismanoid 1:d57c1a2cb83c 1587 RegWrite(CMD_r000_0011_xxxx_xddd_CAL_START, (uint8_t)CAL_TYPE_000_SELF_CAL);
whismanoid 1:d57c1a2cb83c 1588
whismanoid 1:d57c1a2cb83c 1589 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1590 // success
whismanoid 1:d57c1a2cb83c 1591 return 1;
whismanoid 1:d57c1a2cb83c 1592 }
whismanoid 1:d57c1a2cb83c 1593
whismanoid 1:d57c1a2cb83c 1594 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1595 // Menu item 'X1'
whismanoid 1:d57c1a2cb83c 1596 //
whismanoid 1:d57c1a2cb83c 1597 // CAL_START Calibrate Selected PGA.
whismanoid 1:d57c1a2cb83c 1598 //
whismanoid 1:d57c1a2cb83c 1599 // @return 1 on success; 0 on failure
whismanoid 1:d57c1a2cb83c 1600 uint8_t MAX11410::Calibrate_PGA_Gain(void)
whismanoid 1:d57c1a2cb83c 1601 {
whismanoid 1:d57c1a2cb83c 1602
whismanoid 1:d57c1a2cb83c 1603 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1604 // warning -- WIP work in progress
whismanoid 1:d57c1a2cb83c 1605 #warning "Not Tested Yet: MAX11410::Calibrate_PGA_Gain..."
whismanoid 1:d57c1a2cb83c 1606
whismanoid 1:d57c1a2cb83c 1607 //----------------------------------------
whismanoid 25:c4be3afbfafd 1608 // write8 0x03 CAL_START -- RegWrite will poll status until CAL_RDY
whismanoid 1:d57c1a2cb83c 1609 RegWrite(CMD_r000_0011_xxxx_xddd_CAL_START, (uint8_t)CAL_TYPE_001_PGA_GAIN);
whismanoid 1:d57c1a2cb83c 1610
whismanoid 1:d57c1a2cb83c 1611 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1612 // success
whismanoid 1:d57c1a2cb83c 1613 return 1;
whismanoid 1:d57c1a2cb83c 1614 }
whismanoid 1:d57c1a2cb83c 1615
whismanoid 1:d57c1a2cb83c 1616 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1617 // Menu item 'X4'
whismanoid 1:d57c1a2cb83c 1618 //
whismanoid 1:d57c1a2cb83c 1619 // CAL_START Calibrate System Offset A.
whismanoid 1:d57c1a2cb83c 1620 //
whismanoid 1:d57c1a2cb83c 1621 // @return 1 on success; 0 on failure
whismanoid 1:d57c1a2cb83c 1622 uint8_t MAX11410::Calibrate_System_Offset_A(void)
whismanoid 1:d57c1a2cb83c 1623 {
whismanoid 1:d57c1a2cb83c 1624
whismanoid 1:d57c1a2cb83c 1625 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1626 // warning -- WIP work in progress
whismanoid 1:d57c1a2cb83c 1627 #warning "Not Tested Yet: MAX11410::Calibrate_System_Offset_A..."
whismanoid 1:d57c1a2cb83c 1628
whismanoid 1:d57c1a2cb83c 1629 //----------------------------------------
whismanoid 25:c4be3afbfafd 1630 // write8 0x03 CAL_START -- RegWrite will poll status until CAL_RDY
whismanoid 1:d57c1a2cb83c 1631 RegWrite(CMD_r000_0011_xxxx_xddd_CAL_START, (uint8_t)CAL_TYPE_100_SYS_OFF_A);
whismanoid 1:d57c1a2cb83c 1632
whismanoid 1:d57c1a2cb83c 1633 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1634 // success
whismanoid 1:d57c1a2cb83c 1635 return 1;
whismanoid 1:d57c1a2cb83c 1636 }
whismanoid 1:d57c1a2cb83c 1637
whismanoid 1:d57c1a2cb83c 1638 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1639 // Menu item 'X5'
whismanoid 1:d57c1a2cb83c 1640 //
whismanoid 1:d57c1a2cb83c 1641 // X6 0x03 CAL_START 0x06 Calibrate System Offset B
whismanoid 1:d57c1a2cb83c 1642 // X7 0x03 CAL_START 0x07 Calibrate System Gain B
whismanoid 1:d57c1a2cb83c 1643 // CAL_START Calibrate System Gain A.
whismanoid 1:d57c1a2cb83c 1644 //
whismanoid 1:d57c1a2cb83c 1645 // @return 1 on success; 0 on failure
whismanoid 1:d57c1a2cb83c 1646 uint8_t MAX11410::Calibrate_System_Gain_A(void)
whismanoid 1:d57c1a2cb83c 1647 {
whismanoid 1:d57c1a2cb83c 1648
whismanoid 1:d57c1a2cb83c 1649 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1650 // warning -- WIP work in progress
whismanoid 1:d57c1a2cb83c 1651 #warning "Not Tested Yet: MAX11410::Calibrate_System_Gain_A..."
whismanoid 1:d57c1a2cb83c 1652
whismanoid 1:d57c1a2cb83c 1653 //----------------------------------------
whismanoid 25:c4be3afbfafd 1654 // write8 0x03 CAL_START -- RegWrite will poll status until CAL_RDY
whismanoid 1:d57c1a2cb83c 1655 RegWrite(CMD_r000_0011_xxxx_xddd_CAL_START, (uint8_t)CAL_TYPE_101_SYS_GAIN_A);
whismanoid 1:d57c1a2cb83c 1656
whismanoid 1:d57c1a2cb83c 1657 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1658 // success
whismanoid 1:d57c1a2cb83c 1659 return 1;
whismanoid 1:d57c1a2cb83c 1660 }
whismanoid 1:d57c1a2cb83c 1661
whismanoid 1:d57c1a2cb83c 1662 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1663 // Menu item 'X6'
whismanoid 1:d57c1a2cb83c 1664 //
whismanoid 1:d57c1a2cb83c 1665 // CAL_START Calibrate System Offset B.
whismanoid 1:d57c1a2cb83c 1666 //
whismanoid 1:d57c1a2cb83c 1667 // @return 1 on success; 0 on failure
whismanoid 1:d57c1a2cb83c 1668 uint8_t MAX11410::Calibrate_System_Offset_B(void)
whismanoid 1:d57c1a2cb83c 1669 {
whismanoid 1:d57c1a2cb83c 1670
whismanoid 1:d57c1a2cb83c 1671 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1672 // warning -- WIP work in progress
whismanoid 1:d57c1a2cb83c 1673 #warning "Not Tested Yet: MAX11410::Calibrate_System_Offset_B..."
whismanoid 1:d57c1a2cb83c 1674
whismanoid 1:d57c1a2cb83c 1675 //----------------------------------------
whismanoid 25:c4be3afbfafd 1676 // write8 0x03 CAL_START -- RegWrite will poll status until CAL_RDY
whismanoid 1:d57c1a2cb83c 1677 RegWrite(CMD_r000_0011_xxxx_xddd_CAL_START, (uint8_t)CAL_TYPE_110_SYS_OFF_B);
whismanoid 1:d57c1a2cb83c 1678
whismanoid 1:d57c1a2cb83c 1679 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1680 // success
whismanoid 1:d57c1a2cb83c 1681 return 1;
whismanoid 1:d57c1a2cb83c 1682 }
whismanoid 1:d57c1a2cb83c 1683
whismanoid 1:d57c1a2cb83c 1684 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1685 // Menu item 'X7'
whismanoid 1:d57c1a2cb83c 1686 //
whismanoid 1:d57c1a2cb83c 1687 // CAL_START Calibrate System Gain B.
whismanoid 1:d57c1a2cb83c 1688 //
whismanoid 1:d57c1a2cb83c 1689 // @return 1 on success; 0 on failure
whismanoid 1:d57c1a2cb83c 1690 uint8_t MAX11410::Calibrate_System_Gain_B(void)
whismanoid 1:d57c1a2cb83c 1691 {
whismanoid 1:d57c1a2cb83c 1692
whismanoid 1:d57c1a2cb83c 1693 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1694 // warning -- WIP work in progress
whismanoid 1:d57c1a2cb83c 1695 #warning "Not Tested Yet: MAX11410::Calibrate_System_Gain_B..."
whismanoid 1:d57c1a2cb83c 1696
whismanoid 1:d57c1a2cb83c 1697 //----------------------------------------
whismanoid 25:c4be3afbfafd 1698 // write8 0x03 CAL_START -- RegWrite will poll status until CAL_RDY
whismanoid 1:d57c1a2cb83c 1699 RegWrite(CMD_r000_0011_xxxx_xddd_CAL_START, (uint8_t)CAL_TYPE_111_SYS_GAIN_B);
whismanoid 1:d57c1a2cb83c 1700
whismanoid 1:d57c1a2cb83c 1701 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1702 // success
whismanoid 1:d57c1a2cb83c 1703 return 1;
whismanoid 1:d57c1a2cb83c 1704 }
whismanoid 1:d57c1a2cb83c 1705
whismanoid 1:d57c1a2cb83c 1706 //----------------------------------------
whismanoid 13:df96a784cda6 1707 // Menu item '$' -> AINcode[0], AINcode[1], AINcode[2], AINcode[3], AINcode[4], AINcode[5], AINcode[6], AINcode[7], AINcode[8], AINcode[9], AINcode[10]
whismanoid 17:0e9f2dfc2a30 1708 //
whismanoid 1:d57c1a2cb83c 1709 // Measure all ADC channels in sequence.
whismanoid 17:0e9f2dfc2a30 1710 // Diagnostic output pulse on GP0 for each channel's measurement.
whismanoid 17:0e9f2dfc2a30 1711 // Diagnostic output pulse on GP1 for entire loop.
whismanoid 17:0e9f2dfc2a30 1712 //
whismanoid 8:3a9dfa2e8234 1713 // @post AINcode[0..10]: measurement result LSB code
whismanoid 0:68e64068330f 1714 //
whismanoid 0:68e64068330f 1715 // @return 1 on success; 0 on failure
whismanoid 1:d57c1a2cb83c 1716 uint8_t MAX11410::Read_All_Voltages(void)
whismanoid 0:68e64068330f 1717 {
whismanoid 0:68e64068330f 1718
whismanoid 0:68e64068330f 1719 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1720 // scan AIN0..AIN9
whismanoid 17:0e9f2dfc2a30 1721 //
whismanoid 17:0e9f2dfc2a30 1722 // diagnostic GPIO pulse on MAX11410 GP1 pin (0xc3 = logic 0, 0xc4 = logic 1)
whismanoid 17:0e9f2dfc2a30 1723 RegWrite(CMD_r000_0101_dddd_xddd_GP1_CTRL, 0xc3); // GP1 = 0
whismanoid 17:0e9f2dfc2a30 1724 //
whismanoid 1:d57c1a2cb83c 1725 const MAX11410_AINN_SEL_enum_t ainn = AINN_SEL_1010_GND;
whismanoid 2:eac67184cc0c 1726 for(uint8_t ainp = /* MAX11410_AINP_SEL_enum_t:: */ AINP_SEL_0000_AIN0; ainp <= /* MAX11410_AINP_SEL_enum_t:: */ AINP_SEL_1010_AVDD; ainp++)
whismanoid 1:d57c1a2cb83c 1727 {
whismanoid 17:0e9f2dfc2a30 1728 // diagnostic GPIO pulse on MAX11410 GP0 pin (0xc3 = logic 0, 0xc4 = logic 1)
whismanoid 17:0e9f2dfc2a30 1729 RegWrite(CMD_r000_0100_dddd_xddd_GP0_CTRL, 0xc3); // GP0 = 0
whismanoid 17:0e9f2dfc2a30 1730 //
whismanoid 1:d57c1a2cb83c 1731 Measure_Voltage((MAX11410_AINP_SEL_enum_t)ainp, ainn);
whismanoid 17:0e9f2dfc2a30 1732 // @post AINcode[ainp]: measurement result LSB code
whismanoid 17:0e9f2dfc2a30 1733 //
whismanoid 17:0e9f2dfc2a30 1734 // diagnostic GPIO pulse on MAX11410 GP0 pin (0xc3 = logic 0, 0xc4 = logic 1)
whismanoid 17:0e9f2dfc2a30 1735 RegWrite(CMD_r000_0100_dddd_xddd_GP0_CTRL, 0xc4); // GP0 = 1
whismanoid 17:0e9f2dfc2a30 1736 //
whismanoid 1:d57c1a2cb83c 1737 }
whismanoid 17:0e9f2dfc2a30 1738 // diagnostic GPIO pulse on MAX11410 GP1 pin (0xc3 = logic 0, 0xc4 = logic 1)
whismanoid 17:0e9f2dfc2a30 1739 RegWrite(CMD_r000_0101_dddd_xddd_GP1_CTRL, 0xc4); // GP1 = 1
whismanoid 17:0e9f2dfc2a30 1740 //
whismanoid 0:68e64068330f 1741
whismanoid 0:68e64068330f 1742 //----------------------------------------
whismanoid 0:68e64068330f 1743 // success
whismanoid 0:68e64068330f 1744 return 1;
whismanoid 0:68e64068330f 1745 }
whismanoid 0:68e64068330f 1746
whismanoid 0:68e64068330f 1747 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1748 // Menu item 'V'
whismanoid 0:68e64068330f 1749 // Trigger Measurement for voltage input.
whismanoid 0:68e64068330f 1750 //
whismanoid 0:68e64068330f 1751 // Example code for typical voltage measurement.
whismanoid 0:68e64068330f 1752 //
whismanoid 1:d57c1a2cb83c 1753 // @pre external connection REF2P-REF2N is a reference voltage
whismanoid 1:d57c1a2cb83c 1754 // @pre VRef = Voltage of REF input, in Volts
whismanoid 1:d57c1a2cb83c 1755 // @param[in] ainp = channel high side, default=AINP_SEL_0000_AIN0
whismanoid 1:d57c1a2cb83c 1756 // @param[in] ainn = channel low side, default=AINN_SEL_1010_GND
whismanoid 1:d57c1a2cb83c 1757 // @post AINcode[ainp]: measurement result LSB code
whismanoid 0:68e64068330f 1758 //
whismanoid 1:d57c1a2cb83c 1759 // @return ideal voltage calculated from raw LSB code and reference voltage
whismanoid 1:d57c1a2cb83c 1760 double MAX11410::Measure_Voltage(MAX11410_AINP_SEL_enum_t ainp, MAX11410_AINN_SEL_enum_t ainn)
whismanoid 0:68e64068330f 1761 {
whismanoid 0:68e64068330f 1762
whismanoid 0:68e64068330f 1763 //----------------------------------------
whismanoid 8:3a9dfa2e8234 1764 // restrict channel selection to valid index range
whismanoid 8:3a9dfa2e8234 1765 if ((uint8_t)ainp > /* MAX11410_AINP_SEL_enum_t:: */ AINP_SEL_1010_AVDD)
whismanoid 8:3a9dfa2e8234 1766 {
whismanoid 8:3a9dfa2e8234 1767 ainp = /* MAX11410_AINP_SEL_enum_t:: */ AINP_SEL_1010_AVDD;
whismanoid 8:3a9dfa2e8234 1768 }
whismanoid 8:3a9dfa2e8234 1769
whismanoid 8:3a9dfa2e8234 1770 //----------------------------------------
whismanoid 8:3a9dfa2e8234 1771 // restrict channel selection to valid index range
whismanoid 8:3a9dfa2e8234 1772 if ((uint8_t)ainn > /* MAX11410_AINN_SEL_enum_t:: */ AINN_SEL_1010_GND)
whismanoid 8:3a9dfa2e8234 1773 {
whismanoid 8:3a9dfa2e8234 1774 ainn = /* MAX11410_AINN_SEL_enum_t:: */ AINN_SEL_1010_GND;
whismanoid 8:3a9dfa2e8234 1775 }
whismanoid 8:3a9dfa2e8234 1776
whismanoid 8:3a9dfa2e8234 1777 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1778 // write8 0x0B MUX_CTRL0 = 0x0A to select AINP=AIN0 and AINN=GND
whismanoid 1:d57c1a2cb83c 1779 Configure_MUX_CTRL0((uint8_t)ainp, (uint8_t)ainn);
whismanoid 1:d57c1a2cb83c 1780
whismanoid 1:d57c1a2cb83c 1781 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1782 // write8 0x09 CTRL to select reference REF2P/REF2N; Data Format = Bipolar 2's Complement
whismanoid 1:d57c1a2cb83c 1783 Configure_CTRL(/*extclk*/ 0, /*u_bn*/ 0, /*format*/ 0,
whismanoid 1:d57c1a2cb83c 1784 /*refbufp_en*/ 0, /*refbufn_en*/ 0,
whismanoid 1:d57c1a2cb83c 1785 /*ref_sel*/ (uint8_t)REF_SEL_010_REF2P_REF2N);
whismanoid 1:d57c1a2cb83c 1786
whismanoid 1:d57c1a2cb83c 1787 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1788 // write8 0x0E PGA
whismanoid 2:eac67184cc0c 1789 Configure_PGA((uint8_t) /* MAX11410_SIG_PATH_enum_t:: */ SIG_PATH_00_BUFFERED,
whismanoid 2:eac67184cc0c 1790 (uint8_t) /* MAX11410_GAIN_enum_t:: */ GAIN_000_1);
whismanoid 1:d57c1a2cb83c 1791
whismanoid 1:d57c1a2cb83c 1792 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1793 // write8 0x08 FILTER = 0x34 to select RATE_0100, LINEF_11_SINC4 60SPS (given CONV_TYPE_01_Continuous)
whismanoid 2:eac67184cc0c 1794 Configure_FILTER((uint8_t) /* MAX11410::MAX11410_LINEF_enum_t:: */ LINEF_11_SINC4,
whismanoid 2:eac67184cc0c 1795 (uint8_t) /* MAX11410::MAX11410_RATE_enum_t:: */ RATE_0100);
whismanoid 1:d57c1a2cb83c 1796
whismanoid 1:d57c1a2cb83c 1797 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1798 // write8 0x01 CONV_START = 0x01 to set Conversion Mode = Continuous
whismanoid 1:d57c1a2cb83c 1799 RegWrite(CMD_r000_0001_xddd_xxdd_CONV_START, 0x01);
whismanoid 0:68e64068330f 1800
whismanoid 0:68e64068330f 1801 //----------------------------------------
whismanoid 25:c4be3afbfafd 1802 // purge old data from data0 register
whismanoid 22:c6812214a933 1803 RegRead(CMD_r011_0000_dddd_dddd_dddd_dddd_dddd_dddd_DATA0, &AINcode[((int)ainp & 0x0F)]);
whismanoid 22:c6812214a933 1804 data0 = AINcode[((int)ainp & 0x0F)];
whismanoid 22:c6812214a933 1805
whismanoid 22:c6812214a933 1806 //----------------------------------------
whismanoid 0:68e64068330f 1807 // read24 0x80|0x38 STATUS (%SW 0xB8 0 0 0)
whismanoid 0:68e64068330f 1808 RegRead(CMD_r011_1000_dddd_dddd_dddd_dddd_dxxx_dddd_STATUS, &status);
whismanoid 0:68e64068330f 1809
whismanoid 0:68e64068330f 1810 //----------------------------------------
whismanoid 25:c4be3afbfafd 1811 // wait until STATUS_enum_t::STATUS_000010_DATA_RDY indicates data is available
whismanoid 13:df96a784cda6 1812 // A bad SPI interface can cause bit slippage, which makes this loop get stuck. Expect *PART_ID? = 0x000F02
whismanoid 13:df96a784cda6 1813 // while ((status & /* MAX11410_STATUS_enum_t:: */ STATUS_000010_DATA_RDY) == 0) {
whismanoid 13:df96a784cda6 1814 // possible infinite loop; need a timeout or futility countdown to escape
whismanoid 22:c6812214a933 1815 for (int futility_countdown = loop_limit;
whismanoid 13:df96a784cda6 1816 ((futility_countdown > 0) &&
whismanoid 13:df96a784cda6 1817 ((status & /* MAX11410_STATUS_enum_t:: */ STATUS_000010_DATA_RDY) == 0));
whismanoid 13:df96a784cda6 1818 futility_countdown--)
whismanoid 13:df96a784cda6 1819 {
whismanoid 9:06ca88952f1c 1820 RegRead(CMD_r011_1000_dddd_dddd_dddd_dddd_dxxx_dddd_STATUS, &status);
whismanoid 9:06ca88952f1c 1821 }
whismanoid 9:06ca88952f1c 1822
whismanoid 9:06ca88952f1c 1823 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1824 // read24 0x80|0x30 DATA0 (%SW 0xB0 0 0 0): AINcode[ainp] = measurement
whismanoid 1:d57c1a2cb83c 1825 RegRead(CMD_r011_0000_dddd_dddd_dddd_dddd_dddd_dddd_DATA0, &AINcode[((int)ainp & 0x0F)]);
whismanoid 1:d57c1a2cb83c 1826 data0 = AINcode[((int)ainp & 0x0F)];
whismanoid 0:68e64068330f 1827
whismanoid 0:68e64068330f 1828 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1829 // ideal voltage calculated from raw LSB code and reference voltage
whismanoid 1:d57c1a2cb83c 1830 return VoltageOfCode(AINcode[((int)ainp & 0x0F)]);
whismanoid 0:68e64068330f 1831 }
whismanoid 0:68e64068330f 1832
whismanoid 0:68e64068330f 1833 //----------------------------------------
whismanoid 22:c6812214a933 1834 // Menu item 'R' -> rtd_ohm, rtd_degc
whismanoid 0:68e64068330f 1835 // Trigger Measurement for Resistive Temperature Device (RTD).
whismanoid 0:68e64068330f 1836 //
whismanoid 0:68e64068330f 1837 // Example code for typical RTD measurement.
whismanoid 0:68e64068330f 1838 //
whismanoid 1:d57c1a2cb83c 1839 // @pre external connection REF1P-REF1N is a reference resistor
whismanoid 22:c6812214a933 1840 // @pre ref1_v = reference resistance in ohms, default=4999
whismanoid 23:22e7830bcccb 1841 // @pre rtd_filter = filter register configuration, 0x34 for LINEF_11_SINC4 RATE_0100 output data rate 60SPS
whismanoid 23:22e7830bcccb 1842 // @pre rtd_ctrl = ctrl register configuration, 0x40 for ref0_v, 0x41 for ref1_v, 0x42 for ref2_v
whismanoid 1:d57c1a2cb83c 1843 // @param[in] rtd_iout = channel RTD high side force, default=AINP_SEL_0111_AIN7
whismanoid 1:d57c1a2cb83c 1844 // @param[in] rtd_ainp = channel RTD high side sense, default=AINP_SEL_1000_AIN8
whismanoid 1:d57c1a2cb83c 1845 // @param[in] rtd_ainn = channel RTD low side, default=AINN_SEL_1001_AIN9
whismanoid 1:d57c1a2cb83c 1846 // @post AINcode[rtd_ainp]: measurement result LSB code
whismanoid 22:c6812214a933 1847 // @post rtd_ohm: measurement result resistance in Ohms
whismanoid 22:c6812214a933 1848 // @post rtd_degc: Temperature calculated from RTD Resistance; Thermocouple Cold Junction, in degrees C
whismanoid 0:68e64068330f 1849 //
whismanoid 3:658a93dfb2d8 1850 // @return resistance calculated from raw LSB code and reference resistance
whismanoid 1:d57c1a2cb83c 1851 double MAX11410::Measure_RTD(MAX11410_AINP_SEL_enum_t rtd_iout, MAX11410_AINP_SEL_enum_t rtd_ainp, MAX11410_AINN_SEL_enum_t rtd_ainn)
whismanoid 0:68e64068330f 1852 {
whismanoid 0:68e64068330f 1853
whismanoid 0:68e64068330f 1854 //----------------------------------------
whismanoid 8:3a9dfa2e8234 1855 // restrict channel selection to valid index range
whismanoid 8:3a9dfa2e8234 1856 if ((uint8_t)rtd_iout > /* MAX11410_AINP_SEL_enum_t:: */ AINP_SEL_1010_AVDD)
whismanoid 8:3a9dfa2e8234 1857 {
whismanoid 8:3a9dfa2e8234 1858 rtd_iout = /* MAX11410_AINP_SEL_enum_t:: */ AINP_SEL_1010_AVDD;
whismanoid 8:3a9dfa2e8234 1859 }
whismanoid 8:3a9dfa2e8234 1860
whismanoid 8:3a9dfa2e8234 1861 //----------------------------------------
whismanoid 8:3a9dfa2e8234 1862 // restrict channel selection to valid index range
whismanoid 8:3a9dfa2e8234 1863 if ((uint8_t)rtd_ainp > /* MAX11410_AINP_SEL_enum_t:: */ AINP_SEL_1010_AVDD)
whismanoid 8:3a9dfa2e8234 1864 {
whismanoid 8:3a9dfa2e8234 1865 rtd_ainp = /* MAX11410_AINP_SEL_enum_t:: */ AINP_SEL_1010_AVDD;
whismanoid 8:3a9dfa2e8234 1866 }
whismanoid 8:3a9dfa2e8234 1867
whismanoid 8:3a9dfa2e8234 1868 //----------------------------------------
whismanoid 8:3a9dfa2e8234 1869 // restrict channel selection to valid index range
whismanoid 8:3a9dfa2e8234 1870 if ((uint8_t)rtd_ainn > /* MAX11410_AINN_SEL_enum_t:: */ AINN_SEL_1010_GND)
whismanoid 8:3a9dfa2e8234 1871 {
whismanoid 8:3a9dfa2e8234 1872 rtd_ainn = /* MAX11410_AINN_SEL_enum_t:: */ AINN_SEL_1010_GND;
whismanoid 8:3a9dfa2e8234 1873 }
whismanoid 8:3a9dfa2e8234 1874
whismanoid 8:3a9dfa2e8234 1875 //----------------------------------------
whismanoid 23:22e7830bcccb 1876 // write8 0x08 FILTER to select output data rate
whismanoid 23:22e7830bcccb 1877 RegWrite(CMD_r000_1000_x0dd_dddd_FILTER, rtd_filter);
whismanoid 1:d57c1a2cb83c 1878
whismanoid 1:d57c1a2cb83c 1879 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1880 // write8 0x09 CTRL to select reference resistor REF1P/REF1N; Data Format = Unipolar
whismanoid 23:22e7830bcccb 1881 RegWrite(CMD_r000_1001_dddd_dddd_CTRL, rtd_ctrl);
whismanoid 23:22e7830bcccb 1882 ctrl = rtd_ctrl;
whismanoid 1:d57c1a2cb83c 1883
whismanoid 1:d57c1a2cb83c 1884 //----------------------------------------
whismanoid 23:22e7830bcccb 1885 // write8 0x0A SOURCE to select IDAC_MODE 400uA; AIN9=2.000V, AIN8(PT100)=2.040V, AIN8(PT1000)=2.400V
whismanoid 23:22e7830bcccb 1886 RegWrite(CMD_r000_1010_dddd_dddd_SOURCE, rtd_source);
whismanoid 1:d57c1a2cb83c 1887
whismanoid 1:d57c1a2cb83c 1888 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1889 // write8 0x0B MUX_CTRL0 = 0x89 to select AINP=AIN8 and AINN=AIN9
whismanoid 1:d57c1a2cb83c 1890 Configure_MUX_CTRL0((uint8_t)rtd_ainp, (uint8_t)rtd_ainn);
whismanoid 1:d57c1a2cb83c 1891
whismanoid 1:d57c1a2cb83c 1892 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1893 // write8 0x0C MUX_CTRL1 = 0xF7 to select IDAC1_SEL=NC, IDAC0_SEL=AIN7
whismanoid 1:d57c1a2cb83c 1894 Configure_MUX_CTRL1((uint8_t)IDAC1_SEL_1111_unconnected, (uint8_t)rtd_iout);
whismanoid 1:d57c1a2cb83c 1895
whismanoid 1:d57c1a2cb83c 1896 //----------------------------------------
whismanoid 23:22e7830bcccb 1897 // write8 0x0E PGA and update pgaGain
whismanoid 23:22e7830bcccb 1898 Configure_PGA(
whismanoid 23:22e7830bcccb 1899 ((rtd_pga >> 4) & 2), // sigpath
whismanoid 23:22e7830bcccb 1900 ( rtd_pga & 7)); // gain
whismanoid 1:d57c1a2cb83c 1901
whismanoid 1:d57c1a2cb83c 1902 //----------------------------------------
whismanoid 22:c6812214a933 1903 // diagnostic GPIO pulse on GP1 during RTD power-up interval rtd_ms
whismanoid 16:00aa1e5a6843 1904 RegWrite(CMD_r000_0101_dddd_xddd_GP1_CTRL, 0xc3); // diagnostic GPIO pulse GP1
whismanoid 16:00aa1e5a6843 1905 // write8 0x05 GP1_CTRL (%SW 0x05 0xc3) 11000 output 011 logic 0
whismanoid 16:00aa1e5a6843 1906
whismanoid 16:00aa1e5a6843 1907 //----------------------------------------
whismanoid 21:847b2220e96e 1908 // timing delay after enable RTD bias current
whismanoid 22:c6812214a933 1909 wait_ms(rtd_ms); // timing delay function, platform-specific
whismanoid 9:06ca88952f1c 1910
whismanoid 9:06ca88952f1c 1911 //----------------------------------------
whismanoid 22:c6812214a933 1912 // diagnostic GPIO pulse on GP1 during RTD power-up interval rtd_ms
whismanoid 16:00aa1e5a6843 1913 RegWrite(CMD_r000_0101_dddd_xddd_GP1_CTRL, 0xc4); // diagnostic GPIO pulse GP1
whismanoid 16:00aa1e5a6843 1914 // write8 0x05 GP1_CTRL (%SW 0x05 0xc4) 11000 output 100 logic 1
whismanoid 16:00aa1e5a6843 1915
whismanoid 16:00aa1e5a6843 1916 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1917 // write8 0x01 CONV_START = 0x01 to set Conversion Mode = Continuous
whismanoid 1:d57c1a2cb83c 1918 RegWrite(CMD_r000_0001_xddd_xxdd_CONV_START, 0x01);
whismanoid 1:d57c1a2cb83c 1919
whismanoid 1:d57c1a2cb83c 1920 //----------------------------------------
whismanoid 25:c4be3afbfafd 1921 // purge old data from data0 register
whismanoid 25:c4be3afbfafd 1922 RegRead(CMD_r011_0000_dddd_dddd_dddd_dddd_dddd_dddd_DATA0, &AINcode[((int)rtd_ainp & 0x0F)]);
whismanoid 25:c4be3afbfafd 1923 data0 = AINcode[((int)rtd_ainp & 0x0F)];
whismanoid 25:c4be3afbfafd 1924
whismanoid 25:c4be3afbfafd 1925 //----------------------------------------
whismanoid 0:68e64068330f 1926 // read24 0x80|0x38 STATUS (%SW 0xB8 0 0 0)
whismanoid 0:68e64068330f 1927 RegRead(CMD_r011_1000_dddd_dddd_dddd_dddd_dxxx_dddd_STATUS, &status);
whismanoid 0:68e64068330f 1928
whismanoid 0:68e64068330f 1929 //----------------------------------------
whismanoid 25:c4be3afbfafd 1930 // wait until STATUS_enum_t::STATUS_000010_DATA_RDY indicates data is available
whismanoid 16:00aa1e5a6843 1931 // A bad SPI interface can cause bit slippage, which makes this loop get stuck. Expect *PART_ID? = 0x000F02
whismanoid 16:00aa1e5a6843 1932 // while ((status & /* MAX11410_STATUS_enum_t:: */ STATUS_000010_DATA_RDY) == 0) {
whismanoid 16:00aa1e5a6843 1933 // possible infinite loop; need a timeout or futility countdown to escape
whismanoid 22:c6812214a933 1934 for (int futility_countdown = loop_limit;
whismanoid 16:00aa1e5a6843 1935 ((futility_countdown > 0) &&
whismanoid 16:00aa1e5a6843 1936 ((status & /* MAX11410_STATUS_enum_t:: */ STATUS_000010_DATA_RDY) == 0));
whismanoid 16:00aa1e5a6843 1937 futility_countdown--)
whismanoid 16:00aa1e5a6843 1938 {
whismanoid 16:00aa1e5a6843 1939 RegRead(CMD_r011_1000_dddd_dddd_dddd_dddd_dxxx_dddd_STATUS, &status);
whismanoid 16:00aa1e5a6843 1940 }
whismanoid 16:00aa1e5a6843 1941
whismanoid 16:00aa1e5a6843 1942 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1943 // read24 0x80|0x30 DATA0 (%SW 0xB0 0 0 0): AINcode[ainp] = measurement
whismanoid 1:d57c1a2cb83c 1944 RegRead(CMD_r011_0000_dddd_dddd_dddd_dddd_dddd_dddd_DATA0, &AINcode[((int)rtd_ainp & 0x0F)]);
whismanoid 1:d57c1a2cb83c 1945 data0 = AINcode[((int)rtd_ainp & 0x0F)];
whismanoid 0:68e64068330f 1946
whismanoid 0:68e64068330f 1947 //----------------------------------------
whismanoid 25:c4be3afbfafd 1948 // turn off RTD bias current to avoid self-heating (unless rtd_ms is 0)
whismanoid 25:c4be3afbfafd 1949 if (rtd_ms != 0)
whismanoid 25:c4be3afbfafd 1950 {
whismanoid 25:c4be3afbfafd 1951 // write8 0x0C MUX_CTRL1 = 0xFF to select IDAC1_SEL=NC, IDAC0_SEL=NC
whismanoid 25:c4be3afbfafd 1952 Configure_MUX_CTRL1((uint8_t)IDAC1_SEL_1111_unconnected, (uint8_t)IDAC0_SEL_1111_unconnected);
whismanoid 25:c4be3afbfafd 1953 }
whismanoid 9:06ca88952f1c 1954
whismanoid 9:06ca88952f1c 1955 //----------------------------------------
whismanoid 22:c6812214a933 1956 // resistance calculated from raw LSB code and ref1_v reference resistance in ohms
whismanoid 22:c6812214a933 1957 rtd_ohm = VoltageOfCode(AINcode[((int)rtd_ainp & 0x0F)]);
whismanoid 22:c6812214a933 1958 TemperatureOfRTD(rtd_ohm); // calculate rtd_degc
whismanoid 22:c6812214a933 1959 return rtd_ohm;
whismanoid 0:68e64068330f 1960 }
whismanoid 0:68e64068330f 1961
whismanoid 0:68e64068330f 1962 //----------------------------------------
whismanoid 3:658a93dfb2d8 1963 // Return the physical temperature corresponding to measured resistance
whismanoid 3:658a93dfb2d8 1964 // of a PT1000 type Resistive Temperature Device (RTD).
whismanoid 3:658a93dfb2d8 1965 //
whismanoid 22:c6812214a933 1966 // @param[in] rtd_ohm = RTD resistance in ohms, default=1000
whismanoid 22:c6812214a933 1967 // @post rtd_degc: Temperature calculated from RTD Resistance; Thermocouple Cold Junction, in degrees C
whismanoid 3:658a93dfb2d8 1968 //
whismanoid 3:658a93dfb2d8 1969 // @return ideal temperature in degrees C, calculated from RTD resistance in ohms
whismanoid 21:847b2220e96e 1970 // @test group RTD_PT1000 // PT1000 type Resistive Temperature Device (RTD)
whismanoid 21:847b2220e96e 1971 // @test group RTD_PT1000 tinyTester.blink_time_msec = 20 // quickly speed through the software verification
whismanoid 19:50cf5da53d36 1972 // @test group RTD_PT1000 TemperatureOfRTD_PT1000(842.94) expect -40.0 within 0.1 // PT-1000 RTD at -40C
whismanoid 19:50cf5da53d36 1973 // @test group RTD_PT1000 TemperatureOfRTD_PT1000(1000.0) expect 0.0 within 0.1 // PT-1000 RTD at 0C
whismanoid 19:50cf5da53d36 1974 // @test group RTD_PT1000 TemperatureOfRTD_PT1000(1097.3) expect 25.0 within 0.1 // PT-1000 RTD at 25C
whismanoid 19:50cf5da53d36 1975 // @test group RTD_PT1000 TemperatureOfRTD_PT1000(1328.1) expect 85.0 within 0.1 // PT-1000 RTD at 85C
whismanoid 19:50cf5da53d36 1976 // @test group RTD_PT1000 TemperatureOfRTD_PT1000(1479.5) expect 125.0 within 0.1 // PT-1000 RTD at 125C
whismanoid 21:847b2220e96e 1977 // @test group RTD_PT1000 tinyTester.blink_time_msec = 75 // default 75 resume hardware self test
whismanoid 3:658a93dfb2d8 1978 //
whismanoid 22:c6812214a933 1979 double MAX11410::TemperatureOfRTD_PT1000(double rtd_ohm)
whismanoid 3:658a93dfb2d8 1980 {
whismanoid 3:658a93dfb2d8 1981
whismanoid 3:658a93dfb2d8 1982 //----------------------------------------
whismanoid 3:658a93dfb2d8 1983 // Temperature from RTD Resistance maths
whismanoid 4:c169ba85d673 1984 // ITS-90 PT-1000 RTD
whismanoid 4:c169ba85d673 1985 double R0 = 1000.0;
whismanoid 4:c169ba85d673 1986 double a = 3.9083e-3;
whismanoid 4:c169ba85d673 1987 double b = -5.7750e-7;
whismanoid 5:a2e74357cfc0 1988 // calculate T from R and R0
whismanoid 22:c6812214a933 1989 double sqrtTerm = sqrt(R0*R0 * a*a - 4*R0*b*(R0 - rtd_ohm));
whismanoid 4:c169ba85d673 1990 double denominator = 2 * R0 * b;
whismanoid 22:c6812214a933 1991 rtd_degc = ((-R0 * a) + (sqrtTerm)) / denominator;
whismanoid 22:c6812214a933 1992 return rtd_degc;
whismanoid 3:658a93dfb2d8 1993 }
whismanoid 3:658a93dfb2d8 1994
whismanoid 3:658a93dfb2d8 1995 //----------------------------------------
whismanoid 16:00aa1e5a6843 1996 // Return the physical temperature corresponding to measured resistance
whismanoid 16:00aa1e5a6843 1997 // of a PT100 type Resistive Temperature Device (RTD).
whismanoid 16:00aa1e5a6843 1998 //
whismanoid 22:c6812214a933 1999 // @param[in] rtd_ohm = RTD resistance in ohms, default=100
whismanoid 22:c6812214a933 2000 // @post rtd_degc: Temperature calculated from RTD Resistance; Thermocouple Cold Junction, in degrees C
whismanoid 16:00aa1e5a6843 2001 //
whismanoid 16:00aa1e5a6843 2002 // @return ideal temperature in degrees C, calculated from RTD resistance in ohms
whismanoid 21:847b2220e96e 2003 // @test group RTD_PT100 // PT100 type Resistive Temperature Device (RTD)
whismanoid 21:847b2220e96e 2004 // @test group RTD_PT100 tinyTester.blink_time_msec = 20 // quickly speed through the software verification
whismanoid 19:50cf5da53d36 2005 // @test group RTD_PT100 TemperatureOfRTD_PT100(84.294) expect -40.0 within 0.1 // PT-100 RTD at -40C
whismanoid 19:50cf5da53d36 2006 // @test group RTD_PT100 TemperatureOfRTD_PT100(100.00) expect 0.0 within 0.1 // PT-100 RTD at 0C
whismanoid 19:50cf5da53d36 2007 // @test group RTD_PT100 TemperatureOfRTD_PT100(109.73) expect 25.0 within 0.1 // PT-100 RTD at 25C
whismanoid 19:50cf5da53d36 2008 // @test group RTD_PT100 TemperatureOfRTD_PT100(132.81) expect 85.0 within 0.1 // PT-100 RTD at 85C
whismanoid 19:50cf5da53d36 2009 // @test group RTD_PT100 TemperatureOfRTD_PT100(147.95) expect 125.0 within 0.1 // PT-100 RTD at 125C
whismanoid 21:847b2220e96e 2010 // @test group RTD_PT100 tinyTester.blink_time_msec = 75 // default 75 resume hardware self test
whismanoid 16:00aa1e5a6843 2011 //
whismanoid 22:c6812214a933 2012 double MAX11410::TemperatureOfRTD_PT100(double rtd_ohm)
whismanoid 16:00aa1e5a6843 2013 {
whismanoid 16:00aa1e5a6843 2014
whismanoid 16:00aa1e5a6843 2015 //----------------------------------------
whismanoid 16:00aa1e5a6843 2016 // Temperature from RTD Resistance maths
whismanoid 16:00aa1e5a6843 2017 // ITS-90 PT-100 RTD
whismanoid 16:00aa1e5a6843 2018 double R0 = 100.0;
whismanoid 16:00aa1e5a6843 2019 double a = 3.9083e-3;
whismanoid 16:00aa1e5a6843 2020 double b = -5.7750e-7;
whismanoid 16:00aa1e5a6843 2021 // calculate T from R and R0
whismanoid 22:c6812214a933 2022 double sqrtTerm = sqrt(R0*R0 * a*a - 4*R0*b*(R0 - rtd_ohm));
whismanoid 16:00aa1e5a6843 2023 double denominator = 2 * R0 * b;
whismanoid 22:c6812214a933 2024 rtd_degc = ((-R0 * a) + (sqrtTerm)) / denominator;
whismanoid 22:c6812214a933 2025 return rtd_degc;
whismanoid 16:00aa1e5a6843 2026 }
whismanoid 16:00aa1e5a6843 2027
whismanoid 16:00aa1e5a6843 2028 //----------------------------------------
whismanoid 16:00aa1e5a6843 2029 // Return the physical temperature corresponding to measured resistance
whismanoid 16:00aa1e5a6843 2030 // of a PT100 or PT1000 type Resistive Temperature Device (RTD).
whismanoid 16:00aa1e5a6843 2031 //
whismanoid 22:c6812214a933 2032 // @param[in] rtd_ohm = RTD resistance in ohms, default=100
whismanoid 22:c6812214a933 2033 // @post rtd_degc: Temperature calculated from RTD Resistance; Thermocouple Cold Junction, in degrees C
whismanoid 16:00aa1e5a6843 2034 //
whismanoid 16:00aa1e5a6843 2035 // @return ideal temperature in degrees C, calculated from RTD resistance in ohms
whismanoid 19:50cf5da53d36 2036 // @test group RTD // Verify function TemperatureOfRTD
whismanoid 19:50cf5da53d36 2037 // @test group RTD tinyTester.blink_time_msec = 20 // quickly speed through the software verification
whismanoid 19:50cf5da53d36 2038 // @test group RTD TemperatureOfRTD(84.294) expect -40.0 within 0.1 // PT-100 RTD at -40C
whismanoid 19:50cf5da53d36 2039 // @test group RTD TemperatureOfRTD(100.00) expect 0.0 within 0.1 // PT-100 RTD at 0C
whismanoid 19:50cf5da53d36 2040 // @test group RTD TemperatureOfRTD(109.73) expect 25.0 within 0.1 // PT-100 RTD at 25C
whismanoid 19:50cf5da53d36 2041 // @test group RTD TemperatureOfRTD(132.81) expect 85.0 within 0.1 // PT-100 RTD at 85C
whismanoid 19:50cf5da53d36 2042 // @test group RTD TemperatureOfRTD(147.95) expect 125.0 within 0.1 // PT-100 RTD at 125C
whismanoid 19:50cf5da53d36 2043 // @test group RTD TemperatureOfRTD(842.94) expect -40.0 within 0.1 // PT-1000 RTD at -40C
whismanoid 19:50cf5da53d36 2044 // @test group RTD TemperatureOfRTD(1000.0) expect 0.0 within 0.1 // PT-1000 RTD at 0C
whismanoid 19:50cf5da53d36 2045 // @test group RTD TemperatureOfRTD(1097.3) expect 25.0 within 0.1 // PT-1000 RTD at 25C
whismanoid 19:50cf5da53d36 2046 // @test group RTD TemperatureOfRTD(1328.1) expect 85.0 within 0.1 // PT-1000 RTD at 85C
whismanoid 19:50cf5da53d36 2047 // @test group RTD TemperatureOfRTD(1479.5) expect 125.0 within 0.1 // PT-1000 RTD at 125C
whismanoid 21:847b2220e96e 2048 // @test group RTD tinyTester.blink_time_msec = 75 // default 75 resume hardware self test
whismanoid 16:00aa1e5a6843 2049 //
whismanoid 22:c6812214a933 2050 double MAX11410::TemperatureOfRTD(double rtd_ohm)
whismanoid 16:00aa1e5a6843 2051 {
whismanoid 16:00aa1e5a6843 2052
whismanoid 16:00aa1e5a6843 2053 //----------------------------------------
whismanoid 16:00aa1e5a6843 2054 // return TemperatureOfRTD_PT100 or TemperatureOfRTD_PT1000
whismanoid 22:c6812214a933 2055 if (rtd_ohm > 500.0)
whismanoid 16:00aa1e5a6843 2056 {
whismanoid 22:c6812214a933 2057 return TemperatureOfRTD_PT1000(rtd_ohm);
whismanoid 16:00aa1e5a6843 2058 }
whismanoid 16:00aa1e5a6843 2059 else
whismanoid 16:00aa1e5a6843 2060 {
whismanoid 22:c6812214a933 2061 return TemperatureOfRTD_PT100(rtd_ohm);
whismanoid 16:00aa1e5a6843 2062 }
whismanoid 16:00aa1e5a6843 2063 }
whismanoid 16:00aa1e5a6843 2064
whismanoid 16:00aa1e5a6843 2065 //----------------------------------------
whismanoid 22:c6812214a933 2066 // Menu item 'TM' -> tc_v, tc_delta_degc, tc_degc
whismanoid 0:68e64068330f 2067 // Trigger Measurement for Thermocouple
whismanoid 0:68e64068330f 2068 //
whismanoid 0:68e64068330f 2069 // Example code for typical Thermocouple measurement.
whismanoid 1:d57c1a2cb83c 2070 // An RTD measures the "cold junction" where TC connects to the board,
whismanoid 1:d57c1a2cb83c 2071 // and the TC measures the temperature difference above the cold junction.
whismanoid 0:68e64068330f 2072 //
whismanoid 1:d57c1a2cb83c 2073 // @param[in] tc_ainp = channel of Thermocouple high side, default=AINP_SEL_0101_AIN5
whismanoid 1:d57c1a2cb83c 2074 // @param[in] tc_ainn = channel of Thermocouple low side, default=AINN_SEL_0110_AIN6
whismanoid 1:d57c1a2cb83c 2075 // @param[in] rtd_iout = channel RTD high side force, default=AINP_SEL_0111_AIN7
whismanoid 1:d57c1a2cb83c 2076 // @param[in] rtd_ainp = channel RTD high side sense, default=AINP_SEL_1000_AIN8
whismanoid 1:d57c1a2cb83c 2077 // @param[in] rtd_ainn = channel RTD low side, default=AINN_SEL_1001_AIN9
whismanoid 1:d57c1a2cb83c 2078 // @post AINcode[tc_ainp]: measurement result LSB code
whismanoid 22:c6812214a933 2079 // @post tc_v: raw thermocouple voltage in Volts
whismanoid 22:c6812214a933 2080 // @post tc_delta_degc: temperature in degC above cold junction
whismanoid 22:c6812214a933 2081 // @post tc_degc: temperature in degC
whismanoid 0:68e64068330f 2082 //
whismanoid 0:68e64068330f 2083 // @return 1 on success; 0 on failure
whismanoid 1:d57c1a2cb83c 2084 double MAX11410::Measure_Thermocouple(MAX11410_AINP_SEL_enum_t tc_ainp, MAX11410_AINN_SEL_enum_t tc_ainn, MAX11410_AINP_SEL_enum_t rtd_iout, MAX11410_AINP_SEL_enum_t rtd_ainp, MAX11410_AINN_SEL_enum_t rtd_ainn)
whismanoid 0:68e64068330f 2085 {
whismanoid 0:68e64068330f 2086
whismanoid 0:68e64068330f 2087 //----------------------------------------
whismanoid 8:3a9dfa2e8234 2088 // restrict channel selection to valid index range
whismanoid 8:3a9dfa2e8234 2089 if ((uint8_t)tc_ainp > /* MAX11410_AINP_SEL_enum_t:: */ AINP_SEL_1010_AVDD)
whismanoid 8:3a9dfa2e8234 2090 {
whismanoid 8:3a9dfa2e8234 2091 tc_ainp = /* MAX11410_AINP_SEL_enum_t:: */ AINP_SEL_1010_AVDD;
whismanoid 8:3a9dfa2e8234 2092 }
whismanoid 8:3a9dfa2e8234 2093
whismanoid 8:3a9dfa2e8234 2094 //----------------------------------------
whismanoid 8:3a9dfa2e8234 2095 // restrict channel selection to valid index range
whismanoid 8:3a9dfa2e8234 2096 if ((uint8_t)tc_ainn > /* MAX11410_AINN_SEL_enum_t:: */ AINN_SEL_1010_GND)
whismanoid 8:3a9dfa2e8234 2097 {
whismanoid 8:3a9dfa2e8234 2098 tc_ainn = /* MAX11410_AINN_SEL_enum_t:: */ AINN_SEL_1010_GND;
whismanoid 8:3a9dfa2e8234 2099 }
whismanoid 8:3a9dfa2e8234 2100
whismanoid 8:3a9dfa2e8234 2101 //----------------------------------------
whismanoid 8:3a9dfa2e8234 2102 // restrict channel selection to valid index range
whismanoid 8:3a9dfa2e8234 2103 if ((uint8_t)rtd_iout > /* MAX11410_AINP_SEL_enum_t:: */ AINP_SEL_1010_AVDD)
whismanoid 8:3a9dfa2e8234 2104 {
whismanoid 8:3a9dfa2e8234 2105 rtd_iout = /* MAX11410_AINP_SEL_enum_t:: */ AINP_SEL_1010_AVDD;
whismanoid 8:3a9dfa2e8234 2106 }
whismanoid 8:3a9dfa2e8234 2107
whismanoid 8:3a9dfa2e8234 2108 //----------------------------------------
whismanoid 8:3a9dfa2e8234 2109 // restrict channel selection to valid index range
whismanoid 8:3a9dfa2e8234 2110 if ((uint8_t)rtd_ainp > /* MAX11410_AINP_SEL_enum_t:: */ AINP_SEL_1010_AVDD)
whismanoid 8:3a9dfa2e8234 2111 {
whismanoid 8:3a9dfa2e8234 2112 rtd_ainp = /* MAX11410_AINP_SEL_enum_t:: */ AINP_SEL_1010_AVDD;
whismanoid 8:3a9dfa2e8234 2113 }
whismanoid 8:3a9dfa2e8234 2114
whismanoid 8:3a9dfa2e8234 2115 //----------------------------------------
whismanoid 8:3a9dfa2e8234 2116 // restrict channel selection to valid index range
whismanoid 8:3a9dfa2e8234 2117 if ((uint8_t)rtd_ainn > /* MAX11410_AINN_SEL_enum_t:: */ AINN_SEL_1010_GND)
whismanoid 8:3a9dfa2e8234 2118 {
whismanoid 8:3a9dfa2e8234 2119 rtd_ainn = /* MAX11410_AINN_SEL_enum_t:: */ AINN_SEL_1010_GND;
whismanoid 8:3a9dfa2e8234 2120 }
whismanoid 8:3a9dfa2e8234 2121
whismanoid 8:3a9dfa2e8234 2122 //----------------------------------------
whismanoid 8:3a9dfa2e8234 2123 // write8 0x0B MUX_CTRL0 = 0x0A to select AINP=AIN0 and AINN=GND
whismanoid 8:3a9dfa2e8234 2124 Configure_MUX_CTRL0((uint8_t)tc_ainp, (uint8_t)tc_ainn);
whismanoid 8:3a9dfa2e8234 2125
whismanoid 8:3a9dfa2e8234 2126 //----------------------------------------
whismanoid 8:3a9dfa2e8234 2127 // write8 0x09 CTRL to select reference REF2P/REF2N; Data Format = Bipolar 2's Complement
whismanoid 8:3a9dfa2e8234 2128 Configure_CTRL(/*extclk*/ 0, /*u_bn*/ 0, /*format*/ 0,
whismanoid 8:3a9dfa2e8234 2129 /*refbufp_en*/ 0, /*refbufn_en*/ 0,
whismanoid 8:3a9dfa2e8234 2130 /*ref_sel*/ (uint8_t)REF_SEL_010_REF2P_REF2N);
whismanoid 8:3a9dfa2e8234 2131
whismanoid 8:3a9dfa2e8234 2132 //----------------------------------------
whismanoid 8:3a9dfa2e8234 2133 // write8 0x0E PGA
whismanoid 8:3a9dfa2e8234 2134 Configure_PGA((uint8_t) /* MAX11410_SIG_PATH_enum_t:: */ SIG_PATH_00_BUFFERED,
whismanoid 8:3a9dfa2e8234 2135 (uint8_t) /* MAX11410_GAIN_enum_t:: */ GAIN_000_1);
whismanoid 8:3a9dfa2e8234 2136
whismanoid 8:3a9dfa2e8234 2137 //----------------------------------------
whismanoid 8:3a9dfa2e8234 2138 // write8 0x08 FILTER = 0x34 to select RATE_0100, LINEF_11_SINC4 60SPS (given CONV_TYPE_01_Continuous)
whismanoid 8:3a9dfa2e8234 2139 Configure_FILTER((uint8_t) /* MAX11410::MAX11410_LINEF_enum_t:: */ LINEF_11_SINC4,
whismanoid 8:3a9dfa2e8234 2140 (uint8_t) /* MAX11410::MAX11410_RATE_enum_t:: */ RATE_0100);
whismanoid 8:3a9dfa2e8234 2141
whismanoid 8:3a9dfa2e8234 2142 //----------------------------------------
whismanoid 8:3a9dfa2e8234 2143 // write8 0x01 CONV_START = 0x01 to set Conversion Mode = Continuous
whismanoid 8:3a9dfa2e8234 2144 RegWrite(CMD_r000_0001_xddd_xxdd_CONV_START, 0x01);
whismanoid 8:3a9dfa2e8234 2145
whismanoid 8:3a9dfa2e8234 2146 //----------------------------------------
whismanoid 25:c4be3afbfafd 2147 // purge old data from data0 register
whismanoid 25:c4be3afbfafd 2148 RegRead(CMD_r011_0000_dddd_dddd_dddd_dddd_dddd_dddd_DATA0, &AINcode[((int)tc_ainp & 0x0F)]);
whismanoid 25:c4be3afbfafd 2149 data0 = AINcode[((int)tc_ainp & 0x0F)];
whismanoid 25:c4be3afbfafd 2150
whismanoid 25:c4be3afbfafd 2151 //----------------------------------------
whismanoid 0:68e64068330f 2152 // read24 0x80|0x38 STATUS (%SW 0xB8 0 0 0)
whismanoid 0:68e64068330f 2153 RegRead(CMD_r011_1000_dddd_dddd_dddd_dddd_dxxx_dddd_STATUS, &status);
whismanoid 0:68e64068330f 2154
whismanoid 0:68e64068330f 2155 //----------------------------------------
whismanoid 25:c4be3afbfafd 2156 // wait until STATUS_enum_t::STATUS_000010_DATA_RDY indicates data is available
whismanoid 16:00aa1e5a6843 2157 // A bad SPI interface can cause bit slippage, which makes this loop get stuck. Expect *PART_ID? = 0x000F02
whismanoid 16:00aa1e5a6843 2158 // while ((status & /* MAX11410_STATUS_enum_t:: */ STATUS_000010_DATA_RDY) == 0) {
whismanoid 16:00aa1e5a6843 2159 // possible infinite loop; need a timeout or futility countdown to escape
whismanoid 22:c6812214a933 2160 for (int futility_countdown = loop_limit;
whismanoid 16:00aa1e5a6843 2161 ((futility_countdown > 0) &&
whismanoid 16:00aa1e5a6843 2162 ((status & /* MAX11410_STATUS_enum_t:: */ STATUS_000010_DATA_RDY) == 0));
whismanoid 16:00aa1e5a6843 2163 futility_countdown--)
whismanoid 16:00aa1e5a6843 2164 {
whismanoid 16:00aa1e5a6843 2165 RegRead(CMD_r011_1000_dddd_dddd_dddd_dddd_dxxx_dddd_STATUS, &status);
whismanoid 16:00aa1e5a6843 2166 }
whismanoid 16:00aa1e5a6843 2167
whismanoid 16:00aa1e5a6843 2168 //----------------------------------------
whismanoid 8:3a9dfa2e8234 2169 // read24 0x80|0x30 DATA0 (%SW 0xB0 0 0 0): AINcode[tc_ainp] = measurement
whismanoid 8:3a9dfa2e8234 2170 RegRead(CMD_r011_0000_dddd_dddd_dddd_dddd_dddd_dddd_DATA0, &AINcode[((int)tc_ainp & 0x0F)]);
whismanoid 8:3a9dfa2e8234 2171 data0 = AINcode[((int)tc_ainp & 0x0F)];
whismanoid 0:68e64068330f 2172
whismanoid 0:68e64068330f 2173 //----------------------------------------
whismanoid 1:d57c1a2cb83c 2174 // ideal voltage calculated from raw LSB code and reference voltage
whismanoid 22:c6812214a933 2175 tc_v = VoltageOfCode(AINcode[((int)tc_ainp & 0x0F)]);
whismanoid 21:847b2220e96e 2176
whismanoid 21:847b2220e96e 2177 //----------------------------------------
whismanoid 21:847b2220e96e 2178 // ideal voltage calculated from raw LSB code and reference voltage
whismanoid 22:c6812214a933 2179 tc_delta_degc = TemperatureOfTC_TypeK(tc_v);
whismanoid 21:847b2220e96e 2180
whismanoid 21:847b2220e96e 2181 //----------------------------------------
whismanoid 21:847b2220e96e 2182 // ideal voltage calculated from raw LSB code and reference voltage
whismanoid 22:c6812214a933 2183 tc_degc = rtd_degc + tc_delta_degc;
whismanoid 21:847b2220e96e 2184
whismanoid 21:847b2220e96e 2185 //----------------------------------------
whismanoid 21:847b2220e96e 2186 // ideal voltage calculated from raw LSB code and reference voltage
whismanoid 22:c6812214a933 2187 return tc_v;
whismanoid 0:68e64068330f 2188 }
whismanoid 0:68e64068330f 2189
whismanoid 3:658a93dfb2d8 2190 //----------------------------------------
whismanoid 3:658a93dfb2d8 2191 // Return the physical temperature corresponding to measured voltage
whismanoid 3:658a93dfb2d8 2192 // of a type K Thermocouple (TC).
whismanoid 3:658a93dfb2d8 2193 //
whismanoid 22:c6812214a933 2194 // @pre {0}.rtd_degc = cold junction temperature, in degrees C
whismanoid 22:c6812214a933 2195 // @param[in] tc_v = Thermocouple voltage in volts, default=0.0254
whismanoid 3:658a93dfb2d8 2196 //
whismanoid 3:658a93dfb2d8 2197 // @return ideal temperature in degrees C, calculated from RTD resistance in ohms
whismanoid 21:847b2220e96e 2198 // @test group TC_1 // Verify Thermocouple function TemperatureOfTC_TypeK
whismanoid 21:847b2220e96e 2199 // @test group TC_2 // Verify Thermocouple function TemperatureOfTC_TypeK in more detail
whismanoid 21:847b2220e96e 2200 // @test group TC_1 tinyTester.blink_time_msec = 20 // quickly speed through the software verification
whismanoid 19:50cf5da53d36 2201 // @test group TC_1 TemperatureOfTC_TypeK(0.000e-3) expect 0.0 within 0.1 // TC_TypeK at 0C = 0.000mV
whismanoid 19:50cf5da53d36 2202 // @test group TC_1 TemperatureOfTC_TypeK(0.039e-3) expect 1.0 within 0.1 // TC_TypeK at 1C = 0.039mV
whismanoid 19:50cf5da53d36 2203 // @test group TC_1 TemperatureOfTC_TypeK(0.079e-3) expect 2.0 within 0.1 // TC_TypeK at 2C = 0.079mV
whismanoid 19:50cf5da53d36 2204 // @test group TC_1 TemperatureOfTC_TypeK(0.119e-3) expect 3.0 within 0.1 // TC_TypeK at 3C = 0.119mV
whismanoid 19:50cf5da53d36 2205 // @test group TC_2 TemperatureOfTC_TypeK(0.158e-3) expect 4.0 within 0.1 // TC_TypeK at 4C = 0.158mV
whismanoid 19:50cf5da53d36 2206 // @test group TC_2 TemperatureOfTC_TypeK(0.198e-3) expect 5.0 within 0.1 // TC_TypeK at 5C = 0.198mV
whismanoid 19:50cf5da53d36 2207 // @test group TC_2 TemperatureOfTC_TypeK(0.238e-3) expect 6.0 within 0.1 // TC_TypeK at 6C = 0.238mV
whismanoid 19:50cf5da53d36 2208 // @test group TC_2 TemperatureOfTC_TypeK(0.2775e-3) expect 7.0 within 0.1 // TC_TypeK at 7C = 0.2775mV
whismanoid 19:50cf5da53d36 2209 // @test group TC_2 TemperatureOfTC_TypeK(0.317e-3) expect 8.0 within 0.1 // TC_TypeK at 8C = 0.317mV
whismanoid 19:50cf5da53d36 2210 // @test group TC_2 TemperatureOfTC_TypeK(0.357e-3) expect 9.0 within 0.1 // TC_TypeK at 9C = 0.357mV
whismanoid 19:50cf5da53d36 2211 // @test group TC_1 TemperatureOfTC_TypeK(0.397e-3) expect 10.0 within 0.1 // TC_TypeK at 10C = 0.397mV
whismanoid 19:50cf5da53d36 2212 // @test group TC_1 TemperatureOfTC_TypeK(0.798e-3) expect 20.0 within 0.1 // TC_TypeK at 20C = 0.798mV
whismanoid 19:50cf5da53d36 2213 // @test group TC_1 TemperatureOfTC_TypeK(1.081e-3) expect 27.0 within 0.1 // TC_TypeK at 27C = 1.081mV
whismanoid 19:50cf5da53d36 2214 // @test group TC_1 TemperatureOfTC_TypeK(1.203e-3) expect 30.0 within 0.1 // TC_TypeK at 30C = 1.203mV
whismanoid 19:50cf5da53d36 2215 // @test group TC_1 TemperatureOfTC_TypeK(1.612e-3) expect 40.0 within 0.1 // TC_TypeK at 40C = 1.612mV
whismanoid 19:50cf5da53d36 2216 // @test group TC_1 TemperatureOfTC_TypeK(2.023e-3) expect 50.0 within 0.1 // TC_TypeK at 50C = 2.023mV
whismanoid 19:50cf5da53d36 2217 // @test group TC_1 TemperatureOfTC_TypeK(2.436e-3) expect 60.0 within 0.1 // TC_TypeK at 60C = 2.436mV
whismanoid 19:50cf5da53d36 2218 // @test group TC_1 TemperatureOfTC_TypeK(2.851e-3) expect 70.0 within 0.1 // TC_TypeK at 70C = 2.851mV
whismanoid 19:50cf5da53d36 2219 // @test group TC_1 TemperatureOfTC_TypeK(3.267e-3) expect 80.0 within 0.1 // TC_TypeK at 80C = 3.267mV
whismanoid 19:50cf5da53d36 2220 // @test group TC_1 TemperatureOfTC_TypeK(3.682e-3) expect 90.0 within 0.1 // TC_TypeK at 90C = 3.682mV
whismanoid 19:50cf5da53d36 2221 // @test group TC_1 TemperatureOfTC_TypeK(4.096e-3) expect 100.0 within 0.1 // TC_TypeK at 100C = 4.096mV
whismanoid 19:50cf5da53d36 2222 // @test group TC_2 TemperatureOfTC_TypeK(4.509e-3) expect 110.0 within 0.1 // TC_TypeK at 110C = 4.509mV
whismanoid 19:50cf5da53d36 2223 // @test group TC_2 TemperatureOfTC_TypeK(4.920e-3) expect 120.0 within 0.1 // TC_TypeK at 120C = 4.920mV
whismanoid 19:50cf5da53d36 2224 // @test group TC_2 TemperatureOfTC_TypeK(5.328e-3) expect 130.0 within 0.1 // TC_TypeK at 130C = 5.328mV
whismanoid 19:50cf5da53d36 2225 // @test group TC_2 TemperatureOfTC_TypeK(5.735e-3) expect 140.0 within 0.1 // TC_TypeK at 140C = 5.735mV
whismanoid 19:50cf5da53d36 2226 // @test group TC_2 TemperatureOfTC_TypeK(6.138e-3) expect 150.0 within 0.1 // TC_TypeK at 150C = 6.138mV
whismanoid 19:50cf5da53d36 2227 // @test group TC_2 TemperatureOfTC_TypeK(6.540e-3) expect 160.0 within 0.1 // TC_TypeK at 160C = 6.540mV
whismanoid 19:50cf5da53d36 2228 // @test group TC_2 TemperatureOfTC_TypeK(6.941e-3) expect 170.0 within 0.1 // TC_TypeK at 170C = 6.941mV
whismanoid 19:50cf5da53d36 2229 // @test group TC_2 TemperatureOfTC_TypeK(7.340e-3) expect 180.0 within 0.1 // TC_TypeK at 180C = 7.340mV
whismanoid 19:50cf5da53d36 2230 // @test group TC_1 TemperatureOfTC_TypeK(7.739e-3) expect 190.0 within 0.1 // TC_TypeK at 190C = 7.739mV
whismanoid 19:50cf5da53d36 2231 // @test group TC_1 TemperatureOfTC_TypeK(8.138e-3) expect 200.0 within 0.1 // TC_TypeK at 200C = 8.138mV
whismanoid 19:50cf5da53d36 2232 // @test group TC_1 TemperatureOfTC_TypeK(8.539e-3) expect 210.0 within 0.1 // TC_TypeK at 210C = 8.539mV
whismanoid 19:50cf5da53d36 2233 // @test group TC_1 TemperatureOfTC_TypeK(8.940e-3) expect 220.0 within 0.1 // TC_TypeK at 220C = 8.940mV
whismanoid 19:50cf5da53d36 2234 // @test group TC_2 TemperatureOfTC_TypeK(9.343e-3) expect 230.0 within 0.1 // TC_TypeK at 230C = 9.343mV
whismanoid 19:50cf5da53d36 2235 // @test group TC_2 TemperatureOfTC_TypeK(9.747e-3) expect 240.0 within 0.1 // TC_TypeK at 240C = 9.747mV
whismanoid 19:50cf5da53d36 2236 // @test group TC_2 TemperatureOfTC_TypeK(10.153e-3) expect 250.0 within 0.1 // TC_TypeK at 250C = 10.153mV
whismanoid 19:50cf5da53d36 2237 // @test group TC_2 TemperatureOfTC_TypeK(10.561e-3) expect 260.0 within 0.1 // TC_TypeK at 260C = 10.561mV
whismanoid 19:50cf5da53d36 2238 // @test group TC_2 TemperatureOfTC_TypeK(10.971e-3) expect 270.0 within 0.1 // TC_TypeK at 270C = 10.971mV
whismanoid 19:50cf5da53d36 2239 // @test group TC_2 TemperatureOfTC_TypeK(11.382e-3) expect 280.0 within 0.1 // TC_TypeK at 280C = 11.382mV
whismanoid 19:50cf5da53d36 2240 // @test group TC_2 TemperatureOfTC_TypeK(11.795e-3) expect 290.0 within 0.1 // TC_TypeK at 290C = 11.795mV
whismanoid 19:50cf5da53d36 2241 // @test group TC_1 TemperatureOfTC_TypeK(12.209e-3) expect 300.0 within 0.1 // TC_TypeK at 300C = 12.209mV
whismanoid 19:50cf5da53d36 2242 // @test group TC_2 TemperatureOfTC_TypeK(14.293e-3) expect 350.0 within 0.1 // TC_TypeK at 350C = 14.293mV
whismanoid 19:50cf5da53d36 2243 // @test group TC_1 TemperatureOfTC_TypeK(16.397e-3) expect 400.0 within 0.1 // TC_TypeK at 400C = 16.397mV
whismanoid 19:50cf5da53d36 2244 // @test group TC_1 TemperatureOfTC_TypeK(18.516e-3) expect 450.0 within 0.1 // TC_TypeK at 450C = 18.516mV
whismanoid 19:50cf5da53d36 2245 // @test group TC_1 TemperatureOfTC_TypeK(20.218e-3) expect 490.0 // TC_TypeK at 490C = 20.218mV
whismanoid 21:847b2220e96e 2246 // @test group TC_1 tinyTester.blink_time_msec = 75 // default 75 resume hardware self test
whismanoid 3:658a93dfb2d8 2247 //
whismanoid 22:c6812214a933 2248 double MAX11410::TemperatureOfTC_TypeK(double tc_v)
whismanoid 3:658a93dfb2d8 2249 {
whismanoid 3:658a93dfb2d8 2250
whismanoid 3:658a93dfb2d8 2251 //----------------------------------------
whismanoid 3:658a93dfb2d8 2252 // Temperature from TC_TypeK voltage maths
whismanoid 5:a2e74357cfc0 2253 // define standard TC_TypeK coefficients
whismanoid 4:c169ba85d673 2254 // ITS-90 Thermocouple Inverse Polynomial for a Type K thermocouple
whismanoid 22:c6812214a933 2255 // calculate deltaT from tc_v
whismanoid 4:c169ba85d673 2256 //
whismanoid 22:c6812214a933 2257 // Voltage range -5891uV < tc_v < 0uV,
whismanoid 4:c169ba85d673 2258 // Temperature Range -200 deg C to 0 deg C
whismanoid 4:c169ba85d673 2259 static double coefficients_TCtypeK_V_lt_0[] = {
whismanoid 4:c169ba85d673 2260 0.00000,
whismanoid 4:c169ba85d673 2261 2.5173462e-2,
whismanoid 4:c169ba85d673 2262 -1.1662878e-6,
whismanoid 4:c169ba85d673 2263 -1.0833638e-9,
whismanoid 4:c169ba85d673 2264 -8.9773540e-13,
whismanoid 4:c169ba85d673 2265 -3.7342377e-16,
whismanoid 4:c169ba85d673 2266 -8.6632643e-20,
whismanoid 4:c169ba85d673 2267 -1.0450598e-23,
whismanoid 4:c169ba85d673 2268 -5.1920577e-28,
whismanoid 4:c169ba85d673 2269 };
whismanoid 4:c169ba85d673 2270 //
whismanoid 22:c6812214a933 2271 // Voltage range 0uV < tc_v < 20.644uV,
whismanoid 4:c169ba85d673 2272 // Temperature Range 0 deg C to 500 deg C
whismanoid 4:c169ba85d673 2273 static double coefficients_TCtypeK_0_lt_V_lt_20u644V[] = {
whismanoid 4:c169ba85d673 2274 0.00000,
whismanoid 4:c169ba85d673 2275 2.508355e-2,
whismanoid 4:c169ba85d673 2276 7.860106e-8,
whismanoid 4:c169ba85d673 2277 -2.503131e-10,
whismanoid 4:c169ba85d673 2278 8.315270e-14,
whismanoid 4:c169ba85d673 2279 -1.228034e-17,
whismanoid 4:c169ba85d673 2280 9.804036e-22,
whismanoid 4:c169ba85d673 2281 -4.413030e-26,
whismanoid 4:c169ba85d673 2282 1.057734e-30,
whismanoid 4:c169ba85d673 2283 -1.052755e-35,
whismanoid 4:c169ba85d673 2284 };
whismanoid 4:c169ba85d673 2285 //
whismanoid 22:c6812214a933 2286 // Voltage range 20.6440uV < tc_v < 54.886uV,
whismanoid 4:c169ba85d673 2287 // Temperature Range 500 deg C to 1372 deg C
whismanoid 4:c169ba85d673 2288 static double coefficients_TCtypeK_20u644V_lt_V_lt_54u886V[] = {
whismanoid 4:c169ba85d673 2289 -1.318058e2,
whismanoid 4:c169ba85d673 2290 4.830222e-2,
whismanoid 4:c169ba85d673 2291 -1.646031e-6,
whismanoid 4:c169ba85d673 2292 5.464731e-11,
whismanoid 4:c169ba85d673 2293 -9.650715e-16,
whismanoid 4:c169ba85d673 2294 8.802193e-21,
whismanoid 4:c169ba85d673 2295 -3.110810e-26,
whismanoid 4:c169ba85d673 2296 };
whismanoid 4:c169ba85d673 2297 //
whismanoid 3:658a93dfb2d8 2298 double deltaT = 0;
whismanoid 22:c6812214a933 2299 double thermocouple_voltage_uV = tc_v * 1e6;
whismanoid 4:c169ba85d673 2300 if (thermocouple_voltage_uV < 0)
whismanoid 4:c169ba85d673 2301 {
whismanoid 4:c169ba85d673 2302 // Voltage range -5891uV < DMMavg < 0uV, Temperature Range -200 deg C to 0 deg C
whismanoid 4:c169ba85d673 2303 deltaT = temperatureDegC_polynomial(thermocouple_voltage_uV, 9, coefficients_TCtypeK_V_lt_0);
whismanoid 4:c169ba85d673 2304 }
whismanoid 4:c169ba85d673 2305 else if (thermocouple_voltage_uV > 20644)
whismanoid 4:c169ba85d673 2306 {
whismanoid 4:c169ba85d673 2307 // Voltage range 206440uV < DMMavg < 54886uV, Temperature Range 500 deg C to 1372 deg C
whismanoid 4:c169ba85d673 2308 deltaT = temperatureDegC_polynomial(thermocouple_voltage_uV, 7, coefficients_TCtypeK_20u644V_lt_V_lt_54u886V);
whismanoid 4:c169ba85d673 2309 }
whismanoid 4:c169ba85d673 2310 else
whismanoid 4:c169ba85d673 2311 {
whismanoid 4:c169ba85d673 2312 // Voltage range 0uV < DMMavg < 20.644uV, Temperature Range 0 deg C to 500 deg C
whismanoid 4:c169ba85d673 2313 deltaT = temperatureDegC_polynomial(thermocouple_voltage_uV, 10, coefficients_TCtypeK_0_lt_V_lt_20u644V);
whismanoid 4:c169ba85d673 2314 }
whismanoid 22:c6812214a933 2315 return deltaT; // + rtd_degc; // cold junction
whismanoid 4:c169ba85d673 2316 }
whismanoid 4:c169ba85d673 2317
whismanoid 4:c169ba85d673 2318 //----------------------------------------
whismanoid 4:c169ba85d673 2319 // Calculate temperature in degrees C from input voltage,
whismanoid 4:c169ba85d673 2320 // using a given set of polynomial coefficients.
whismanoid 4:c169ba85d673 2321 // For example:
whismanoid 4:c169ba85d673 2322 //
whismanoid 4:c169ba85d673 2323 // t = coefficients[0] + coefficients[1] * DMMavg + coefficients[2] * DmMMavg**2
whismanoid 4:c169ba85d673 2324 //
whismanoid 4:c169ba85d673 2325 // @param[in] thermocouple_voltage_uV = Thermocouple voltage in microvolts
whismanoid 4:c169ba85d673 2326 //
whismanoid 4:c169ba85d673 2327 // @return ideal temperature in degrees C, calculated from polynomial coefficients
whismanoid 4:c169ba85d673 2328 //
whismanoid 4:c169ba85d673 2329 double MAX11410::temperatureDegC_polynomial(double thermocouple_voltage_uV, int num_coefficients, double coefficients[])
whismanoid 4:c169ba85d673 2330 {
whismanoid 4:c169ba85d673 2331
whismanoid 4:c169ba85d673 2332 //----------------------------------------
whismanoid 4:c169ba85d673 2333 // Temperature from polynomial coefficients maths
whismanoid 4:c169ba85d673 2334 double temperatureDegC = 0;
whismanoid 4:c169ba85d673 2335 int index;
whismanoid 4:c169ba85d673 2336 for (index = num_coefficients-1; index >= 0; index--)
whismanoid 4:c169ba85d673 2337 {
whismanoid 4:c169ba85d673 2338 temperatureDegC = (temperatureDegC * thermocouple_voltage_uV) + coefficients[index];
whismanoid 4:c169ba85d673 2339 }
whismanoid 4:c169ba85d673 2340 return temperatureDegC;
whismanoid 3:658a93dfb2d8 2341 }
whismanoid 3:658a93dfb2d8 2342
whismanoid 0:68e64068330f 2343
whismanoid 0:68e64068330f 2344 // End of file