MAX11410 high speed 24-bit Delta-Sigma ADC

Dependents:   MAX11410BOB_24bit_ADC MAX11410BOB_Serial_Tester

Committer:
whismanoid
Date:
Wed Apr 15 11:58:42 2020 +0000
Revision:
24:428b7670e45f
Parent:
23:22e7830bcccb
Child:
25:c4be3afbfafd
after RegWrite CAL_START, poll status until 0x000004 CAL_RDY

Who changed what in which revision?

UserRevisionLine numberNew contents of line
whismanoid 0:68e64068330f 1 // /*******************************************************************************
whismanoid 4:c169ba85d673 2 // * Copyright (C) 2020 Maxim Integrated Products, Inc., All Rights Reserved.
whismanoid 0:68e64068330f 3 // *
whismanoid 0:68e64068330f 4 // * Permission is hereby granted, free of charge, to any person obtaining a
whismanoid 0:68e64068330f 5 // * copy of this software and associated documentation files (the "Software"),
whismanoid 0:68e64068330f 6 // * to deal in the Software without restriction, including without limitation
whismanoid 0:68e64068330f 7 // * the rights to use, copy, modify, merge, publish, distribute, sublicense,
whismanoid 0:68e64068330f 8 // * and/or sell copies of the Software, and to permit persons to whom the
whismanoid 0:68e64068330f 9 // * Software is furnished to do so, subject to the following conditions:
whismanoid 0:68e64068330f 10 // *
whismanoid 0:68e64068330f 11 // * The above copyright notice and this permission notice shall be included
whismanoid 0:68e64068330f 12 // * in all copies or substantial portions of the Software.
whismanoid 0:68e64068330f 13 // *
whismanoid 0:68e64068330f 14 // * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
whismanoid 0:68e64068330f 15 // * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
whismanoid 0:68e64068330f 16 // * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
whismanoid 0:68e64068330f 17 // * IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
whismanoid 0:68e64068330f 18 // * OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
whismanoid 0:68e64068330f 19 // * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
whismanoid 0:68e64068330f 20 // * OTHER DEALINGS IN THE SOFTWARE.
whismanoid 0:68e64068330f 21 // *
whismanoid 0:68e64068330f 22 // * Except as contained in this notice, the name of Maxim Integrated
whismanoid 0:68e64068330f 23 // * Products, Inc. shall not be used except as stated in the Maxim Integrated
whismanoid 0:68e64068330f 24 // * Products, Inc. Branding Policy.
whismanoid 0:68e64068330f 25 // *
whismanoid 0:68e64068330f 26 // * The mere transfer of this software does not imply any licenses
whismanoid 0:68e64068330f 27 // * of trade secrets, proprietary technology, copyrights, patents,
whismanoid 0:68e64068330f 28 // * trademarks, maskwork rights, or any other form of intellectual
whismanoid 0:68e64068330f 29 // * property whatsoever. Maxim Integrated Products, Inc. retains all
whismanoid 0:68e64068330f 30 // * ownership rights.
whismanoid 0:68e64068330f 31 // *******************************************************************************
whismanoid 0:68e64068330f 32 // */
whismanoid 0:68e64068330f 33 // *********************************************************************
whismanoid 0:68e64068330f 34 // @file MAX11410.cpp
whismanoid 0:68e64068330f 35 // *********************************************************************
whismanoid 0:68e64068330f 36 // Device Driver file
whismanoid 0:68e64068330f 37 // DO NOT EDIT; except areas designated "CUSTOMIZE". Automatically generated file.
whismanoid 0:68e64068330f 38 // generated by XMLSystemOfDevicesToMBED.py
whismanoid 0:68e64068330f 39 // System Name = ExampleSystem
whismanoid 0:68e64068330f 40 // System Description = Device driver example
whismanoid 0:68e64068330f 41
whismanoid 0:68e64068330f 42 #include "MAX11410.h"
whismanoid 0:68e64068330f 43
whismanoid 0:68e64068330f 44 // Device Name = MAX11410
whismanoid 0:68e64068330f 45 // Device Description = 1.9ksps, Low-Power, Serial SPI 24-Bit, 10-Channel, Differential/Single-Ended Input, SAR ADC
whismanoid 0:68e64068330f 46 // Device DeviceBriefDescription = 24-bit 1.9ksps Delta-Sigma ADC
whismanoid 0:68e64068330f 47 // Device Manufacturer = Maxim Integrated
whismanoid 0:68e64068330f 48 // Device PartNumber = MAX11410ATI+
whismanoid 0:68e64068330f 49 // Device RegValue_Width = DataWidth16bit_HL
whismanoid 0:68e64068330f 50 //
whismanoid 0:68e64068330f 51 // ADC MaxOutputDataRate = 1.9ksps
whismanoid 0:68e64068330f 52 // ADC NumChannels = 10
whismanoid 0:68e64068330f 53 // ADC ResolutionBits = 24
whismanoid 0:68e64068330f 54 //
whismanoid 0:68e64068330f 55 // SPI CS = ActiveLow
whismanoid 0:68e64068330f 56 // SPI FrameStart = CS
whismanoid 0:68e64068330f 57 // SPI CPOL = 0
whismanoid 0:68e64068330f 58 // SPI CPHA = 0
whismanoid 0:68e64068330f 59 // SPI MOSI and MISO Data are both stable on Rising edge of SCLK
whismanoid 0:68e64068330f 60 // SPI SCLK Idle Low
whismanoid 0:68e64068330f 61 // SPI SCLKMaxMHz = 8
whismanoid 0:68e64068330f 62 // SPI SCLKMinMHz = 0
whismanoid 0:68e64068330f 63 //
whismanoid 0:68e64068330f 64
whismanoid 0:68e64068330f 65 // CODE GENERATOR: class constructor definition
whismanoid 0:68e64068330f 66 MAX11410::MAX11410(SPI &spi, DigitalOut &cs_pin, // SPI interface
whismanoid 0:68e64068330f 67 // CODE GENERATOR: class constructor definition gpio InputPin pins
whismanoid 0:68e64068330f 68 // CODE GENERATOR: class constructor definition gpio OutputPin pins
whismanoid 0:68e64068330f 69 // CODE GENERATOR: class constructor definition ic_variant
whismanoid 0:68e64068330f 70 MAX11410_ic_t ic_variant)
whismanoid 0:68e64068330f 71 // CODE GENERATOR: class constructor initializer list
whismanoid 0:68e64068330f 72 : m_spi(spi), m_cs_pin(cs_pin), // SPI interface
whismanoid 0:68e64068330f 73 // CODE GENERATOR: class constructor initializer list gpio InputPin pins
whismanoid 0:68e64068330f 74 // CODE GENERATOR: class constructor initializer list gpio OutputPin pins
whismanoid 0:68e64068330f 75 // CODE GENERATOR: class constructor initializer list ic_variant
whismanoid 0:68e64068330f 76 m_ic_variant(ic_variant)
whismanoid 0:68e64068330f 77 {
whismanoid 0:68e64068330f 78 // CODE GENERATOR: class constructor definition SPI interface initialization
whismanoid 0:68e64068330f 79 //
whismanoid 0:68e64068330f 80 // SPI CS = ActiveLow
whismanoid 0:68e64068330f 81 // SPI FrameStart = CS
whismanoid 0:68e64068330f 82 m_SPI_cs_state = 1;
whismanoid 13:df96a784cda6 83 if (m_cs_pin.is_connected()) { // avoid mbed runtime error if pin is NC not connected
whismanoid 13:df96a784cda6 84 m_cs_pin = m_SPI_cs_state;
whismanoid 13:df96a784cda6 85 }
whismanoid 0:68e64068330f 86
whismanoid 0:68e64068330f 87 // SPI CPOL = 0
whismanoid 0:68e64068330f 88 // SPI CPHA = 0
whismanoid 0:68e64068330f 89 // SPI MOSI and MISO Data are both stable on Rising edge of SCLK
whismanoid 0:68e64068330f 90 // SPI SCLK Idle Low
whismanoid 0:68e64068330f 91 m_SPI_dataMode = 0; //SPI_MODE0; // CPOL=0,CPHA=0: Rising Edge stable; SCLK idle Low
whismanoid 0:68e64068330f 92 m_spi.format(8,m_SPI_dataMode); // int bits_must_be_8, int mode=0_3 CPOL=0,CPHA=0
whismanoid 0:68e64068330f 93
whismanoid 0:68e64068330f 94 // SPI SCLKMaxMHz = 8
whismanoid 0:68e64068330f 95 // SPI SCLKMinMHz = 0
whismanoid 0:68e64068330f 96 //#define SPI_SCLK_Hz 48000000 // 48MHz
whismanoid 0:68e64068330f 97 //#define SPI_SCLK_Hz 24000000 // 24MHz
whismanoid 0:68e64068330f 98 //#define SPI_SCLK_Hz 12000000 // 12MHz
whismanoid 0:68e64068330f 99 //#define SPI_SCLK_Hz 6000000 // 6MHz
whismanoid 0:68e64068330f 100 //#define SPI_SCLK_Hz 4000000 // 4MHz
whismanoid 0:68e64068330f 101 //#define SPI_SCLK_Hz 2000000 // 2MHz
whismanoid 0:68e64068330f 102 //#define SPI_SCLK_Hz 1000000 // 1MHz
whismanoid 0:68e64068330f 103 m_SPI_SCLK_Hz = 8000000; // 8MHz; MAX11410 limit is 8MHz
whismanoid 0:68e64068330f 104 m_spi.frequency(m_SPI_SCLK_Hz);
whismanoid 0:68e64068330f 105
whismanoid 0:68e64068330f 106 }
whismanoid 0:68e64068330f 107
whismanoid 0:68e64068330f 108 // CODE GENERATOR: class destructor definition
whismanoid 0:68e64068330f 109 MAX11410::~MAX11410()
whismanoid 0:68e64068330f 110 {
whismanoid 0:68e64068330f 111 // do nothing
whismanoid 0:68e64068330f 112 }
whismanoid 0:68e64068330f 113
whismanoid 0:68e64068330f 114 // CODE GENERATOR: spi_frequency setter definition
whismanoid 0:68e64068330f 115 /// set SPI SCLK frequency
whismanoid 0:68e64068330f 116 void MAX11410::spi_frequency(int spi_sclk_Hz)
whismanoid 0:68e64068330f 117 {
whismanoid 0:68e64068330f 118 m_SPI_SCLK_Hz = spi_sclk_Hz;
whismanoid 0:68e64068330f 119 m_spi.frequency(m_SPI_SCLK_Hz);
whismanoid 0:68e64068330f 120 }
whismanoid 0:68e64068330f 121
whismanoid 0:68e64068330f 122 // CODE GENERATOR: omit global g_MAX11410_device
whismanoid 0:68e64068330f 123 // CODE GENERATOR: extern function declarations
whismanoid 0:68e64068330f 124 // CODE GENERATOR: extern function requirement MAX11410::SPIoutputCS
whismanoid 0:68e64068330f 125 // Assert SPI Chip Select
whismanoid 0:68e64068330f 126 // SPI chip-select for MAX11410
whismanoid 0:68e64068330f 127 //
whismanoid 12:daecd93dd33a 128 inline void MAX11410::SPIoutputCS(int isLogicHigh)
whismanoid 0:68e64068330f 129 {
whismanoid 0:68e64068330f 130 // CODE GENERATOR: extern function definition for function SPIoutputCS
whismanoid 0:68e64068330f 131 // CODE GENERATOR: extern function definition for standard SPI interface function SPIoutputCS(int isLogicHigh)
whismanoid 0:68e64068330f 132 m_SPI_cs_state = isLogicHigh;
whismanoid 13:df96a784cda6 133 if (m_cs_pin.is_connected()) { // avoid mbed runtime error if pin is NC not connected
whismanoid 13:df96a784cda6 134 m_cs_pin = m_SPI_cs_state;
whismanoid 13:df96a784cda6 135 }
whismanoid 0:68e64068330f 136 }
whismanoid 0:68e64068330f 137
whismanoid 0:68e64068330f 138 // CODE GENERATOR: extern function requirement MAX11410::SPIwrite16bits
whismanoid 0:68e64068330f 139 // SPI write 16 bits
whismanoid 0:68e64068330f 140 // SPI interface to MAX11410 shift 16 bits mosiData into MAX11410 DIN
whismanoid 0:68e64068330f 141 //
whismanoid 0:68e64068330f 142 void MAX11410::SPIwrite16bits(int16_t mosiData16)
whismanoid 0:68e64068330f 143 {
whismanoid 0:68e64068330f 144 // CODE GENERATOR: extern function definition for function SPIwrite16bits
whismanoid 0:68e64068330f 145 // TODO1: CODE GENERATOR: extern function definition for standard SPI interface function SPIwrite16bits(int16_t mosiData16)
whismanoid 0:68e64068330f 146 size_t byteCount = 2;
whismanoid 0:68e64068330f 147 static char mosiData[2];
whismanoid 0:68e64068330f 148 static char misoData[2];
whismanoid 0:68e64068330f 149 mosiData[0] = (char)((mosiData16 >> 8) & 0xFF); // MSByte
whismanoid 0:68e64068330f 150 mosiData[1] = (char)((mosiData16 >> 0) & 0xFF); // LSByte
whismanoid 0:68e64068330f 151 //
whismanoid 0:68e64068330f 152 // Arduino: begin critical section: noInterrupts() masks all interrupt sources; end critical section with interrupts()
whismanoid 0:68e64068330f 153 //~ noInterrupts();
whismanoid 0:68e64068330f 154 //
whismanoid 0:68e64068330f 155 //~ digitalWrite(Scope_Trigger_Pin, LOW); // diagnostic Scope_Trigger_Pin
whismanoid 0:68e64068330f 156 //
whismanoid 0:68e64068330f 157 unsigned int numBytesTransferred = m_spi.write(mosiData, byteCount, misoData, byteCount);
whismanoid 0:68e64068330f 158 //~ m_spi.transfer(mosiData8_FF0000);
whismanoid 0:68e64068330f 159 //~ m_spi.transfer(mosiData16_00FF00);
whismanoid 0:68e64068330f 160 //~ m_spi.transfer(mosiData16_0000FF);
whismanoid 0:68e64068330f 161 //
whismanoid 0:68e64068330f 162 //~ digitalWrite(Scope_Trigger_Pin, HIGH); // diagnostic Scope_Trigger_Pin
whismanoid 0:68e64068330f 163 //
whismanoid 0:68e64068330f 164 // Arduino: begin critical section: noInterrupts() masks all interrupt sources; end critical section with interrupts()
whismanoid 0:68e64068330f 165 //~ interrupts();
whismanoid 0:68e64068330f 166 // Optional Diagnostic function to print SPI transactions
whismanoid 0:68e64068330f 167 if (onSPIprint)
whismanoid 0:68e64068330f 168 {
whismanoid 0:68e64068330f 169 onSPIprint(byteCount, (uint8_t*)mosiData, (uint8_t*)misoData);
whismanoid 0:68e64068330f 170 }
whismanoid 0:68e64068330f 171 //
whismanoid 0:68e64068330f 172 // VERIFY: SPIwrite24bits print diagnostic information
whismanoid 0:68e64068330f 173 //cmdLine.serial().printf(" MOSI->"));
whismanoid 0:68e64068330f 174 //cmdLine.serial().printf(" 0x"));
whismanoid 0:68e64068330f 175 //Serial.print( (mosiData8_FF0000 & 0xFF), HEX);
whismanoid 0:68e64068330f 176 //cmdLine.serial().printf(" 0x"));
whismanoid 0:68e64068330f 177 //Serial.print( (mosiData16_00FF00 & 0xFF), HEX);
whismanoid 0:68e64068330f 178 //cmdLine.serial().printf(" 0x"));
whismanoid 0:68e64068330f 179 //Serial.print( (mosiData16_0000FF & 0xFF), HEX);
whismanoid 0:68e64068330f 180 // hex dump mosiData[0..byteCount-1]
whismanoid 0:68e64068330f 181 #if 0 // HAS_MICROUSBSERIAL
whismanoid 0:68e64068330f 182 cmdLine_microUSBserial.serial().printf("\r\nSPI");
whismanoid 0:68e64068330f 183 if (byteCount > 7) {
whismanoid 0:68e64068330f 184 cmdLine_microUSBserial.serial().printf(" byteCount:%d", byteCount);
whismanoid 0:68e64068330f 185 }
whismanoid 0:68e64068330f 186 cmdLine_microUSBserial.serial().printf(" MOSI->");
whismanoid 0:68e64068330f 187 for (unsigned int byteIndex = 0; byteIndex < byteCount; byteIndex++)
whismanoid 0:68e64068330f 188 {
whismanoid 0:68e64068330f 189 cmdLine_microUSBserial.serial().printf(" 0x%2.2X", mosiData[byteIndex]);
whismanoid 0:68e64068330f 190 }
whismanoid 0:68e64068330f 191 // hex dump misoData[0..byteCount-1]
whismanoid 0:68e64068330f 192 cmdLine_microUSBserial.serial().printf(" MISO<-");
whismanoid 0:68e64068330f 193 for (unsigned int byteIndex = 0; byteIndex < numBytesTransferred; byteIndex++)
whismanoid 0:68e64068330f 194 {
whismanoid 0:68e64068330f 195 cmdLine_microUSBserial.serial().printf(" 0x%2.2X", misoData[byteIndex]);
whismanoid 0:68e64068330f 196 }
whismanoid 0:68e64068330f 197 cmdLine_microUSBserial.serial().printf(" ");
whismanoid 0:68e64068330f 198 #endif
whismanoid 0:68e64068330f 199 #if 0 // HAS_DAPLINK_SERIAL
whismanoid 0:68e64068330f 200 cmdLine_DAPLINKserial.serial().printf("\r\nSPI");
whismanoid 0:68e64068330f 201 if (byteCount > 7) {
whismanoid 0:68e64068330f 202 cmdLine_DAPLINKserial.serial().printf(" byteCount:%d", byteCount);
whismanoid 0:68e64068330f 203 }
whismanoid 0:68e64068330f 204 cmdLine_DAPLINKserial.serial().printf(" MOSI->");
whismanoid 0:68e64068330f 205 for (unsigned int byteIndex = 0; byteIndex < byteCount; byteIndex++)
whismanoid 0:68e64068330f 206 {
whismanoid 0:68e64068330f 207 cmdLine_DAPLINKserial.serial().printf(" 0x%2.2X", mosiData[byteIndex]);
whismanoid 0:68e64068330f 208 }
whismanoid 0:68e64068330f 209 // hex dump misoData[0..byteCount-1]
whismanoid 0:68e64068330f 210 cmdLine_DAPLINKserial.serial().printf(" MISO<-");
whismanoid 0:68e64068330f 211 for (unsigned int byteIndex = 0; byteIndex < numBytesTransferred; byteIndex++)
whismanoid 0:68e64068330f 212 {
whismanoid 0:68e64068330f 213 cmdLine_DAPLINKserial.serial().printf(" 0x%2.2X", misoData[byteIndex]);
whismanoid 0:68e64068330f 214 }
whismanoid 0:68e64068330f 215 cmdLine_DAPLINKserial.serial().printf(" ");
whismanoid 0:68e64068330f 216 #endif
whismanoid 0:68e64068330f 217 // VERIFY: DIAGNOSTIC: print MAX5715 device register write
whismanoid 0:68e64068330f 218 // TODO: MAX5715_print_register_verbose(mosiData8_FF0000, mosiData16_00FFFF);
whismanoid 0:68e64068330f 219 // TODO: print_verbose_SPI_diagnostic(mosiData16_FF00, mosiData16_00FF, misoData16_FF00, misoData16_00FF);
whismanoid 0:68e64068330f 220 //
whismanoid 0:68e64068330f 221 // int misoData16 = (misoData16_FF00 << 8) | misoData16_00FF;
whismanoid 0:68e64068330f 222 // return misoData16;
whismanoid 0:68e64068330f 223 }
whismanoid 0:68e64068330f 224
whismanoid 0:68e64068330f 225 // CODE GENERATOR: extern function requirement MAX11410::SPIreadWrite16bits
whismanoid 0:68e64068330f 226 // SPI read and write 16 bits
whismanoid 0:68e64068330f 227 // SPI interface to MAX11410 shift 16 bits mosiData16 into MAX11410 DIN
whismanoid 0:68e64068330f 228 // while simultaneously capturing 16 bits miso data from MAX11410 DOUT
whismanoid 0:68e64068330f 229 //
whismanoid 0:68e64068330f 230 int16_t MAX11410::SPIreadWrite16bits(int16_t mosiData16)
whismanoid 0:68e64068330f 231 {
whismanoid 0:68e64068330f 232 // CODE GENERATOR: extern function definition for function SPIreadWrite16bits
whismanoid 0:68e64068330f 233 // TODO1: CODE GENERATOR: extern function definition for standard SPI interface function SPIreadWrite16bits(int16_t mosiData16)
whismanoid 0:68e64068330f 234 size_t byteCount = 2;
whismanoid 0:68e64068330f 235 static char mosiData[2];
whismanoid 0:68e64068330f 236 static char misoData[2];
whismanoid 0:68e64068330f 237 mosiData[0] = (char)((mosiData16 >> 8) & 0xFF); // MSByte
whismanoid 0:68e64068330f 238 mosiData[1] = (char)((mosiData16 >> 0) & 0xFF); // LSByte
whismanoid 0:68e64068330f 239 //
whismanoid 0:68e64068330f 240 // Arduino: begin critical section: noInterrupts() masks all interrupt sources; end critical section with interrupts()
whismanoid 0:68e64068330f 241 //~ noInterrupts();
whismanoid 0:68e64068330f 242 //
whismanoid 0:68e64068330f 243 //~ digitalWrite(Scope_Trigger_Pin, LOW); // diagnostic Scope_Trigger_Pin
whismanoid 0:68e64068330f 244 //
whismanoid 0:68e64068330f 245 unsigned int numBytesTransferred = m_spi.write(mosiData, byteCount, misoData, byteCount);
whismanoid 0:68e64068330f 246 //~ m_spi.transfer(mosiData8_FF0000);
whismanoid 0:68e64068330f 247 //~ m_spi.transfer(mosiData16_00FF00);
whismanoid 0:68e64068330f 248 //~ m_spi.transfer(mosiData16_0000FF);
whismanoid 0:68e64068330f 249 //
whismanoid 0:68e64068330f 250 //~ digitalWrite(Scope_Trigger_Pin, HIGH); // diagnostic Scope_Trigger_Pin
whismanoid 0:68e64068330f 251 //
whismanoid 0:68e64068330f 252 // Arduino: begin critical section: noInterrupts() masks all interrupt sources; end critical section with interrupts()
whismanoid 0:68e64068330f 253 //~ interrupts();
whismanoid 0:68e64068330f 254 // Optional Diagnostic function to print SPI transactions
whismanoid 0:68e64068330f 255 if (onSPIprint)
whismanoid 0:68e64068330f 256 {
whismanoid 0:68e64068330f 257 onSPIprint(byteCount, (uint8_t*)mosiData, (uint8_t*)misoData);
whismanoid 0:68e64068330f 258 }
whismanoid 0:68e64068330f 259 //
whismanoid 0:68e64068330f 260 // VERIFY: SPIwrite24bits print diagnostic information
whismanoid 0:68e64068330f 261 //cmdLine.serial().printf(" MOSI->"));
whismanoid 0:68e64068330f 262 //cmdLine.serial().printf(" 0x"));
whismanoid 0:68e64068330f 263 //Serial.print( (mosiData8_FF0000 & 0xFF), HEX);
whismanoid 0:68e64068330f 264 //cmdLine.serial().printf(" 0x"));
whismanoid 0:68e64068330f 265 //Serial.print( (mosiData16_00FF00 & 0xFF), HEX);
whismanoid 0:68e64068330f 266 //cmdLine.serial().printf(" 0x"));
whismanoid 0:68e64068330f 267 //Serial.print( (mosiData16_0000FF & 0xFF), HEX);
whismanoid 0:68e64068330f 268 // hex dump mosiData[0..byteCount-1]
whismanoid 0:68e64068330f 269 #if 0 // HAS_MICROUSBSERIAL
whismanoid 0:68e64068330f 270 cmdLine_microUSBserial.serial().printf("\r\nSPI");
whismanoid 0:68e64068330f 271 if (byteCount > 7) {
whismanoid 0:68e64068330f 272 cmdLine_microUSBserial.serial().printf(" byteCount:%d", byteCount);
whismanoid 0:68e64068330f 273 }
whismanoid 0:68e64068330f 274 cmdLine_microUSBserial.serial().printf(" MOSI->");
whismanoid 0:68e64068330f 275 for (unsigned int byteIndex = 0; byteIndex < byteCount; byteIndex++)
whismanoid 0:68e64068330f 276 {
whismanoid 0:68e64068330f 277 cmdLine_microUSBserial.serial().printf(" 0x%2.2X", mosiData[byteIndex]);
whismanoid 0:68e64068330f 278 }
whismanoid 0:68e64068330f 279 // hex dump misoData[0..byteCount-1]
whismanoid 0:68e64068330f 280 cmdLine_microUSBserial.serial().printf(" MISO<-");
whismanoid 0:68e64068330f 281 for (unsigned int byteIndex = 0; byteIndex < numBytesTransferred; byteIndex++)
whismanoid 0:68e64068330f 282 {
whismanoid 0:68e64068330f 283 cmdLine_microUSBserial.serial().printf(" 0x%2.2X", misoData[byteIndex]);
whismanoid 0:68e64068330f 284 }
whismanoid 0:68e64068330f 285 cmdLine_microUSBserial.serial().printf(" ");
whismanoid 0:68e64068330f 286 #endif
whismanoid 0:68e64068330f 287 #if 0 // HAS_DAPLINK_SERIAL
whismanoid 0:68e64068330f 288 cmdLine_DAPLINKserial.serial().printf("\r\nSPI");
whismanoid 0:68e64068330f 289 if (byteCount > 7) {
whismanoid 0:68e64068330f 290 cmdLine_DAPLINKserial.serial().printf(" byteCount:%d", byteCount);
whismanoid 0:68e64068330f 291 }
whismanoid 0:68e64068330f 292 cmdLine_DAPLINKserial.serial().printf(" MOSI->");
whismanoid 0:68e64068330f 293 for (unsigned int byteIndex = 0; byteIndex < byteCount; byteIndex++)
whismanoid 0:68e64068330f 294 {
whismanoid 0:68e64068330f 295 cmdLine_DAPLINKserial.serial().printf(" 0x%2.2X", mosiData[byteIndex]);
whismanoid 0:68e64068330f 296 }
whismanoid 0:68e64068330f 297 // hex dump misoData[0..byteCount-1]
whismanoid 0:68e64068330f 298 cmdLine_DAPLINKserial.serial().printf(" MISO<-");
whismanoid 0:68e64068330f 299 for (unsigned int byteIndex = 0; byteIndex < numBytesTransferred; byteIndex++)
whismanoid 0:68e64068330f 300 {
whismanoid 0:68e64068330f 301 cmdLine_DAPLINKserial.serial().printf(" 0x%2.2X", misoData[byteIndex]);
whismanoid 0:68e64068330f 302 }
whismanoid 0:68e64068330f 303 cmdLine_DAPLINKserial.serial().printf(" ");
whismanoid 0:68e64068330f 304 #endif
whismanoid 0:68e64068330f 305 // VERIFY: DIAGNOSTIC: print MAX5715 device register write
whismanoid 0:68e64068330f 306 // TODO: MAX5715_print_register_verbose(mosiData8_FF0000, mosiData16_00FFFF);
whismanoid 0:68e64068330f 307 // TODO: print_verbose_SPI_diagnostic(mosiData16_FF00, mosiData16_00FF, misoData16_FF00, misoData16_00FF);
whismanoid 0:68e64068330f 308 //
whismanoid 0:68e64068330f 309 //int misoData16 = (misoData16_FF00 << 8) | misoData16_00FF;
whismanoid 0:68e64068330f 310 int misoData16 = (misoData[0] << 8) | misoData[1];
whismanoid 0:68e64068330f 311 return misoData16;
whismanoid 0:68e64068330f 312 }
whismanoid 0:68e64068330f 313
whismanoid 0:68e64068330f 314 // CODE GENERATOR: extern function requirement MAX11410::SPIreadWrite32bits
whismanoid 0:68e64068330f 315 // SPI read and write 32 bits
whismanoid 0:68e64068330f 316 // SPI interface to MAX11410 shift 32 bits mosiData into MAX11410 DIN
whismanoid 0:68e64068330f 317 // while simultaneously capturing 32 bits miso data from MAX11410 DOUT
whismanoid 0:68e64068330f 318 //
whismanoid 0:68e64068330f 319 int32_t MAX11410::SPIreadWrite32bits(int32_t mosiData32)
whismanoid 0:68e64068330f 320 {
whismanoid 0:68e64068330f 321 // CODE GENERATOR: extern function definition for function SPIreadWrite32bits
whismanoid 0:68e64068330f 322 // TODO1: CODE GENERATOR: extern function definition for standard SPI interface function SPIreadWrite32bits(int32_t mosiData32)
whismanoid 0:68e64068330f 323 size_t byteCount = 4;
whismanoid 0:68e64068330f 324 static char mosiData[4];
whismanoid 0:68e64068330f 325 static char misoData[4];
whismanoid 0:68e64068330f 326 mosiData[0] = (char)((mosiData32 >> 24) & 0xFF); // MSByte
whismanoid 0:68e64068330f 327 mosiData[1] = (char)((mosiData32 >> 16) & 0xFF);
whismanoid 0:68e64068330f 328 mosiData[2] = (char)((mosiData32 >> 8) & 0xFF);
whismanoid 0:68e64068330f 329 mosiData[3] = (char)((mosiData32 >> 0) & 0xFF); // LSByte
whismanoid 0:68e64068330f 330 //
whismanoid 0:68e64068330f 331 // Arduino: begin critical section: noInterrupts() masks all interrupt sources; end critical section with interrupts()
whismanoid 0:68e64068330f 332 //~ noInterrupts();
whismanoid 0:68e64068330f 333 //
whismanoid 0:68e64068330f 334 //~ digitalWrite(Scope_Trigger_Pin, LOW); // diagnostic Scope_Trigger_Pin
whismanoid 0:68e64068330f 335 //
whismanoid 0:68e64068330f 336 unsigned int numBytesTransferred = m_spi.write(mosiData, byteCount, misoData, byteCount);
whismanoid 0:68e64068330f 337 //~ m_spi.transfer(mosiData8_FF0000);
whismanoid 0:68e64068330f 338 //~ m_spi.transfer(mosiData16_00FF00);
whismanoid 0:68e64068330f 339 //~ m_spi.transfer(mosiData16_0000FF);
whismanoid 0:68e64068330f 340 //
whismanoid 0:68e64068330f 341 //~ digitalWrite(Scope_Trigger_Pin, HIGH); // diagnostic Scope_Trigger_Pin
whismanoid 0:68e64068330f 342 //
whismanoid 0:68e64068330f 343 // Arduino: begin critical section: noInterrupts() masks all interrupt sources; end critical section with interrupts()
whismanoid 0:68e64068330f 344 //~ interrupts();
whismanoid 0:68e64068330f 345 // Optional Diagnostic function to print SPI transactions
whismanoid 0:68e64068330f 346 if (onSPIprint)
whismanoid 0:68e64068330f 347 {
whismanoid 0:68e64068330f 348 onSPIprint(byteCount, (uint8_t*)mosiData, (uint8_t*)misoData);
whismanoid 0:68e64068330f 349 }
whismanoid 0:68e64068330f 350 //
whismanoid 0:68e64068330f 351 // VERIFY: SPIwrite24bits print diagnostic information
whismanoid 0:68e64068330f 352 //cmdLine.serial().printf(" MOSI->"));
whismanoid 0:68e64068330f 353 //cmdLine.serial().printf(" 0x"));
whismanoid 0:68e64068330f 354 //Serial.print( (mosiData8_FF0000 & 0xFF), HEX);
whismanoid 0:68e64068330f 355 //cmdLine.serial().printf(" 0x"));
whismanoid 0:68e64068330f 356 //Serial.print( (mosiData16_00FF00 & 0xFF), HEX);
whismanoid 0:68e64068330f 357 //cmdLine.serial().printf(" 0x"));
whismanoid 0:68e64068330f 358 //Serial.print( (mosiData16_0000FF & 0xFF), HEX);
whismanoid 0:68e64068330f 359 // hex dump mosiData[0..byteCount-1]
whismanoid 0:68e64068330f 360 #if 0 // HAS_MICROUSBSERIAL
whismanoid 0:68e64068330f 361 cmdLine_microUSBserial.serial().printf("\r\nSPI");
whismanoid 0:68e64068330f 362 if (byteCount > 7) {
whismanoid 0:68e64068330f 363 cmdLine_microUSBserial.serial().printf(" byteCount:%d", byteCount);
whismanoid 0:68e64068330f 364 }
whismanoid 0:68e64068330f 365 cmdLine_microUSBserial.serial().printf(" MOSI->");
whismanoid 0:68e64068330f 366 for (unsigned int byteIndex = 0; byteIndex < byteCount; byteIndex++)
whismanoid 0:68e64068330f 367 {
whismanoid 0:68e64068330f 368 cmdLine_microUSBserial.serial().printf(" 0x%2.2X", mosiData[byteIndex]);
whismanoid 0:68e64068330f 369 }
whismanoid 0:68e64068330f 370 // hex dump misoData[0..byteCount-1]
whismanoid 0:68e64068330f 371 cmdLine_microUSBserial.serial().printf(" MISO<-");
whismanoid 0:68e64068330f 372 for (unsigned int byteIndex = 0; byteIndex < numBytesTransferred; byteIndex++)
whismanoid 0:68e64068330f 373 {
whismanoid 0:68e64068330f 374 cmdLine_microUSBserial.serial().printf(" 0x%2.2X", misoData[byteIndex]);
whismanoid 0:68e64068330f 375 }
whismanoid 0:68e64068330f 376 cmdLine_microUSBserial.serial().printf(" ");
whismanoid 0:68e64068330f 377 #endif
whismanoid 0:68e64068330f 378 #if 0 // HAS_DAPLINK_SERIAL
whismanoid 0:68e64068330f 379 cmdLine_DAPLINKserial.serial().printf("\r\nSPI");
whismanoid 0:68e64068330f 380 if (byteCount > 7) {
whismanoid 0:68e64068330f 381 cmdLine_DAPLINKserial.serial().printf(" byteCount:%d", byteCount);
whismanoid 0:68e64068330f 382 }
whismanoid 0:68e64068330f 383 cmdLine_DAPLINKserial.serial().printf(" MOSI->");
whismanoid 0:68e64068330f 384 for (unsigned int byteIndex = 0; byteIndex < byteCount; byteIndex++)
whismanoid 0:68e64068330f 385 {
whismanoid 0:68e64068330f 386 cmdLine_DAPLINKserial.serial().printf(" 0x%2.2X", mosiData[byteIndex]);
whismanoid 0:68e64068330f 387 }
whismanoid 0:68e64068330f 388 // hex dump misoData[0..byteCount-1]
whismanoid 0:68e64068330f 389 cmdLine_DAPLINKserial.serial().printf(" MISO<-");
whismanoid 0:68e64068330f 390 for (unsigned int byteIndex = 0; byteIndex < numBytesTransferred; byteIndex++)
whismanoid 0:68e64068330f 391 {
whismanoid 0:68e64068330f 392 cmdLine_DAPLINKserial.serial().printf(" 0x%2.2X", misoData[byteIndex]);
whismanoid 0:68e64068330f 393 }
whismanoid 0:68e64068330f 394 cmdLine_DAPLINKserial.serial().printf(" ");
whismanoid 0:68e64068330f 395 #endif
whismanoid 0:68e64068330f 396 // VERIFY: DIAGNOSTIC: print MAX5715 device register write
whismanoid 0:68e64068330f 397 // TODO: MAX5715_print_register_verbose(mosiData8_FF0000, mosiData16_00FFFF);
whismanoid 0:68e64068330f 398 // TODO: print_verbose_SPI_diagnostic(mosiData16_FF00, mosiData16_00FF, misoData16_FF00, misoData16_00FF);
whismanoid 0:68e64068330f 399 //
whismanoid 0:68e64068330f 400 //int misoData32 = (misoData32_FF000000 << 24) | (misoData32_FF0000 << 16) | (misoData32_0000FF00 << 8) | misoData32_000000FF;
whismanoid 0:68e64068330f 401 int misoData32 = (misoData[0] << 24) | (misoData[1] << 16) | (misoData[2] << 8) | misoData[3];
whismanoid 0:68e64068330f 402 return misoData32;
whismanoid 0:68e64068330f 403 }
whismanoid 0:68e64068330f 404
whismanoid 0:68e64068330f 405 // CODE GENERATOR: class member function definitions
whismanoid 0:68e64068330f 406 //----------------------------------------
whismanoid 0:68e64068330f 407 // Menu item '!'
whismanoid 0:68e64068330f 408 // Initialize device
whismanoid 19:50cf5da53d36 409 //
whismanoid 19:50cf5da53d36 410 // TODO1: #169 MAX11410 Self Test for Test Fixture Firmware
whismanoid 19:50cf5da53d36 411 // @test Init() expect 1
whismanoid 19:50cf5da53d36 412 //
whismanoid 19:50cf5da53d36 413 // @future test xxxxxx // comment
whismanoid 19:50cf5da53d36 414 //
whismanoid 19:50cf5da53d36 415 // TODO1: #169 SelfTest support RegRead
whismanoid 22:c6812214a933 416 // @test group POR // verify initial register values (enabled by default)
whismanoid 20:fb7527415308 417 // @future test tinyTester.print("PART_ID value")
whismanoid 22:c6812214a933 418 // @test group POR RegRead(MAX11410::CMD_r001_0001_xxxx_xxxx_xxxx_xxxx_xxxx_xddd_PART_ID, buffer) expect 1 expect-buffer 0x000F02
whismanoid 20:fb7527415308 419 //
whismanoid 20:fb7527415308 420 // @future test tinyTester.print("POR value 0x04 CMD_r000_0100_dddd_xddd_GP0_CTRL")
whismanoid 22:c6812214a933 421 // @test group POR RegRead(MAX11410::CMD_r000_0100_dddd_xddd_GP0_CTRL, buffer) expect 1 expect-buffer 0x00
whismanoid 20:fb7527415308 422 //
whismanoid 20:fb7527415308 423 // @future test tinyTester.print("POR value 0x05 CMD_r000_0101_dddd_xddd_GP1_CTRL")
whismanoid 22:c6812214a933 424 // @test group POR RegRead(MAX11410::CMD_r000_0101_dddd_xddd_GP1_CTRL, buffer) expect 1 expect-buffer 0x00
whismanoid 20:fb7527415308 425 //
whismanoid 20:fb7527415308 426 // @future test tinyTester.print("POR value 0x07 CMD_r000_0111_xddd_dddd_GP_SEQ_ADDR")
whismanoid 22:c6812214a933 427 // @test group POR RegRead(MAX11410::CMD_r000_0111_xddd_dddd_GP_SEQ_ADDR, buffer) expect 1 expect-buffer 0x00003a
whismanoid 19:50cf5da53d36 428 //
whismanoid 19:50cf5da53d36 429 // TODO1: #169 SelfTest support RegWrite and custom enum types
whismanoid 20:fb7527415308 430 // @future test tinyTester.print("POR value 0x08 CMD_r000_1000_x0dd_dddd_FILTER")
whismanoid 22:c6812214a933 431 // @test group POR RegRead(MAX11410::CMD_r000_1000_x0dd_dddd_FILTER, buffer) expect 1 expect-buffer 0x00
whismanoid 20:fb7527415308 432 // could also be stated as RegRead(0x08, buffer) expect 1 expect-buffer 0x00
whismanoid 20:fb7527415308 433 //
whismanoid 20:fb7527415308 434 // @future test tinyTester.print("POR value 0x09 CMD_r000_1001_dddd_dddd_CTRL")
whismanoid 22:c6812214a933 435 // @test group POR RegRead(MAX11410::CMD_r000_1001_dddd_dddd_CTRL, buffer) expect 1 expect-buffer 0x000001
whismanoid 20:fb7527415308 436 //
whismanoid 20:fb7527415308 437 // @future test tinyTester.print("POR value 0x0a CMD_r000_1010_dddd_dddd_SOURCE")
whismanoid 22:c6812214a933 438 // @test group POR RegRead(MAX11410::CMD_r000_1010_dddd_dddd_SOURCE, buffer) expect 1 expect-buffer 0x00
whismanoid 20:fb7527415308 439 //
whismanoid 20:fb7527415308 440 // @future test tinyTester.print("POR value 0x0b CMD_r000_1011_dddd_dddd_MUX_CTRL0")
whismanoid 22:c6812214a933 441 // @test group POR RegRead(MAX11410::CMD_r000_1011_dddd_dddd_MUX_CTRL0, buffer) expect 1 expect-buffer 0x0000ff
whismanoid 20:fb7527415308 442 //
whismanoid 20:fb7527415308 443 // @future test tinyTester.print("POR value 0x0c CMD_r000_1100_dddd_dddd_MUX_CTRL1")
whismanoid 22:c6812214a933 444 // @test group POR RegRead(MAX11410::CMD_r000_1100_dddd_dddd_MUX_CTRL1, buffer) expect 1 expect-buffer 0x0000ff
whismanoid 20:fb7527415308 445 //
whismanoid 20:fb7527415308 446 // @future test tinyTester.print("POR value 0x0d CMD_r000_1101_dddd_dddd_MUX_CTRL2")
whismanoid 22:c6812214a933 447 // @test group POR RegRead(MAX11410::CMD_r000_1101_dddd_dddd_MUX_CTRL2, buffer) expect 1 expect-buffer 0x00
whismanoid 20:fb7527415308 448 //
whismanoid 23:22e7830bcccb 449 // @future test tinyTester.print("POR value 0x0e CMD_r000_1110_00ss_0ggg_PGA")
whismanoid 23:22e7830bcccb 450 // @test group POR RegRead(MAX11410::CMD_r000_1110_00ss_0ggg_PGA, buffer) expect 1 expect-buffer 0x00
whismanoid 20:fb7527415308 451 //
whismanoid 20:fb7527415308 452 // @future test CMD_r000_1111_dddd_dddd_WAIT_EXT = 0x0f, //!< 0b0001111
whismanoid 20:fb7527415308 453 // @future test CMD_r001_0000_xxxx_xxxx_WAIT_START = 0x10, //!< 0b0010000
whismanoid 20:fb7527415308 454 //
whismanoid 22:c6812214a933 455 // @test group RES1KA0A1TOGND // measure a 1kohm resistor between (AIN0,AIN1) and AGND to verify ref2_v (disabled by default)
whismanoid 22:c6812214a933 456 // @test group RES1KA0A1TOGNDMORE // measure a 1kohm resistor between (AIN0,AIN1) and AGND to verify ref2_v in more detail
whismanoid 22:c6812214a933 457 // @test group RES1KA0A1TOGNDMORE tinyTester.print("measure a 1kohm resistor between (AIN0,AIN1) and AGND to verify ref2_v")
whismanoid 22:c6812214a933 458 // @test group RES1KA0A1TOGND tinyTester.settle_time_msec = 1000 // default 250
whismanoid 22:c6812214a933 459 // @test group RES1KA0A1TOGND RegWrite(0x0C, 0xF1) expect 1 // *mux_ctrl1=0xf1 drives current source from AIN1
whismanoid 22:c6812214a933 460 //
whismanoid 22:c6812214a933 461 // @test group RES1KA0A1TOGNDMORE RegWrite(0x0A, 0x03) expect 1 // *source=0x03 idac_mode=100uA, 1k resistor 0.1V
whismanoid 22:c6812214a933 462 // @test group RES1KA0A1TOGNDMORE tinyTester.print("idac_mode=100uA, 1k resistor 0.1V")
whismanoid 22:c6812214a933 463 // @test group RES1KA0A1TOGNDMORE tinyTester.Wait_Output_Settling()
whismanoid 22:c6812214a933 464 // @test group RES1KA0A1TOGNDMORE Measure_Voltage(0,10) expect 0.1
whismanoid 22:c6812214a933 465 // @test group RES1KA0A1TOGNDMORE AINcode[0] expect (uint32_t)337731 within 33773 // idac_mode=100uA, 1k resistor 0.1V
whismanoid 22:c6812214a933 466 //
whismanoid 22:c6812214a933 467 // @test group RES1KA0A1TOGNDMORE RegWrite(0x0A, 0x0D) expect 1 // *source=0x0d idac_mode=800uA, 1k resistor 0.8V
whismanoid 22:c6812214a933 468 // @test group RES1KA0A1TOGNDMORE tinyTester.print("idac_mode=800uA, 1k resistor 0.8V")
whismanoid 22:c6812214a933 469 // @test group RES1KA0A1TOGNDMORE tinyTester.Wait_Output_Settling()
whismanoid 22:c6812214a933 470 // @test group RES1KA0A1TOGNDMORE Measure_Voltage(0,10) expect 0.8
whismanoid 22:c6812214a933 471 // @test group RES1KA0A1TOGNDMORE AINcode[0] expect (uint32_t)2724467 within 33773 // idac_mode=800uA, 1k resistor 0.8V
whismanoid 22:c6812214a933 472 //
whismanoid 22:c6812214a933 473 // @test group RES1KA0A1TOGND RegWrite(0x0A, 0x0B) expect 1 // *source=0x0b idac_mode=400uA, 1k resistor 0.4V
whismanoid 22:c6812214a933 474 // @test group RES1KA0A1TOGNDMORE tinyTester.print("idac_mode=400uA, 1k resistor 0.4V")
whismanoid 22:c6812214a933 475 // @test group RES1KA0A1TOGND tinyTester.Wait_Output_Settling()
whismanoid 22:c6812214a933 476 // @test group RES1KA0A1TOGND Measure_Voltage(0,10) expect 0.4
whismanoid 22:c6812214a933 477 // @test group RES1KA0A1TOGNDMORE AINcode[0] expect (uint32_t)1343163 within 33773 // idac_mode=400uA, 1k resistor 0.4V
whismanoid 20:fb7527415308 478 //
whismanoid 20:fb7527415308 479 //
whismanoid 20:fb7527415308 480 //
whismanoid 19:50cf5da53d36 481 // @test tinyTester.print("check filter register is writeable")
whismanoid 19:50cf5da53d36 482 // @future test tinyTester.print("this is a real mess dealing with the custom types")
whismanoid 19:50cf5da53d36 483 // @test RegWrite(0x08, 0x34) expect 1
whismanoid 19:50cf5da53d36 484 // @future test tinyTester.print("error: no matching function for call to 'MaximTinyTester::FunctionCall_Expect(const char [18], uint8_t (&)(MAX11410::CMD_enum_t, uint32_t), MAX11410::CMD_enum_t, uint32_t, int)'")
whismanoid 19:50cf5da53d36 485 // @future test RegWrite(CMD_r000_1000_x0dd_dddd_FILTER, 0x34) expect 1
whismanoid 19:50cf5da53d36 486 // @future test RegWrite(CMD_enum_t::CMD_r000_1000_x0dd_dddd_FILTER, 0x34) expect 1
whismanoid 19:50cf5da53d36 487 // @future test RegWrite(MAX11410::CMD_enum_t::CMD_r000_1000_x0dd_dddd_FILTER, 0x34) expect 1
whismanoid 19:50cf5da53d36 488 //
whismanoid 19:50cf5da53d36 489 // TODO1: #169 SelfTest support RegRead
whismanoid 19:50cf5da53d36 490 // @test tinyTester.print("check filter register is readable")
whismanoid 19:50cf5da53d36 491 // @test RegRead(0x08, buffer) expect 1 expect-buffer 0x34
whismanoid 19:50cf5da53d36 492 // @future test RegRead(MAX11410::CMD_enum_t::CMD_r000_1000_x0dd_dddd_FILTER, &buffer) expect 1 expect-buffer 0x34
whismanoid 19:50cf5da53d36 493 //
whismanoid 19:50cf5da53d36 494 // @test tinyTester.settle_time_msec = 250 // default 250
whismanoid 19:50cf5da53d36 495 // @test tinyTester.blink_time_msec = 75 // default 75 resume hardware self test
whismanoid 19:50cf5da53d36 496 // @test tinyTester.input_timeout_time_msec = 250 // default 250
whismanoid 19:50cf5da53d36 497 // @test tinyTester.settle_time_msec = 20 // default 250
whismanoid 19:50cf5da53d36 498 // @test tinyTester.blink_time_msec = 20 // quickly speed through the software verification
whismanoid 19:50cf5da53d36 499 // @test tinyTester.input_timeout_time_msec = 100 // default 250
whismanoid 19:50cf5da53d36 500 //
whismanoid 19:50cf5da53d36 501 // @test tinyTester.Wait_Output_Settling()
whismanoid 19:50cf5da53d36 502 //
whismanoid 19:50cf5da53d36 503 // @future test tinyTester.DigitalIn_Read_Expect_WarnOnly(DigitalIn& digitalInPin, const char* pinName, int expect_result, const char *expect_description)
whismanoid 19:50cf5da53d36 504 //
whismanoid 19:50cf5da53d36 505 // TODO1: #169 SelfTest support tinyTester.max541.Set_Code
whismanoid 19:50cf5da53d36 506 // @future test tinyTester.max541.Set_Code(0x8000)
whismanoid 19:50cf5da53d36 507 //
whismanoid 0:68e64068330f 508 // @return 1 on success; 0 on failure
whismanoid 0:68e64068330f 509 uint8_t MAX11410::Init(void)
whismanoid 0:68e64068330f 510 {
whismanoid 0:68e64068330f 511
whismanoid 0:68e64068330f 512 //----------------------------------------
whismanoid 1:d57c1a2cb83c 513 // AIN0-AIN1 reference voltage, in Volts
whismanoid 22:c6812214a933 514 ref0_v = 2.500;
whismanoid 1:d57c1a2cb83c 515
whismanoid 1:d57c1a2cb83c 516 //----------------------------------------
whismanoid 1:d57c1a2cb83c 517 // REF1P-REF1N reference resistance, in Ohms
whismanoid 22:c6812214a933 518 ref1_v = 4999;
whismanoid 1:d57c1a2cb83c 519
whismanoid 1:d57c1a2cb83c 520 //----------------------------------------
whismanoid 1:d57c1a2cb83c 521 // REF2P-REF2N reference voltage, in Volts
whismanoid 22:c6812214a933 522 ref2_v = 2.500;
whismanoid 1:d57c1a2cb83c 523
whismanoid 1:d57c1a2cb83c 524 //----------------------------------------
whismanoid 1:d57c1a2cb83c 525 // AVDD-AGND supply voltage, in Volts
whismanoid 22:c6812214a933 526 avdd_v = 3.300;
whismanoid 1:d57c1a2cb83c 527
whismanoid 1:d57c1a2cb83c 528 //----------------------------------------
whismanoid 5:a2e74357cfc0 529 // RTD Resistance measurement; Thermocouple Cold Junction, in Ohms
whismanoid 22:c6812214a933 530 rtd_ohm = 1000.0;
whismanoid 5:a2e74357cfc0 531
whismanoid 5:a2e74357cfc0 532 //----------------------------------------
whismanoid 3:658a93dfb2d8 533 // Temperature calculated from RTD Resistance; Thermocouple Cold Junction, in degrees C
whismanoid 22:c6812214a933 534 rtd_degc = 25.0;
whismanoid 3:658a93dfb2d8 535
whismanoid 3:658a93dfb2d8 536 //----------------------------------------
whismanoid 1:d57c1a2cb83c 537 // shadow of register ctrl CMD_r000_1001_dddd_dddd_CTRL
whismanoid 1:d57c1a2cb83c 538 ctrl = 0x01;
whismanoid 1:d57c1a2cb83c 539
whismanoid 1:d57c1a2cb83c 540 //----------------------------------------
whismanoid 23:22e7830bcccb 541 // set by Configure_PGA gain index register pga CMD_r000_1110_00ss_0ggg_PGA
whismanoid 9:06ca88952f1c 542 pgaGain = 1;
whismanoid 9:06ca88952f1c 543
whismanoid 9:06ca88952f1c 544 //----------------------------------------
whismanoid 21:847b2220e96e 545 // When driver polls status of a pin signal or a register status bit,
whismanoid 21:847b2220e96e 546 // and there is no device physically connected, the driver must
whismanoid 21:847b2220e96e 547 // be able to halt and report failure if too many tries. Each attempt
whismanoid 22:c6812214a933 548 // counts down until loop_limit is reached or exceeded.
whismanoid 21:847b2220e96e 549 //
whismanoid 21:847b2220e96e 550 // If driver seems to hang or takes too long to decide that device
whismanoid 21:847b2220e96e 551 // is not connected, reduce the futility countdown limit value.
whismanoid 21:847b2220e96e 552 //
whismanoid 21:847b2220e96e 553 // If driver sometimes works but sometimes intermittently fails to
whismanoid 21:847b2220e96e 554 // recognize device is attached, increase the futility countdown limit.
whismanoid 22:c6812214a933 555 loop_limit = 30;
whismanoid 22:c6812214a933 556
whismanoid 22:c6812214a933 557 //----------------------------------------
whismanoid 22:c6812214a933 558 // timing delay after enable RTD bias current in Measure_RTD()
whismanoid 22:c6812214a933 559 rtd_ms = 100;
whismanoid 21:847b2220e96e 560
whismanoid 21:847b2220e96e 561 //----------------------------------------
whismanoid 23:22e7830bcccb 562 // filter register configuration in Measure_RTD() -- 0x34 LINEF_11_SINC4 RATE_0100 output data rate 60SPS
whismanoid 23:22e7830bcccb 563 rtd_filter = 0x34;
whismanoid 23:22e7830bcccb 564
whismanoid 23:22e7830bcccb 565 //----------------------------------------
whismanoid 23:22e7830bcccb 566 // ctrl register configuration in Measure_RTD() -- 0x40 unipolar, 0x01 REF_SEL_001_REF1P_REF1N
whismanoid 23:22e7830bcccb 567 rtd_ctrl = 0x41;
whismanoid 23:22e7830bcccb 568
whismanoid 23:22e7830bcccb 569 //----------------------------------------
whismanoid 23:22e7830bcccb 570 // source register configuration in Measure_RTD() -- 0x0B IDAC_MODE_1011_400uA
whismanoid 23:22e7830bcccb 571 rtd_source = 0x0B;
whismanoid 23:22e7830bcccb 572
whismanoid 23:22e7830bcccb 573 //----------------------------------------
whismanoid 23:22e7830bcccb 574 // pga register configuration in Measure_RTD() -- 0x21 SIG_PATH_10_PGA GAIN_001_2
whismanoid 23:22e7830bcccb 575 rtd_pga = 0x21;
whismanoid 23:22e7830bcccb 576
whismanoid 23:22e7830bcccb 577 //----------------------------------------
whismanoid 21:847b2220e96e 578 // list of registers to be read by menu item * with no arguments
whismanoid 21:847b2220e96e 579 static MAX11410::MAX11410_CMD_enum_t readAllStatusListValues[] = {
whismanoid 21:847b2220e96e 580 MAX11410::CMD_r000_0000_xxxx_xxdd_PD,
whismanoid 21:847b2220e96e 581 MAX11410::CMD_r000_0001_xddd_xxdd_CONV_START,
whismanoid 21:847b2220e96e 582 MAX11410::CMD_r000_0010_xddd_dddd_SEQ_START,
whismanoid 21:847b2220e96e 583 MAX11410::CMD_r000_0011_xxxx_xddd_CAL_START,
whismanoid 21:847b2220e96e 584 MAX11410::CMD_r000_0100_dddd_xddd_GP0_CTRL,
whismanoid 21:847b2220e96e 585 MAX11410::CMD_r000_0101_dddd_xddd_GP1_CTRL,
whismanoid 21:847b2220e96e 586 MAX11410::CMD_r000_0110_xddd_xxdd_GP_CONV,
whismanoid 21:847b2220e96e 587 MAX11410::CMD_r000_0111_xddd_dddd_GP_SEQ_ADDR,
whismanoid 21:847b2220e96e 588 MAX11410::CMD_r000_1000_x0dd_dddd_FILTER,
whismanoid 21:847b2220e96e 589 MAX11410::CMD_r000_1001_dddd_dddd_CTRL,
whismanoid 21:847b2220e96e 590 MAX11410::CMD_r000_1010_dddd_dddd_SOURCE,
whismanoid 21:847b2220e96e 591 MAX11410::CMD_r000_1011_dddd_dddd_MUX_CTRL0,
whismanoid 21:847b2220e96e 592 MAX11410::CMD_r000_1100_dddd_dddd_MUX_CTRL1,
whismanoid 21:847b2220e96e 593 MAX11410::CMD_r000_1101_dddd_dddd_MUX_CTRL2,
whismanoid 23:22e7830bcccb 594 MAX11410::CMD_r000_1110_00ss_0ggg_PGA,
whismanoid 21:847b2220e96e 595 MAX11410::CMD_r000_1111_dddd_dddd_WAIT_EXT,
whismanoid 21:847b2220e96e 596 MAX11410::CMD_r001_0000_xxxx_xxxx_WAIT_START,
whismanoid 21:847b2220e96e 597 };
whismanoid 21:847b2220e96e 598 readAllStatusList = readAllStatusListValues;
whismanoid 21:847b2220e96e 599
whismanoid 21:847b2220e96e 600 //----------------------------------------
whismanoid 21:847b2220e96e 601 // number of registers to be read by menu item * with no arguments
whismanoid 21:847b2220e96e 602 readAllStatusListLen = 17;
whismanoid 21:847b2220e96e 603
whismanoid 21:847b2220e96e 604 //----------------------------------------
whismanoid 9:06ca88952f1c 605 // Device ID Validation
whismanoid 9:06ca88952f1c 606 const uint32_t part_id_expect = 0x000F02;
whismanoid 9:06ca88952f1c 607 uint32_t part_id_readback;
whismanoid 9:06ca88952f1c 608 RegRead(CMD_r001_0001_xxxx_xxxx_xxxx_xxxx_xxxx_xddd_PART_ID, &part_id_readback);
whismanoid 9:06ca88952f1c 609 if (part_id_readback != part_id_expect) return 0;
whismanoid 9:06ca88952f1c 610
whismanoid 9:06ca88952f1c 611 //----------------------------------------
whismanoid 1:d57c1a2cb83c 612 // write8 0x00 PD = 0x03 (Reset Registers; enter Standby mode)
whismanoid 1:d57c1a2cb83c 613 RegWrite(CMD_r000_0000_xxxx_xxdd_PD, PD_11_Reset);
whismanoid 1:d57c1a2cb83c 614
whismanoid 1:d57c1a2cb83c 615 //----------------------------------------
whismanoid 1:d57c1a2cb83c 616 // write8 0x00 PD = 0x00 (NOP)
whismanoid 1:d57c1a2cb83c 617 RegWrite(CMD_r000_0000_xxxx_xxdd_PD, PD_00_Normal);
whismanoid 0:68e64068330f 618
whismanoid 0:68e64068330f 619 //----------------------------------------
whismanoid 0:68e64068330f 620 // success
whismanoid 0:68e64068330f 621 return 1;
whismanoid 0:68e64068330f 622 }
whismanoid 0:68e64068330f 623
whismanoid 0:68e64068330f 624 //----------------------------------------
whismanoid 1:d57c1a2cb83c 625 // Return the physical voltage corresponding to conversion result,
whismanoid 1:d57c1a2cb83c 626 // for unipolar mode.
whismanoid 0:68e64068330f 627 // Does not perform any offset or gain correction.
whismanoid 0:68e64068330f 628 //
whismanoid 1:d57c1a2cb83c 629 // @pre CTRL::U_BN = 1 -- Unipolar mode
whismanoid 1:d57c1a2cb83c 630 // @pre CTRL::FORMAT = x
whismanoid 0:68e64068330f 631 // @pre VRef = Voltage of REF input, in Volts
whismanoid 0:68e64068330f 632 // @param[in] value_u24: raw 24-bit MAX11410 code (right justified).
whismanoid 0:68e64068330f 633 // @return physical voltage corresponding to MAX11410 code.
whismanoid 14:b49eecf7e4d8 634 //
whismanoid 21:847b2220e96e 635 // @test group UNIPOLAR // Verify function VoltageOfCode_Unipolar
whismanoid 21:847b2220e96e 636 // @test group UNIPOLAR tinyTester.blink_time_msec = 20 // quickly speed through the software verification
whismanoid 21:847b2220e96e 637 // @test group UNIPOLAR Configure_CTRL_REF(2) expect 1 // These tests require REF2 = 2.500V
whismanoid 21:847b2220e96e 638 // @test group UNIPOLAR Configure_PGA(0,0) expect 1 // These tests require PGA gain=1
whismanoid 19:50cf5da53d36 639 // @test group UNIPOLAR VoltageOfCode_Unipolar(0xFFFFFF) expect 2.500 within 0.030 // Full Scale
whismanoid 19:50cf5da53d36 640 // @test group UNIPOLAR VoltageOfCode_Unipolar(0xFFFFFE) expect 2.500 // Full Scale
whismanoid 19:50cf5da53d36 641 // @test group UNIPOLAR VoltageOfCode_Unipolar(0xCCCCCC) expect 2.000 // Two Volts
whismanoid 19:50cf5da53d36 642 // @test group UNIPOLAR VoltageOfCode_Unipolar(0xC00000) expect 1.875 // 75% Scale
whismanoid 19:50cf5da53d36 643 // @test group UNIPOLAR VoltageOfCode_Unipolar(0x800000) expect 1.250 // Mid Scale
whismanoid 19:50cf5da53d36 644 // @test group UNIPOLAR VoltageOfCode_Unipolar(0x666666) expect 1.000 // One Volt
whismanoid 19:50cf5da53d36 645 // @test group UNIPOLAR VoltageOfCode_Unipolar(0x400000) expect 0.625 // 25% Scale
whismanoid 19:50cf5da53d36 646 // @test group UNIPOLAR VoltageOfCode_Unipolar(0x0A3D70) expect 0.100 // 100mV
whismanoid 19:50cf5da53d36 647 // @test group UNIPOLAR VoltageOfCode_Unipolar(0x000064) expect 0.000014901162 // 100 LSB
whismanoid 19:50cf5da53d36 648 // @test group UNIPOLAR VoltageOfCode_Unipolar(0x00000A) expect 0.0000014901162 // Ten LSB
whismanoid 19:50cf5da53d36 649 // @test group UNIPOLAR VoltageOfCode_Unipolar(0x000003) expect 0.00000044703483 // Three LSB
whismanoid 19:50cf5da53d36 650 // @test group UNIPOLAR VoltageOfCode_Unipolar(0x000002) expect 0.00000029802326 // Two LSB
whismanoid 19:50cf5da53d36 651 // @test group UNIPOLAR VoltageOfCode_Unipolar(0x000001) expect 0.00000014901162 // One LSB
whismanoid 19:50cf5da53d36 652 // @test group UNIPOLAR VoltageOfCode_Unipolar(0x000000) expect 0.0 // Zero Scale
whismanoid 21:847b2220e96e 653 // @test group UNIPOLAR tinyTester.blink_time_msec = 75 // default 75 resume hardware self test
whismanoid 1:d57c1a2cb83c 654 //
whismanoid 1:d57c1a2cb83c 655 double MAX11410::VoltageOfCode_Unipolar(uint32_t value_u24)
whismanoid 0:68e64068330f 656 {
whismanoid 0:68e64068330f 657
whismanoid 0:68e64068330f 658 //----------------------------------------
whismanoid 0:68e64068330f 659 // Linear map min and max endpoints
whismanoid 22:c6812214a933 660 double VRef = ref2_v;
whismanoid 1:d57c1a2cb83c 661 uint8_t ref_sel = (ctrl & 0x03); // MAX11410_REF_SEL_enum_t
whismanoid 1:d57c1a2cb83c 662 switch(ref_sel)
whismanoid 1:d57c1a2cb83c 663 {
whismanoid 22:c6812214a933 664 case REF_SEL_000_AIN0_AIN1: VRef = ref0_v; break;
whismanoid 22:c6812214a933 665 case REF_SEL_001_REF1P_REF1N: VRef = ref1_v; break;
whismanoid 22:c6812214a933 666 case REF_SEL_010_REF2P_REF2N: VRef = ref2_v; break;
whismanoid 22:c6812214a933 667 case REF_SEL_011_AVDD_AGND: VRef = avdd_v; break;
whismanoid 22:c6812214a933 668 case REF_SEL_100_AIN0_AGND: VRef = ref0_v; break;
whismanoid 22:c6812214a933 669 case REF_SEL_101_REF1P_AGND: VRef = ref1_v; break;
whismanoid 22:c6812214a933 670 case REF_SEL_110_REF2P_AGND: VRef = ref2_v; break;
whismanoid 22:c6812214a933 671 case REF_SEL_111_AVDD_AGND: VRef = avdd_v; break;
whismanoid 1:d57c1a2cb83c 672 }
whismanoid 0:68e64068330f 673 double MaxScaleVoltage = VRef; // voltage of maximum code 0xffffff
whismanoid 0:68e64068330f 674 double MinScaleVoltage = 0.0; // voltage of minimum code 0x000
whismanoid 0:68e64068330f 675 const uint32_t FULL_SCALE_CODE_24BIT = 0xffffff;
whismanoid 0:68e64068330f 676 const uint32_t MaxCode = FULL_SCALE_CODE_24BIT;
whismanoid 0:68e64068330f 677 const uint32_t MinCode = 0x000;
whismanoid 0:68e64068330f 678 double codeFraction = ((double)value_u24 - MinCode) / (MaxCode - MinCode + 1);
whismanoid 1:d57c1a2cb83c 679 return (MinScaleVoltage + ((MaxScaleVoltage - MinScaleVoltage) * codeFraction)) / pgaGain;
whismanoid 1:d57c1a2cb83c 680 }
whismanoid 1:d57c1a2cb83c 681
whismanoid 1:d57c1a2cb83c 682 //----------------------------------------
whismanoid 1:d57c1a2cb83c 683 // Return the physical voltage corresponding to conversion result,
whismanoid 1:d57c1a2cb83c 684 // when conversion format is Bipolar mode, offset binary.
whismanoid 1:d57c1a2cb83c 685 // Does not perform any offset or gain correction.
whismanoid 1:d57c1a2cb83c 686 //
whismanoid 1:d57c1a2cb83c 687 // @pre CTRL::U_BN = 0 -- Bipolar mode
whismanoid 1:d57c1a2cb83c 688 // @pre CTRL::FORMAT = 1 -- offset binary
whismanoid 1:d57c1a2cb83c 689 // @pre VRef = Voltage of REF input, in Volts
whismanoid 1:d57c1a2cb83c 690 // @param[in] value_u24: raw 24-bit MAX11410 code (right justified).
whismanoid 1:d57c1a2cb83c 691 // @return physical voltage corresponding to MAX11410 code.
whismanoid 14:b49eecf7e4d8 692 //
whismanoid 21:847b2220e96e 693 // @test group BIPOB // Verify function VoltageOfCode_Bipolar_OffsetBinary
whismanoid 21:847b2220e96e 694 // @test group BIPOB tinyTester.blink_time_msec = 20 // quickly speed through the software verification
whismanoid 21:847b2220e96e 695 // @test group BIPOB Configure_CTRL_REF(2) expect 1 // These tests require REF2 = 2.500V
whismanoid 21:847b2220e96e 696 // @test group BIPOB Configure_PGA(0,0) expect 1 // These tests require PGA gain=1
whismanoid 19:50cf5da53d36 697 // @test group BIPOB VoltageOfCode_Bipolar_OffsetBinary(0xFFFFFF) expect 2.5 within 0.030 // Full Scale
whismanoid 19:50cf5da53d36 698 // @test group BIPOB VoltageOfCode_Bipolar_OffsetBinary(0xFFFFFE) expect 2.5 // Full Scale
whismanoid 19:50cf5da53d36 699 // @test group BIPOB VoltageOfCode_Bipolar_OffsetBinary(0xC00000) expect 1.25 // Mid Scale
whismanoid 19:50cf5da53d36 700 // @test group BIPOB VoltageOfCode_Bipolar_OffsetBinary(0x800003) expect 0.00000894069671 // Three LSB
whismanoid 19:50cf5da53d36 701 // @test group BIPOB VoltageOfCode_Bipolar_OffsetBinary(0x800002) expect 0.00000596046447 // Two LSB
whismanoid 19:50cf5da53d36 702 // @test group BIPOB VoltageOfCode_Bipolar_OffsetBinary(0x800001) expect 0.0000029802326 // One LSB
whismanoid 19:50cf5da53d36 703 // @test group BIPOB VoltageOfCode_Bipolar_OffsetBinary(0x800000) expect 0.0 // Zero Scale
whismanoid 19:50cf5da53d36 704 // @test group BIPOB VoltageOfCode_Bipolar_OffsetBinary(0x7FFFFF) expect -0.0000029802326 // Negative One LSB
whismanoid 19:50cf5da53d36 705 // @test group BIPOB VoltageOfCode_Bipolar_OffsetBinary(0x7FFFFE) expect -0.0000059604644 // Negative Two LSB
whismanoid 19:50cf5da53d36 706 // @test group BIPOB VoltageOfCode_Bipolar_OffsetBinary(0x7FFFFD) expect -0.0000089406967 // Negative Three LSB
whismanoid 19:50cf5da53d36 707 // @test group BIPOB VoltageOfCode_Bipolar_OffsetBinary(0x400000) expect -1.25 // Negative Mid Scale
whismanoid 19:50cf5da53d36 708 // @test group BIPOB VoltageOfCode_Bipolar_OffsetBinary(0x000001) expect -2.5 // Negative Full Scale
whismanoid 19:50cf5da53d36 709 // @test group BIPOB VoltageOfCode_Bipolar_OffsetBinary(0x000000) expect -2.5 // Negative Full Scale
whismanoid 21:847b2220e96e 710 // @test group BIPOB tinyTester.blink_time_msec = 75 // default 75 resume hardware self test
whismanoid 1:d57c1a2cb83c 711 //
whismanoid 1:d57c1a2cb83c 712 double MAX11410::VoltageOfCode_Bipolar_OffsetBinary(uint32_t value_u24)
whismanoid 1:d57c1a2cb83c 713 {
whismanoid 1:d57c1a2cb83c 714
whismanoid 1:d57c1a2cb83c 715 //----------------------------------------
whismanoid 1:d57c1a2cb83c 716 // Linear map min and max endpoints
whismanoid 22:c6812214a933 717 double VRef = ref2_v;
whismanoid 1:d57c1a2cb83c 718 uint8_t ref_sel = (ctrl & 0x03); // MAX11410_REF_SEL_enum_t
whismanoid 1:d57c1a2cb83c 719 switch(ref_sel)
whismanoid 1:d57c1a2cb83c 720 {
whismanoid 22:c6812214a933 721 case REF_SEL_000_AIN0_AIN1: VRef = ref0_v; break;
whismanoid 22:c6812214a933 722 case REF_SEL_001_REF1P_REF1N: VRef = ref1_v; break;
whismanoid 22:c6812214a933 723 case REF_SEL_010_REF2P_REF2N: VRef = ref2_v; break;
whismanoid 22:c6812214a933 724 case REF_SEL_011_AVDD_AGND: VRef = avdd_v; break;
whismanoid 22:c6812214a933 725 case REF_SEL_100_AIN0_AGND: VRef = ref0_v; break;
whismanoid 22:c6812214a933 726 case REF_SEL_101_REF1P_AGND: VRef = ref1_v; break;
whismanoid 22:c6812214a933 727 case REF_SEL_110_REF2P_AGND: VRef = ref2_v; break;
whismanoid 22:c6812214a933 728 case REF_SEL_111_AVDD_AGND: VRef = avdd_v; break;
whismanoid 1:d57c1a2cb83c 729 }
whismanoid 1:d57c1a2cb83c 730 double MaxScaleVoltage = 2*VRef; // voltage of maximum code 0x7fffff
whismanoid 1:d57c1a2cb83c 731 double MinScaleVoltage = 0; // voltage of minimum code 0x800000;
whismanoid 1:d57c1a2cb83c 732 const uint32_t FULL_SCALE_CODE_24BIT = 0x7fffff;
whismanoid 1:d57c1a2cb83c 733 const uint32_t MaxCode = FULL_SCALE_CODE_24BIT;
whismanoid 1:d57c1a2cb83c 734 const int32_t CodeSpan = 0x1000000;
whismanoid 1:d57c1a2cb83c 735 const uint32_t MinCode = 0x800000;
whismanoid 1:d57c1a2cb83c 736 double codeFraction = ((double)value_u24 - MinCode) / CodeSpan;
whismanoid 1:d57c1a2cb83c 737 return (MinScaleVoltage + ((MaxScaleVoltage - MinScaleVoltage) * codeFraction)) / pgaGain;
whismanoid 1:d57c1a2cb83c 738 }
whismanoid 1:d57c1a2cb83c 739
whismanoid 1:d57c1a2cb83c 740 //----------------------------------------
whismanoid 1:d57c1a2cb83c 741 // Return the physical voltage corresponding to conversion result,
whismanoid 1:d57c1a2cb83c 742 // when conversion format is Bipolar mode, 2's complement.
whismanoid 1:d57c1a2cb83c 743 // Does not perform any offset or gain correction.
whismanoid 1:d57c1a2cb83c 744 //
whismanoid 1:d57c1a2cb83c 745 // @pre CTRL::U_BN = 0 -- Bipolar mode
whismanoid 1:d57c1a2cb83c 746 // @pre CTRL::FORMAT = 0 -- 2's complement
whismanoid 1:d57c1a2cb83c 747 // @pre VRef = Voltage of REF input, in Volts
whismanoid 1:d57c1a2cb83c 748 // @param[in] value_u24: raw 24-bit MAX11410 code (right justified).
whismanoid 1:d57c1a2cb83c 749 // @return physical voltage corresponding to MAX11410 code.
whismanoid 14:b49eecf7e4d8 750 //
whismanoid 21:847b2220e96e 751 // @test group BIP2C // Verify function VoltageOfCode_Bipolar_2sComplement
whismanoid 21:847b2220e96e 752 // @test group BIP2C tinyTester.blink_time_msec = 20 // quickly speed through the software verification
whismanoid 21:847b2220e96e 753 // @test group BIP2C Configure_CTRL_REF(2) expect 1 // These tests require REF2 = 2.500V
whismanoid 21:847b2220e96e 754 // @test group BIP2C Configure_PGA(0,0) expect 1 // These tests require PGA gain=1
whismanoid 19:50cf5da53d36 755 // @test group BIP2C VoltageOfCode_Bipolar_2sComplement(0x7FFFFF) expect 2.500 within 0.030 // Full Scale
whismanoid 19:50cf5da53d36 756 // @test group BIP2C VoltageOfCode_Bipolar_2sComplement(0x7FFFFE) expect 2.500 // Full Scale
whismanoid 19:50cf5da53d36 757 // @test group BIP2C VoltageOfCode_Bipolar_2sComplement(0x666666) expect 2.000 // Two Volts
whismanoid 19:50cf5da53d36 758 // @test group BIP2C VoltageOfCode_Bipolar_2sComplement(0x600000) expect 1.875 // 75% Scale
whismanoid 19:50cf5da53d36 759 // @test group BIP2C VoltageOfCode_Bipolar_2sComplement(0x400000) expect 1.250 // Mid Scale
whismanoid 19:50cf5da53d36 760 // @test group BIP2C VoltageOfCode_Bipolar_2sComplement(0x333333) expect 1.000 // One Volt
whismanoid 19:50cf5da53d36 761 // @test group BIP2C VoltageOfCode_Bipolar_2sComplement(0x200000) expect 0.625 // 25% Scale
whismanoid 19:50cf5da53d36 762 // @test group BIP2C VoltageOfCode_Bipolar_2sComplement(0x051eb8) expect 0.100 // 100mV
whismanoid 19:50cf5da53d36 763 // @test group BIP2C VoltageOfCode_Bipolar_2sComplement(0x000003) expect 0.00000894069671 // Three LSB
whismanoid 19:50cf5da53d36 764 // @test group BIP2C VoltageOfCode_Bipolar_2sComplement(0x000002) expect 0.00000596046447 // Two LSB
whismanoid 19:50cf5da53d36 765 // @test group BIP2C VoltageOfCode_Bipolar_2sComplement(0x000001) expect 0.0000029802326 // One LSB
whismanoid 19:50cf5da53d36 766 // @test group BIP2C VoltageOfCode_Bipolar_2sComplement(0x000000) expect 0.0 // Zero Scale
whismanoid 19:50cf5da53d36 767 // @test group BIP2C VoltageOfCode_Bipolar_2sComplement(0xFFFFFF) expect -0.0000029802326 // Negative One LSB
whismanoid 19:50cf5da53d36 768 // @test group BIP2C VoltageOfCode_Bipolar_2sComplement(0xFFFFFE) expect -0.0000059604644 // Negative Two LSB
whismanoid 19:50cf5da53d36 769 // @test group BIP2C VoltageOfCode_Bipolar_2sComplement(0xFFFFFD) expect -0.0000089406967 // Negative Three LSB
whismanoid 19:50cf5da53d36 770 // @test group BIP2C VoltageOfCode_Bipolar_2sComplement(0xFAE148) expect -0.100 // Negative 100mV
whismanoid 19:50cf5da53d36 771 // @test group BIP2C VoltageOfCode_Bipolar_2sComplement(0xE00000) expect -0.625 // Negative 25% Scale
whismanoid 19:50cf5da53d36 772 // @test group BIP2C VoltageOfCode_Bipolar_2sComplement(0xCCCCCD) expect -1.000 // Negative One Volt
whismanoid 19:50cf5da53d36 773 // @test group BIP2C VoltageOfCode_Bipolar_2sComplement(0xC00000) expect -1.250 // Negative Mid Scale
whismanoid 19:50cf5da53d36 774 // @test group BIP2C VoltageOfCode_Bipolar_2sComplement(0xA00000) expect -1.875 // Negative 75% Scale
whismanoid 19:50cf5da53d36 775 // @test group BIP2C VoltageOfCode_Bipolar_2sComplement(0x99999A) expect -2.000 // Negative Two Volts
whismanoid 19:50cf5da53d36 776 // @test group BIP2C VoltageOfCode_Bipolar_2sComplement(0x800001) expect -2.500 // Negative Full Scale
whismanoid 19:50cf5da53d36 777 // @test group BIP2C VoltageOfCode_Bipolar_2sComplement(0x800000) expect -2.500 // Negative Full Scale
whismanoid 21:847b2220e96e 778 // @test group BIP2C tinyTester.blink_time_msec = 75 // default 75 resume hardware self test
whismanoid 1:d57c1a2cb83c 779 //
whismanoid 1:d57c1a2cb83c 780 double MAX11410::VoltageOfCode_Bipolar_2sComplement(uint32_t value_u24)
whismanoid 1:d57c1a2cb83c 781 {
whismanoid 1:d57c1a2cb83c 782
whismanoid 1:d57c1a2cb83c 783 //----------------------------------------
whismanoid 1:d57c1a2cb83c 784 // Linear map min and max endpoints
whismanoid 22:c6812214a933 785 double VRef = ref2_v;
whismanoid 1:d57c1a2cb83c 786 uint8_t ref_sel = (ctrl & 0x03); // MAX11410_REF_SEL_enum_t
whismanoid 1:d57c1a2cb83c 787 switch(ref_sel)
whismanoid 1:d57c1a2cb83c 788 {
whismanoid 22:c6812214a933 789 case REF_SEL_000_AIN0_AIN1: VRef = ref0_v; break;
whismanoid 22:c6812214a933 790 case REF_SEL_001_REF1P_REF1N: VRef = ref1_v; break;
whismanoid 22:c6812214a933 791 case REF_SEL_010_REF2P_REF2N: VRef = ref2_v; break;
whismanoid 22:c6812214a933 792 case REF_SEL_011_AVDD_AGND: VRef = avdd_v; break;
whismanoid 22:c6812214a933 793 case REF_SEL_100_AIN0_AGND: VRef = ref0_v; break;
whismanoid 22:c6812214a933 794 case REF_SEL_101_REF1P_AGND: VRef = ref1_v; break;
whismanoid 22:c6812214a933 795 case REF_SEL_110_REF2P_AGND: VRef = ref2_v; break;
whismanoid 22:c6812214a933 796 case REF_SEL_111_AVDD_AGND: VRef = avdd_v; break;
whismanoid 1:d57c1a2cb83c 797 }
whismanoid 1:d57c1a2cb83c 798 double MaxScaleVoltage = 2 * VRef; // voltage of maximum code 0x7fffff
whismanoid 1:d57c1a2cb83c 799 double MinScaleVoltage = 0; // voltage of minimum code 0x800000
whismanoid 1:d57c1a2cb83c 800 const int32_t FULL_SCALE_CODE_24BIT_2S_COMPLEMENT = 0x7fffff;
whismanoid 1:d57c1a2cb83c 801 const int32_t SIGN_BIT_24BIT_2S_COMPLEMENT = 0x800000;
whismanoid 1:d57c1a2cb83c 802 if (value_u24 >= SIGN_BIT_24BIT_2S_COMPLEMENT) { value_u24 = value_u24 - (2 * SIGN_BIT_24BIT_2S_COMPLEMENT); }
whismanoid 1:d57c1a2cb83c 803 const int32_t MaxCode = FULL_SCALE_CODE_24BIT_2S_COMPLEMENT;
whismanoid 1:d57c1a2cb83c 804 const int32_t CodeSpan = 0x1000000;
whismanoid 1:d57c1a2cb83c 805 const int32_t MinCode = 0;
whismanoid 1:d57c1a2cb83c 806 double codeFraction = ((double)((int32_t)value_u24) - MinCode) / CodeSpan;
whismanoid 1:d57c1a2cb83c 807 return (MinScaleVoltage + ((MaxScaleVoltage - MinScaleVoltage) * codeFraction)) / pgaGain;
whismanoid 1:d57c1a2cb83c 808 }
whismanoid 1:d57c1a2cb83c 809
whismanoid 1:d57c1a2cb83c 810 //----------------------------------------
whismanoid 1:d57c1a2cb83c 811 // Return the physical voltage corresponding to conversion result,
whismanoid 1:d57c1a2cb83c 812 // when conversion format is determined by the CTRL register.
whismanoid 1:d57c1a2cb83c 813 // Does not perform any offset or gain correction.
whismanoid 1:d57c1a2cb83c 814 //
whismanoid 1:d57c1a2cb83c 815 // @pre CTRL::U_BN and CTRL::FORMAT = 0 select offset binary, 2's complement, or straight binary
whismanoid 1:d57c1a2cb83c 816 // @pre VRef = Voltage of REF input, in Volts
whismanoid 1:d57c1a2cb83c 817 // @param[in] value_u24: raw 24-bit MAX11410 code (right justified).
whismanoid 1:d57c1a2cb83c 818 // @return physical voltage corresponding to MAX11410 code.
whismanoid 1:d57c1a2cb83c 819 double MAX11410::VoltageOfCode(uint32_t value_u24)
whismanoid 1:d57c1a2cb83c 820 {
whismanoid 1:d57c1a2cb83c 821
whismanoid 1:d57c1a2cb83c 822 //----------------------------------------
whismanoid 1:d57c1a2cb83c 823 // Determine format from CTRL register U_BN and FORMAT
whismanoid 1:d57c1a2cb83c 824 uint8_t u_bn_bitmask = (1 << 6);
whismanoid 1:d57c1a2cb83c 825 uint8_t format_bitmask = (1 << 5);
whismanoid 1:d57c1a2cb83c 826 if ((ctrl & u_bn_bitmask) != 0)
whismanoid 1:d57c1a2cb83c 827 {
whismanoid 1:d57c1a2cb83c 828 return VoltageOfCode_Unipolar(value_u24);
whismanoid 1:d57c1a2cb83c 829 }
whismanoid 1:d57c1a2cb83c 830 if ((ctrl & format_bitmask) != 0)
whismanoid 1:d57c1a2cb83c 831 {
whismanoid 1:d57c1a2cb83c 832 return VoltageOfCode_Bipolar_OffsetBinary(value_u24);
whismanoid 1:d57c1a2cb83c 833 }
whismanoid 1:d57c1a2cb83c 834 return VoltageOfCode_Bipolar_2sComplement(value_u24);
whismanoid 0:68e64068330f 835 }
whismanoid 0:68e64068330f 836
whismanoid 0:68e64068330f 837 //----------------------------------------
whismanoid 0:68e64068330f 838 // Write a MAX11410 register.
whismanoid 0:68e64068330f 839 //
whismanoid 11:abde565b8497 840 // CMDOP_1aaa_aaaa_ReadRegister bit is cleared 0 indicating a write operation.
whismanoid 0:68e64068330f 841 //
whismanoid 0:68e64068330f 842 // MAX11410 register length can be determined by function RegSize.
whismanoid 0:68e64068330f 843 //
whismanoid 0:68e64068330f 844 // For 8-bit register size:
whismanoid 0:68e64068330f 845 //
whismanoid 0:68e64068330f 846 // SPI 16-bit transfer
whismanoid 0:68e64068330f 847 //
whismanoid 0:68e64068330f 848 // SPI MOSI = 0aaa_aaaa_dddd_dddd
whismanoid 0:68e64068330f 849 //
whismanoid 0:68e64068330f 850 // SPI MISO = xxxx_xxxx_xxxx_xxxx
whismanoid 0:68e64068330f 851 //
whismanoid 0:68e64068330f 852 // For 16-bit register size:
whismanoid 0:68e64068330f 853 //
whismanoid 0:68e64068330f 854 // SPI 24-bit or 32-bit transfer
whismanoid 0:68e64068330f 855 //
whismanoid 0:68e64068330f 856 // SPI MOSI = 0aaa_aaaa_dddd_dddd_dddd_dddd
whismanoid 0:68e64068330f 857 //
whismanoid 0:68e64068330f 858 // SPI MISO = xxxx_xxxx_xxxx_xxxx_xxxx_xxxx
whismanoid 0:68e64068330f 859 //
whismanoid 0:68e64068330f 860 // For 24-bit register size:
whismanoid 0:68e64068330f 861 //
whismanoid 0:68e64068330f 862 // SPI 32-bit transfer
whismanoid 0:68e64068330f 863 //
whismanoid 0:68e64068330f 864 // SPI MOSI = 0aaa_aaaa_dddd_dddd_dddd_dddd_dddd_dddd
whismanoid 0:68e64068330f 865 //
whismanoid 0:68e64068330f 866 // SPI MISO = xxxx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx
whismanoid 0:68e64068330f 867 //
whismanoid 0:68e64068330f 868 // @return 1 on success; 0 on failure
whismanoid 10:7adee48a7f82 869 uint8_t MAX11410::RegWrite(MAX11410_CMD_enum_t commandByte, uint32_t regData)
whismanoid 0:68e64068330f 870 {
whismanoid 0:68e64068330f 871
whismanoid 0:68e64068330f 872 //----------------------------------------
whismanoid 21:847b2220e96e 873 // switch based on register address size RegSize(commandByte)
whismanoid 11:abde565b8497 874 commandByte = (MAX11410_CMD_enum_t)((commandByte &~ CMDOP_1aaa_aaaa_ReadRegister) & 0xFF);
whismanoid 10:7adee48a7f82 875 switch(RegSize(commandByte))
whismanoid 0:68e64068330f 876 {
whismanoid 0:68e64068330f 877 case 8: // 8-bit register size
whismanoid 0:68e64068330f 878 {
whismanoid 0:68e64068330f 879 // SPI 16-bit transfer
whismanoid 0:68e64068330f 880 // SPI MOSI = 0aaa_aaaa_dddd_dddd
whismanoid 0:68e64068330f 881 // SPI MISO = xxxx_xxxx_xxxx_xxxx
whismanoid 10:7adee48a7f82 882 int16_t mosiData16 = ((int16_t)commandByte << 8) | ((int16_t)regData & 0xFF);
whismanoid 0:68e64068330f 883 SPIoutputCS(0);
whismanoid 0:68e64068330f 884 SPIwrite16bits(mosiData16);
whismanoid 0:68e64068330f 885 SPIoutputCS(1);
whismanoid 24:428b7670e45f 886 //
whismanoid 24:428b7670e45f 887 if (commandByte == CMD_r000_0011_xxxx_xddd_CAL_START)
whismanoid 24:428b7670e45f 888 {
whismanoid 24:428b7670e45f 889 // after RegWrite CMD_r000_0011_xxxx_xddd_CAL_START, poll status until 0x000004 CAL_RDY
whismanoid 24:428b7670e45f 890 RegRead(CMD_r011_1000_dddd_dddd_dddd_dddd_dxxx_dddd_STATUS, &status);
whismanoid 24:428b7670e45f 891 // wait until /* MAX11410_STATUS_enum_t:: */ STATUS_000004_CAL_RDY indicates calibration is ready
whismanoid 24:428b7670e45f 892 // A bad SPI interface can cause bit slippage, which makes this loop get stuck. Expect *PART_ID? = 0x000F02
whismanoid 24:428b7670e45f 893 // while ((status & /* MAX11410_STATUS_enum_t:: */ STATUS_000010_DATA_RDY) == 0) {
whismanoid 24:428b7670e45f 894 // possible infinite loop; need a timeout or futility countdown to escape
whismanoid 24:428b7670e45f 895 for (int futility_countdown = loop_limit;
whismanoid 24:428b7670e45f 896 ((futility_countdown > 0) &&
whismanoid 24:428b7670e45f 897 ((status & /* MAX11410_STATUS_enum_t:: */ STATUS_000004_CAL_RDY) == 0));
whismanoid 24:428b7670e45f 898 futility_countdown--)
whismanoid 24:428b7670e45f 899 {
whismanoid 24:428b7670e45f 900 RegRead(CMD_r011_1000_dddd_dddd_dddd_dddd_dxxx_dddd_STATUS, &status);
whismanoid 24:428b7670e45f 901 }
whismanoid 24:428b7670e45f 902 }
whismanoid 0:68e64068330f 903 }
whismanoid 0:68e64068330f 904 break;
whismanoid 0:68e64068330f 905 case 16: // 16-bit register size
whismanoid 0:68e64068330f 906 #warning "Not Verified Yet: MAX11410::RegWrite 16-bit SPIreadWrite32bits"
whismanoid 0:68e64068330f 907 {
whismanoid 0:68e64068330f 908 // SPI 24-bit or 32-bit transfer
whismanoid 0:68e64068330f 909 // SPI MOSI = 0aaa_aaaa_dddd_dddd_dddd_dddd
whismanoid 0:68e64068330f 910 // SPI MISO = xxxx_xxxx_xxxx_xxxx_xxxx_xxxx
whismanoid 0:68e64068330f 911 // SPI MOSI = 0aaa_aaaa_dddd_dddd_dddd_dddd_0000_0000
whismanoid 0:68e64068330f 912 // SPI MISO = xxxx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx
whismanoid 10:7adee48a7f82 913 int32_t mosiData32 = ((int32_t)commandByte << 24) | (((int32_t)regData & 0xFFFF) << 8);
whismanoid 0:68e64068330f 914 SPIoutputCS(0);
whismanoid 0:68e64068330f 915 SPIreadWrite32bits(mosiData32);
whismanoid 0:68e64068330f 916 SPIoutputCS(1);
whismanoid 0:68e64068330f 917 }
whismanoid 0:68e64068330f 918 break;
whismanoid 0:68e64068330f 919 case 24: // 24-bit register size
whismanoid 0:68e64068330f 920 {
whismanoid 0:68e64068330f 921 // SPI 32-bit transfer
whismanoid 0:68e64068330f 922 // SPI MOSI = 0aaa_aaaa_dddd_dddd_dddd_dddd_dddd_dddd
whismanoid 0:68e64068330f 923 // SPI MISO = xxxx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx
whismanoid 10:7adee48a7f82 924 int32_t mosiData32 = ((int32_t)commandByte << 24) | ((int32_t)regData & 0x00FFFFFF);
whismanoid 0:68e64068330f 925 SPIoutputCS(0);
whismanoid 0:68e64068330f 926 SPIreadWrite32bits(mosiData32);
whismanoid 0:68e64068330f 927 SPIoutputCS(1);
whismanoid 0:68e64068330f 928 }
whismanoid 0:68e64068330f 929 break;
whismanoid 0:68e64068330f 930 }
whismanoid 0:68e64068330f 931
whismanoid 0:68e64068330f 932 //----------------------------------------
whismanoid 0:68e64068330f 933 // success
whismanoid 0:68e64068330f 934 return 1;
whismanoid 0:68e64068330f 935 }
whismanoid 0:68e64068330f 936
whismanoid 0:68e64068330f 937 //----------------------------------------
whismanoid 0:68e64068330f 938 // Read an 8-bit MAX11410 register
whismanoid 0:68e64068330f 939 //
whismanoid 11:abde565b8497 940 // CMDOP_1aaa_aaaa_ReadRegister bit is set 1 indicating a read operation.
whismanoid 0:68e64068330f 941 //
whismanoid 0:68e64068330f 942 // MAX11410 register length can be determined by function RegSize.
whismanoid 0:68e64068330f 943 //
whismanoid 0:68e64068330f 944 // For 8-bit register size:
whismanoid 0:68e64068330f 945 //
whismanoid 0:68e64068330f 946 // SPI 16-bit transfer
whismanoid 0:68e64068330f 947 //
whismanoid 0:68e64068330f 948 // SPI MOSI = 1aaa_aaaa_0000_0000
whismanoid 0:68e64068330f 949 //
whismanoid 0:68e64068330f 950 // SPI MISO = xxxx_xxxx_dddd_dddd
whismanoid 0:68e64068330f 951 //
whismanoid 0:68e64068330f 952 // For 16-bit register size:
whismanoid 0:68e64068330f 953 //
whismanoid 0:68e64068330f 954 // SPI 24-bit or 32-bit transfer
whismanoid 0:68e64068330f 955 //
whismanoid 0:68e64068330f 956 // SPI MOSI = 1aaa_aaaa_0000_0000_0000_0000
whismanoid 0:68e64068330f 957 //
whismanoid 0:68e64068330f 958 // SPI MISO = xxxx_xxxx_dddd_dddd_dddd_dddd
whismanoid 0:68e64068330f 959 //
whismanoid 0:68e64068330f 960 // For 24-bit register size:
whismanoid 0:68e64068330f 961 //
whismanoid 0:68e64068330f 962 // SPI 32-bit transfer
whismanoid 0:68e64068330f 963 //
whismanoid 0:68e64068330f 964 // SPI MOSI = 1aaa_aaaa_0000_0000_0000_0000_0000_0000
whismanoid 0:68e64068330f 965 //
whismanoid 0:68e64068330f 966 // SPI MISO = xxxx_xxxx_dddd_dddd_dddd_dddd_dddd_dddd
whismanoid 0:68e64068330f 967 //
whismanoid 0:68e64068330f 968 //
whismanoid 0:68e64068330f 969 // @return 1 on success; 0 on failure
whismanoid 10:7adee48a7f82 970 uint8_t MAX11410::RegRead(MAX11410_CMD_enum_t commandByte, uint32_t* ptrRegData)
whismanoid 0:68e64068330f 971 {
whismanoid 0:68e64068330f 972
whismanoid 0:68e64068330f 973 //----------------------------------------
whismanoid 21:847b2220e96e 974 // switch based on register address size RegSize(regAddress)
whismanoid 11:abde565b8497 975 commandByte = (MAX11410_CMD_enum_t)((commandByte &~ CMDOP_1aaa_aaaa_ReadRegister) & 0xFF);
whismanoid 10:7adee48a7f82 976 switch(RegSize(commandByte))
whismanoid 0:68e64068330f 977 {
whismanoid 0:68e64068330f 978 case 8: // 8-bit register size
whismanoid 0:68e64068330f 979 {
whismanoid 0:68e64068330f 980 // SPI 16-bit transfer
whismanoid 0:68e64068330f 981 // SPI MOSI = 1aaa_aaaa_0000_0000
whismanoid 0:68e64068330f 982 // SPI MISO = xxxx_xxxx_dddd_dddd
whismanoid 11:abde565b8497 983 int16_t mosiData16 = ((CMDOP_1aaa_aaaa_ReadRegister | (int16_t)commandByte) << 8) | ((int16_t)0);
whismanoid 0:68e64068330f 984 SPIoutputCS(0);
whismanoid 0:68e64068330f 985 int16_t misoData16 = SPIreadWrite16bits(mosiData16);
whismanoid 0:68e64068330f 986 SPIoutputCS(1);
whismanoid 0:68e64068330f 987 (*ptrRegData) = (misoData16 & 0x00FF);
whismanoid 0:68e64068330f 988 }
whismanoid 0:68e64068330f 989 break;
whismanoid 0:68e64068330f 990 case 16: // 16-bit register size
whismanoid 0:68e64068330f 991 #warning "Not Verified Yet: MAX11410::RegRead 16-bit SPIreadWrite32bits"
whismanoid 0:68e64068330f 992 {
whismanoid 0:68e64068330f 993 // SPI 24-bit or 32-bit transfer
whismanoid 0:68e64068330f 994 // SPI MOSI = 1aaa_aaaa_0000_0000_0000_0000
whismanoid 0:68e64068330f 995 // SPI MISO = xxxx_xxxx_dddd_dddd_dddd_dddd
whismanoid 0:68e64068330f 996 // SPI MOSI = 1aaa_aaaa_0000_0000_0000_0000_0000_0000
whismanoid 0:68e64068330f 997 // SPI MISO = xxxx_xxxx_dddd_dddd_dddd_dddd_xxxx_xxxx
whismanoid 11:abde565b8497 998 int32_t mosiData32 = ((CMDOP_1aaa_aaaa_ReadRegister | (int32_t)commandByte) << 24);
whismanoid 0:68e64068330f 999 SPIoutputCS(0);
whismanoid 0:68e64068330f 1000 int32_t misoData32 = SPIreadWrite32bits(mosiData32);
whismanoid 0:68e64068330f 1001 SPIoutputCS(1);
whismanoid 0:68e64068330f 1002 (*ptrRegData) = ((misoData32 >> 8) & 0x00FFFF);
whismanoid 0:68e64068330f 1003 }
whismanoid 0:68e64068330f 1004 break;
whismanoid 0:68e64068330f 1005 case 24: // 24-bit register size
whismanoid 0:68e64068330f 1006 {
whismanoid 0:68e64068330f 1007 // SPI 32-bit transfer
whismanoid 0:68e64068330f 1008 // SPI MOSI = 1aaa_aaaa_0000_0000_0000_0000_0000_0000
whismanoid 0:68e64068330f 1009 // SPI MISO = xxxx_xxxx_dddd_dddd_dddd_dddd_dddd_dddd
whismanoid 11:abde565b8497 1010 int32_t mosiData32 = ((CMDOP_1aaa_aaaa_ReadRegister | (int32_t)commandByte) << 24);
whismanoid 0:68e64068330f 1011 SPIoutputCS(0);
whismanoid 0:68e64068330f 1012 int32_t misoData32 = SPIreadWrite32bits(mosiData32);
whismanoid 0:68e64068330f 1013 SPIoutputCS(1);
whismanoid 0:68e64068330f 1014 (*ptrRegData) = (misoData32 & 0x00FFFFFF);
whismanoid 0:68e64068330f 1015 }
whismanoid 0:68e64068330f 1016 break;
whismanoid 0:68e64068330f 1017 }
whismanoid 0:68e64068330f 1018
whismanoid 0:68e64068330f 1019 //----------------------------------------
whismanoid 0:68e64068330f 1020 // success
whismanoid 0:68e64068330f 1021 return 1;
whismanoid 0:68e64068330f 1022 }
whismanoid 0:68e64068330f 1023
whismanoid 0:68e64068330f 1024 //----------------------------------------
whismanoid 0:68e64068330f 1025 // Return the size of a MAX11410 register
whismanoid 0:68e64068330f 1026 //
whismanoid 0:68e64068330f 1027 // @return 8 for 8-bit, 16 for 16-bit, 24 for 24-bit, else 0 for undefined register size
whismanoid 10:7adee48a7f82 1028 uint8_t MAX11410::RegSize(MAX11410_CMD_enum_t commandByte)
whismanoid 0:68e64068330f 1029 {
whismanoid 0:68e64068330f 1030
whismanoid 0:68e64068330f 1031 //----------------------------------------
whismanoid 0:68e64068330f 1032 // switch based on register address value regAddress
whismanoid 11:abde565b8497 1033 commandByte = (MAX11410_CMD_enum_t)((commandByte &~ CMDOP_1aaa_aaaa_ReadRegister) & 0xFF);
whismanoid 10:7adee48a7f82 1034 switch(commandByte)
whismanoid 0:68e64068330f 1035 {
whismanoid 0:68e64068330f 1036 default:
whismanoid 0:68e64068330f 1037 return 0; // undefined register size
whismanoid 0:68e64068330f 1038 case CMD_r000_0000_xxxx_xxdd_PD:
whismanoid 0:68e64068330f 1039 case CMD_r000_0001_xddd_xxdd_CONV_START:
whismanoid 0:68e64068330f 1040 case CMD_r000_0010_xddd_dddd_SEQ_START:
whismanoid 0:68e64068330f 1041 case CMD_r000_0011_xxxx_xddd_CAL_START:
whismanoid 0:68e64068330f 1042 case CMD_r000_0100_dddd_xddd_GP0_CTRL:
whismanoid 0:68e64068330f 1043 case CMD_r000_0101_dddd_xddd_GP1_CTRL:
whismanoid 0:68e64068330f 1044 case CMD_r000_0110_xddd_xxdd_GP_CONV:
whismanoid 0:68e64068330f 1045 case CMD_r000_0111_xddd_dddd_GP_SEQ_ADDR:
whismanoid 0:68e64068330f 1046 case CMD_r000_1000_x0dd_dddd_FILTER:
whismanoid 0:68e64068330f 1047 case CMD_r000_1001_dddd_dddd_CTRL:
whismanoid 0:68e64068330f 1048 case CMD_r000_1010_dddd_dddd_SOURCE:
whismanoid 0:68e64068330f 1049 case CMD_r000_1011_dddd_dddd_MUX_CTRL0:
whismanoid 0:68e64068330f 1050 case CMD_r000_1100_dddd_dddd_MUX_CTRL1:
whismanoid 0:68e64068330f 1051 case CMD_r000_1101_dddd_dddd_MUX_CTRL2:
whismanoid 23:22e7830bcccb 1052 case CMD_r000_1110_00ss_0ggg_PGA:
whismanoid 0:68e64068330f 1053 case CMD_r000_1111_dddd_dddd_WAIT_EXT:
whismanoid 0:68e64068330f 1054 case CMD_r001_0000_xxxx_xxxx_WAIT_START:
whismanoid 0:68e64068330f 1055 return 8; // 8-bit register size
whismanoid 0:68e64068330f 1056 case CMD_r001_0001_xxxx_xxxx_xxxx_xxxx_xxxx_xddd_PART_ID:
whismanoid 0:68e64068330f 1057 case CMD_r001_0010_xxxx_xxxx_dddd_xxdd_dddd_dddd_SYSC_SEL:
whismanoid 0:68e64068330f 1058 case CMD_r001_0011_dddd_dddd_dddd_dddd_dddd_dddd_SYS_OFF_A:
whismanoid 0:68e64068330f 1059 case CMD_r001_0100_dddd_dddd_dddd_dddd_dddd_dddd_SYS_OFF_B:
whismanoid 0:68e64068330f 1060 case CMD_r001_0101_dddd_dddd_dddd_dddd_dddd_dddd_SYS_GAIN_A:
whismanoid 0:68e64068330f 1061 case CMD_r001_0110_dddd_dddd_dddd_dddd_dddd_dddd_SYS_GAIN_B:
whismanoid 0:68e64068330f 1062 case CMD_r001_0111_dddd_dddd_dddd_dddd_dddd_dddd_SELF_OFF:
whismanoid 0:68e64068330f 1063 case CMD_r001_1000_dddd_dddd_dddd_dddd_dddd_dddd_SELF_GAIN_1:
whismanoid 0:68e64068330f 1064 case CMD_r001_1001_dddd_dddd_dddd_dddd_dddd_dddd_SELF_GAIN_2:
whismanoid 0:68e64068330f 1065 case CMD_r001_1010_dddd_dddd_dddd_dddd_dddd_dddd_SELF_GAIN_4:
whismanoid 0:68e64068330f 1066 case CMD_r001_1011_dddd_dddd_dddd_dddd_dddd_dddd_SELF_GAIN_8:
whismanoid 0:68e64068330f 1067 case CMD_r001_1100_dddd_dddd_dddd_dddd_dddd_dddd_SELF_GAIN_16:
whismanoid 0:68e64068330f 1068 case CMD_r001_1101_dddd_dddd_dddd_dddd_dddd_dddd_SELF_GAIN_32:
whismanoid 0:68e64068330f 1069 case CMD_r001_1110_dddd_dddd_dddd_dddd_dddd_dddd_SELF_GAIN_64:
whismanoid 0:68e64068330f 1070 case CMD_r001_1111_dddd_dddd_dddd_dddd_dddd_dddd_SELF_GAIN_128:
whismanoid 0:68e64068330f 1071 case CMD_r010_0000_dddd_dddd_dddd_dddd_dddd_dddd_LTHRESH0:
whismanoid 0:68e64068330f 1072 case CMD_r010_0001_dddd_dddd_dddd_dddd_dddd_dddd_LTHRESH1:
whismanoid 0:68e64068330f 1073 case CMD_r010_0010_dddd_dddd_dddd_dddd_dddd_dddd_LTHRESH2:
whismanoid 0:68e64068330f 1074 case CMD_r010_0011_dddd_dddd_dddd_dddd_dddd_dddd_LTHRESH3:
whismanoid 0:68e64068330f 1075 case CMD_r010_0100_dddd_dddd_dddd_dddd_dddd_dddd_LTHRESH4:
whismanoid 0:68e64068330f 1076 case CMD_r010_0101_dddd_dddd_dddd_dddd_dddd_dddd_LTHRESH5:
whismanoid 0:68e64068330f 1077 case CMD_r010_0110_dddd_dddd_dddd_dddd_dddd_dddd_LTHRESH6:
whismanoid 0:68e64068330f 1078 case CMD_r010_0111_dddd_dddd_dddd_dddd_dddd_dddd_LTHRESH7:
whismanoid 0:68e64068330f 1079 case CMD_r010_1000_dddd_dddd_dddd_dddd_dddd_dddd_UTHRESH0:
whismanoid 0:68e64068330f 1080 case CMD_r010_1001_dddd_dddd_dddd_dddd_dddd_dddd_UTHRESH1:
whismanoid 0:68e64068330f 1081 case CMD_r010_1010_dddd_dddd_dddd_dddd_dddd_dddd_UTHRESH2:
whismanoid 0:68e64068330f 1082 case CMD_r010_1011_dddd_dddd_dddd_dddd_dddd_dddd_UTHRESH3:
whismanoid 0:68e64068330f 1083 case CMD_r010_1100_dddd_dddd_dddd_dddd_dddd_dddd_UTHRESH4:
whismanoid 0:68e64068330f 1084 case CMD_r010_1101_dddd_dddd_dddd_dddd_dddd_dddd_UTHRESH5:
whismanoid 0:68e64068330f 1085 case CMD_r010_1110_dddd_dddd_dddd_dddd_dddd_dddd_UTHRESH6:
whismanoid 0:68e64068330f 1086 case CMD_r010_1111_dddd_dddd_dddd_dddd_dddd_dddd_UTHRESH7:
whismanoid 0:68e64068330f 1087 case CMD_r011_0000_dddd_dddd_dddd_dddd_dddd_dddd_DATA0:
whismanoid 0:68e64068330f 1088 case CMD_r011_0001_dddd_dddd_dddd_dddd_dddd_dddd_DATA1:
whismanoid 0:68e64068330f 1089 case CMD_r011_0010_dddd_dddd_dddd_dddd_dddd_dddd_DATA2:
whismanoid 0:68e64068330f 1090 case CMD_r011_0011_dddd_dddd_dddd_dddd_dddd_dddd_DATA3:
whismanoid 0:68e64068330f 1091 case CMD_r011_0100_dddd_dddd_dddd_dddd_dddd_dddd_DATA4:
whismanoid 0:68e64068330f 1092 case CMD_r011_0101_dddd_dddd_dddd_dddd_dddd_dddd_DATA5:
whismanoid 0:68e64068330f 1093 case CMD_r011_0110_dddd_dddd_dddd_dddd_dddd_dddd_DATA6:
whismanoid 0:68e64068330f 1094 case CMD_r011_0111_dddd_dddd_dddd_dddd_dddd_dddd_DATA7:
whismanoid 0:68e64068330f 1095 case CMD_r011_1000_dddd_dddd_dddd_dddd_dxxx_dddd_STATUS:
whismanoid 0:68e64068330f 1096 case CMD_r011_1001_dddd_dddd_dddd_dddd_dxxd_dddd_STATUS_IE:
whismanoid 0:68e64068330f 1097 return 24; // 24-bit register size
whismanoid 0:68e64068330f 1098 case CMD_r011_1010_xaaa_aaaa_dddd_dddd_UC_0:
whismanoid 0:68e64068330f 1099 case CMD_r011_1011_xaaa_aaaa_dddd_dddd_UC_1:
whismanoid 0:68e64068330f 1100 case CMD_r011_1100_xaaa_aaaa_dddd_dddd_UC_2:
whismanoid 0:68e64068330f 1101 case CMD_r011_1101_xaaa_aaaa_dddd_dddd_UC_3:
whismanoid 0:68e64068330f 1102 case CMD_r011_1110_xaaa_aaaa_dddd_dddd_UC_4:
whismanoid 0:68e64068330f 1103 case CMD_r011_1111_xaaa_aaaa_dddd_dddd_UC_5:
whismanoid 0:68e64068330f 1104 case CMD_r100_0000_xaaa_aaaa_dddd_dddd_UC_6:
whismanoid 0:68e64068330f 1105 case CMD_r100_0001_xaaa_aaaa_dddd_dddd_UC_7:
whismanoid 0:68e64068330f 1106 case CMD_r100_0010_xaaa_aaaa_dddd_dddd_UC_8:
whismanoid 0:68e64068330f 1107 case CMD_r100_0011_xaaa_aaaa_dddd_dddd_UC_9:
whismanoid 0:68e64068330f 1108 case CMD_r100_0100_xaaa_aaaa_dddd_dddd_UC_10:
whismanoid 0:68e64068330f 1109 case CMD_r100_0101_xaaa_aaaa_dddd_dddd_UC_11:
whismanoid 0:68e64068330f 1110 case CMD_r100_0110_xaaa_aaaa_dddd_dddd_UC_12:
whismanoid 0:68e64068330f 1111 case CMD_r100_0111_xaaa_aaaa_dddd_dddd_UC_13:
whismanoid 0:68e64068330f 1112 case CMD_r100_1000_xaaa_aaaa_dddd_dddd_UC_14:
whismanoid 0:68e64068330f 1113 case CMD_r100_1001_xaaa_aaaa_dddd_dddd_UC_15:
whismanoid 0:68e64068330f 1114 case CMD_r100_1010_xaaa_aaaa_dddd_dddd_UC_16:
whismanoid 0:68e64068330f 1115 case CMD_r100_1011_xaaa_aaaa_dddd_dddd_UC_17:
whismanoid 0:68e64068330f 1116 case CMD_r100_1100_xaaa_aaaa_dddd_dddd_UC_18:
whismanoid 0:68e64068330f 1117 case CMD_r100_1101_xaaa_aaaa_dddd_dddd_UC_19:
whismanoid 0:68e64068330f 1118 case CMD_r100_1110_xaaa_aaaa_dddd_dddd_UC_20:
whismanoid 0:68e64068330f 1119 case CMD_r100_1111_xaaa_aaaa_dddd_dddd_UC_21:
whismanoid 0:68e64068330f 1120 case CMD_r101_0000_xaaa_aaaa_dddd_dddd_UC_22:
whismanoid 0:68e64068330f 1121 case CMD_r101_0001_xaaa_aaaa_dddd_dddd_UC_23:
whismanoid 0:68e64068330f 1122 case CMD_r101_0010_xaaa_aaaa_dddd_dddd_UC_24:
whismanoid 0:68e64068330f 1123 case CMD_r101_0011_xaaa_aaaa_dddd_dddd_UC_25:
whismanoid 0:68e64068330f 1124 case CMD_r101_0100_xaaa_aaaa_dddd_dddd_UC_26:
whismanoid 0:68e64068330f 1125 case CMD_r101_0101_xaaa_aaaa_dddd_dddd_UC_27:
whismanoid 0:68e64068330f 1126 case CMD_r101_0110_xaaa_aaaa_dddd_dddd_UC_28:
whismanoid 0:68e64068330f 1127 case CMD_r101_0111_xaaa_aaaa_dddd_dddd_UC_29:
whismanoid 0:68e64068330f 1128 case CMD_r101_1000_xaaa_aaaa_dddd_dddd_UC_30:
whismanoid 0:68e64068330f 1129 case CMD_r101_1001_xaaa_aaaa_dddd_dddd_UC_31:
whismanoid 0:68e64068330f 1130 case CMD_r101_1010_xaaa_aaaa_dddd_dddd_UC_32:
whismanoid 0:68e64068330f 1131 case CMD_r101_1011_xaaa_aaaa_dddd_dddd_UC_33:
whismanoid 0:68e64068330f 1132 case CMD_r101_1100_xaaa_aaaa_dddd_dddd_UC_34:
whismanoid 0:68e64068330f 1133 case CMD_r101_1101_xaaa_aaaa_dddd_dddd_UC_35:
whismanoid 0:68e64068330f 1134 case CMD_r101_1110_xaaa_aaaa_dddd_dddd_UC_36:
whismanoid 0:68e64068330f 1135 case CMD_r101_1111_xaaa_aaaa_dddd_dddd_UC_37:
whismanoid 0:68e64068330f 1136 case CMD_r110_0000_xaaa_aaaa_dddd_dddd_UC_38:
whismanoid 0:68e64068330f 1137 case CMD_r110_0001_xaaa_aaaa_dddd_dddd_UC_39:
whismanoid 0:68e64068330f 1138 case CMD_r110_0010_xaaa_aaaa_dddd_dddd_UC_40:
whismanoid 0:68e64068330f 1139 case CMD_r110_0011_xaaa_aaaa_dddd_dddd_UC_41:
whismanoid 0:68e64068330f 1140 case CMD_r110_0100_xaaa_aaaa_dddd_dddd_UC_42:
whismanoid 0:68e64068330f 1141 case CMD_r110_0101_xaaa_aaaa_dddd_dddd_UC_43:
whismanoid 0:68e64068330f 1142 case CMD_r110_0110_xaaa_aaaa_dddd_dddd_UC_44:
whismanoid 0:68e64068330f 1143 case CMD_r110_0111_xaaa_aaaa_dddd_dddd_UC_45:
whismanoid 0:68e64068330f 1144 case CMD_r110_1000_xaaa_aaaa_dddd_dddd_UC_46:
whismanoid 0:68e64068330f 1145 case CMD_r110_1001_xaaa_aaaa_dddd_dddd_UC_47:
whismanoid 0:68e64068330f 1146 case CMD_r110_1010_xaaa_aaaa_dddd_dddd_UC_48:
whismanoid 0:68e64068330f 1147 case CMD_r110_1011_xaaa_aaaa_dddd_dddd_UC_49:
whismanoid 0:68e64068330f 1148 case CMD_r110_1100_xaaa_aaaa_dddd_dddd_UC_50:
whismanoid 0:68e64068330f 1149 case CMD_r110_1101_xaaa_aaaa_dddd_dddd_UC_51:
whismanoid 0:68e64068330f 1150 case CMD_r110_1110_xaaa_aaaa_dddd_dddd_UC_52:
whismanoid 0:68e64068330f 1151 case CMD_r110_1111_xxxx_xxxx_xaaa_aaaa_UCADDR:
whismanoid 0:68e64068330f 1152 return 16; // 16-bit register size
whismanoid 0:68e64068330f 1153 }
whismanoid 0:68e64068330f 1154 }
whismanoid 0:68e64068330f 1155
whismanoid 0:68e64068330f 1156 //----------------------------------------
whismanoid 11:abde565b8497 1157 // Decode operation from commandByte
whismanoid 11:abde565b8497 1158 //
whismanoid 11:abde565b8497 1159 // @return operation such as idle, read register, write register, etc.
whismanoid 11:abde565b8497 1160 MAX11410::MAX11410_CMDOP_enum_t MAX11410::DecodeCommand(MAX11410_CMD_enum_t commandByte)
whismanoid 11:abde565b8497 1161 {
whismanoid 11:abde565b8497 1162
whismanoid 11:abde565b8497 1163 //----------------------------------------
whismanoid 11:abde565b8497 1164 // decode operation from command byte
whismanoid 11:abde565b8497 1165 switch (commandByte & 0x80)
whismanoid 11:abde565b8497 1166 {
whismanoid 11:abde565b8497 1167 default:
whismanoid 11:abde565b8497 1168 case CMDOP_0aaa_aaaa_WriteRegister:
whismanoid 11:abde565b8497 1169 return CMDOP_0aaa_aaaa_WriteRegister;
whismanoid 11:abde565b8497 1170 case CMDOP_1aaa_aaaa_ReadRegister:
whismanoid 11:abde565b8497 1171 return CMDOP_1aaa_aaaa_ReadRegister;
whismanoid 11:abde565b8497 1172 }
whismanoid 11:abde565b8497 1173 }
whismanoid 11:abde565b8497 1174
whismanoid 11:abde565b8497 1175 //----------------------------------------
whismanoid 10:7adee48a7f82 1176 // Return the address field of a MAX11410 register
whismanoid 10:7adee48a7f82 1177 //
whismanoid 10:7adee48a7f82 1178 // @return register address field as given in datasheet
whismanoid 10:7adee48a7f82 1179 uint8_t MAX11410::RegAddrOfCommand(MAX11410_CMD_enum_t commandByte)
whismanoid 10:7adee48a7f82 1180 {
whismanoid 10:7adee48a7f82 1181
whismanoid 10:7adee48a7f82 1182 //----------------------------------------
whismanoid 10:7adee48a7f82 1183 // extract register address value from command byte
whismanoid 11:abde565b8497 1184 return (uint8_t)((commandByte &~ CMDOP_1aaa_aaaa_ReadRegister) & 0xFF);
whismanoid 10:7adee48a7f82 1185 }
whismanoid 10:7adee48a7f82 1186
whismanoid 10:7adee48a7f82 1187 //----------------------------------------
whismanoid 10:7adee48a7f82 1188 // Test whether a command byte is a register read command
whismanoid 10:7adee48a7f82 1189 //
whismanoid 10:7adee48a7f82 1190 // @return true if command byte is a register read command
whismanoid 10:7adee48a7f82 1191 uint8_t MAX11410::IsRegReadCommand(MAX11410_CMD_enum_t commandByte)
whismanoid 10:7adee48a7f82 1192 {
whismanoid 10:7adee48a7f82 1193
whismanoid 10:7adee48a7f82 1194 //----------------------------------------
whismanoid 10:7adee48a7f82 1195 // Test whether a command byte is a register read command
whismanoid 11:abde565b8497 1196 return (commandByte & CMDOP_1aaa_aaaa_ReadRegister) ? 1 : 0;
whismanoid 10:7adee48a7f82 1197 }
whismanoid 10:7adee48a7f82 1198
whismanoid 10:7adee48a7f82 1199 //----------------------------------------
whismanoid 0:68e64068330f 1200 // Return the name of a MAX11410 register
whismanoid 0:68e64068330f 1201 //
whismanoid 0:68e64068330f 1202 // @return null-terminated constant C string containing register name or empty string
whismanoid 10:7adee48a7f82 1203 const char* MAX11410::RegName(MAX11410_CMD_enum_t commandByte)
whismanoid 0:68e64068330f 1204 {
whismanoid 0:68e64068330f 1205
whismanoid 0:68e64068330f 1206 //----------------------------------------
whismanoid 0:68e64068330f 1207 // switch based on register address value regAddress
whismanoid 11:abde565b8497 1208 commandByte = (MAX11410_CMD_enum_t)((commandByte &~ CMDOP_1aaa_aaaa_ReadRegister) & 0xFF);
whismanoid 10:7adee48a7f82 1209 switch(commandByte)
whismanoid 0:68e64068330f 1210 {
whismanoid 0:68e64068330f 1211 default:
whismanoid 0:68e64068330f 1212 return ""; // undefined register
whismanoid 0:68e64068330f 1213 case CMD_r000_0000_xxxx_xxdd_PD: return "PD";
whismanoid 0:68e64068330f 1214 case CMD_r000_0001_xddd_xxdd_CONV_START: return "CONV_START";
whismanoid 0:68e64068330f 1215 case CMD_r000_0010_xddd_dddd_SEQ_START: return "SEQ_START";
whismanoid 0:68e64068330f 1216 case CMD_r000_0011_xxxx_xddd_CAL_START: return "CAL_START";
whismanoid 0:68e64068330f 1217 case CMD_r000_0100_dddd_xddd_GP0_CTRL: return "GP0_CTRL";
whismanoid 0:68e64068330f 1218 case CMD_r000_0101_dddd_xddd_GP1_CTRL: return "GP1_CTRL";
whismanoid 0:68e64068330f 1219 case CMD_r000_0110_xddd_xxdd_GP_CONV: return "GP_CONV";
whismanoid 0:68e64068330f 1220 case CMD_r000_0111_xddd_dddd_GP_SEQ_ADDR: return "GP_SEQ_ADDR";
whismanoid 0:68e64068330f 1221 case CMD_r000_1000_x0dd_dddd_FILTER: return "FILTER";
whismanoid 0:68e64068330f 1222 case CMD_r000_1001_dddd_dddd_CTRL: return "CTRL";
whismanoid 0:68e64068330f 1223 case CMD_r000_1010_dddd_dddd_SOURCE: return "SOURCE";
whismanoid 0:68e64068330f 1224 case CMD_r000_1011_dddd_dddd_MUX_CTRL0: return "MUX_CTRL0";
whismanoid 0:68e64068330f 1225 case CMD_r000_1100_dddd_dddd_MUX_CTRL1: return "MUX_CTRL1";
whismanoid 0:68e64068330f 1226 case CMD_r000_1101_dddd_dddd_MUX_CTRL2: return "MUX_CTRL2";
whismanoid 23:22e7830bcccb 1227 case CMD_r000_1110_00ss_0ggg_PGA: return "PGA";
whismanoid 0:68e64068330f 1228 case CMD_r000_1111_dddd_dddd_WAIT_EXT: return "WAIT_EXT";
whismanoid 0:68e64068330f 1229 case CMD_r001_0000_xxxx_xxxx_WAIT_START: return "WAIT_START";
whismanoid 0:68e64068330f 1230 case CMD_r001_0001_xxxx_xxxx_xxxx_xxxx_xxxx_xddd_PART_ID: return "PART_ID";
whismanoid 0:68e64068330f 1231 case CMD_r001_0010_xxxx_xxxx_dddd_xxdd_dddd_dddd_SYSC_SEL: return "SYSC_SEL";
whismanoid 0:68e64068330f 1232 case CMD_r001_0011_dddd_dddd_dddd_dddd_dddd_dddd_SYS_OFF_A: return "SYS_OFF_A";
whismanoid 0:68e64068330f 1233 case CMD_r001_0100_dddd_dddd_dddd_dddd_dddd_dddd_SYS_OFF_B: return "SYS_OFF_B";
whismanoid 0:68e64068330f 1234 case CMD_r001_0101_dddd_dddd_dddd_dddd_dddd_dddd_SYS_GAIN_A: return "SYS_GAIN_A";
whismanoid 0:68e64068330f 1235 case CMD_r001_0110_dddd_dddd_dddd_dddd_dddd_dddd_SYS_GAIN_B: return "SYS_GAIN_B";
whismanoid 0:68e64068330f 1236 case CMD_r001_0111_dddd_dddd_dddd_dddd_dddd_dddd_SELF_OFF: return "SELF_OFF";
whismanoid 0:68e64068330f 1237 case CMD_r001_1000_dddd_dddd_dddd_dddd_dddd_dddd_SELF_GAIN_1: return "SELF_GAIN_1";
whismanoid 0:68e64068330f 1238 case CMD_r001_1001_dddd_dddd_dddd_dddd_dddd_dddd_SELF_GAIN_2: return "SELF_GAIN_2";
whismanoid 0:68e64068330f 1239 case CMD_r001_1010_dddd_dddd_dddd_dddd_dddd_dddd_SELF_GAIN_4: return "SELF_GAIN_4";
whismanoid 0:68e64068330f 1240 case CMD_r001_1011_dddd_dddd_dddd_dddd_dddd_dddd_SELF_GAIN_8: return "SELF_GAIN_8";
whismanoid 0:68e64068330f 1241 case CMD_r001_1100_dddd_dddd_dddd_dddd_dddd_dddd_SELF_GAIN_16: return "SELF_GAIN_16";
whismanoid 0:68e64068330f 1242 case CMD_r001_1101_dddd_dddd_dddd_dddd_dddd_dddd_SELF_GAIN_32: return "SELF_GAIN_32";
whismanoid 0:68e64068330f 1243 case CMD_r001_1110_dddd_dddd_dddd_dddd_dddd_dddd_SELF_GAIN_64: return "SELF_GAIN_64";
whismanoid 0:68e64068330f 1244 case CMD_r001_1111_dddd_dddd_dddd_dddd_dddd_dddd_SELF_GAIN_128: return "SELF_GAIN_128";
whismanoid 0:68e64068330f 1245 case CMD_r010_0000_dddd_dddd_dddd_dddd_dddd_dddd_LTHRESH0: return "LTHRESH0";
whismanoid 0:68e64068330f 1246 case CMD_r010_0001_dddd_dddd_dddd_dddd_dddd_dddd_LTHRESH1: return "LTHRESH1";
whismanoid 0:68e64068330f 1247 case CMD_r010_0010_dddd_dddd_dddd_dddd_dddd_dddd_LTHRESH2: return "LTHRESH2";
whismanoid 0:68e64068330f 1248 case CMD_r010_0011_dddd_dddd_dddd_dddd_dddd_dddd_LTHRESH3: return "LTHRESH3";
whismanoid 0:68e64068330f 1249 case CMD_r010_0100_dddd_dddd_dddd_dddd_dddd_dddd_LTHRESH4: return "LTHRESH4";
whismanoid 0:68e64068330f 1250 case CMD_r010_0101_dddd_dddd_dddd_dddd_dddd_dddd_LTHRESH5: return "LTHRESH5";
whismanoid 0:68e64068330f 1251 case CMD_r010_0110_dddd_dddd_dddd_dddd_dddd_dddd_LTHRESH6: return "LTHRESH6";
whismanoid 0:68e64068330f 1252 case CMD_r010_0111_dddd_dddd_dddd_dddd_dddd_dddd_LTHRESH7: return "LTHRESH7";
whismanoid 0:68e64068330f 1253 case CMD_r010_1000_dddd_dddd_dddd_dddd_dddd_dddd_UTHRESH0: return "UTHRESH0";
whismanoid 0:68e64068330f 1254 case CMD_r010_1001_dddd_dddd_dddd_dddd_dddd_dddd_UTHRESH1: return "UTHRESH1";
whismanoid 0:68e64068330f 1255 case CMD_r010_1010_dddd_dddd_dddd_dddd_dddd_dddd_UTHRESH2: return "UTHRESH2";
whismanoid 0:68e64068330f 1256 case CMD_r010_1011_dddd_dddd_dddd_dddd_dddd_dddd_UTHRESH3: return "UTHRESH3";
whismanoid 0:68e64068330f 1257 case CMD_r010_1100_dddd_dddd_dddd_dddd_dddd_dddd_UTHRESH4: return "UTHRESH4";
whismanoid 0:68e64068330f 1258 case CMD_r010_1101_dddd_dddd_dddd_dddd_dddd_dddd_UTHRESH5: return "UTHRESH5";
whismanoid 0:68e64068330f 1259 case CMD_r010_1110_dddd_dddd_dddd_dddd_dddd_dddd_UTHRESH6: return "UTHRESH6";
whismanoid 0:68e64068330f 1260 case CMD_r010_1111_dddd_dddd_dddd_dddd_dddd_dddd_UTHRESH7: return "UTHRESH7";
whismanoid 0:68e64068330f 1261 case CMD_r011_0000_dddd_dddd_dddd_dddd_dddd_dddd_DATA0: return "DATA0";
whismanoid 0:68e64068330f 1262 case CMD_r011_0001_dddd_dddd_dddd_dddd_dddd_dddd_DATA1: return "DATA1";
whismanoid 0:68e64068330f 1263 case CMD_r011_0010_dddd_dddd_dddd_dddd_dddd_dddd_DATA2: return "DATA2";
whismanoid 0:68e64068330f 1264 case CMD_r011_0011_dddd_dddd_dddd_dddd_dddd_dddd_DATA3: return "DATA3";
whismanoid 0:68e64068330f 1265 case CMD_r011_0100_dddd_dddd_dddd_dddd_dddd_dddd_DATA4: return "DATA4";
whismanoid 0:68e64068330f 1266 case CMD_r011_0101_dddd_dddd_dddd_dddd_dddd_dddd_DATA5: return "DATA5";
whismanoid 0:68e64068330f 1267 case CMD_r011_0110_dddd_dddd_dddd_dddd_dddd_dddd_DATA6: return "DATA6";
whismanoid 0:68e64068330f 1268 case CMD_r011_0111_dddd_dddd_dddd_dddd_dddd_dddd_DATA7: return "DATA7";
whismanoid 0:68e64068330f 1269 case CMD_r011_1000_dddd_dddd_dddd_dddd_dxxx_dddd_STATUS: return "STATUS";
whismanoid 0:68e64068330f 1270 case CMD_r011_1001_dddd_dddd_dddd_dddd_dxxd_dddd_STATUS_IE: return "STATUS_IE";
whismanoid 0:68e64068330f 1271 case CMD_r011_1010_xaaa_aaaa_dddd_dddd_UC_0: return "UC_0";
whismanoid 0:68e64068330f 1272 case CMD_r011_1011_xaaa_aaaa_dddd_dddd_UC_1: return "UC_1";
whismanoid 0:68e64068330f 1273 case CMD_r011_1100_xaaa_aaaa_dddd_dddd_UC_2: return "UC_2";
whismanoid 0:68e64068330f 1274 case CMD_r011_1101_xaaa_aaaa_dddd_dddd_UC_3: return "UC_3";
whismanoid 0:68e64068330f 1275 case CMD_r011_1110_xaaa_aaaa_dddd_dddd_UC_4: return "UC_4";
whismanoid 0:68e64068330f 1276 case CMD_r011_1111_xaaa_aaaa_dddd_dddd_UC_5: return "UC_5";
whismanoid 0:68e64068330f 1277 case CMD_r100_0000_xaaa_aaaa_dddd_dddd_UC_6: return "UC_6";
whismanoid 0:68e64068330f 1278 case CMD_r100_0001_xaaa_aaaa_dddd_dddd_UC_7: return "UC_7";
whismanoid 0:68e64068330f 1279 case CMD_r100_0010_xaaa_aaaa_dddd_dddd_UC_8: return "UC_8";
whismanoid 0:68e64068330f 1280 case CMD_r100_0011_xaaa_aaaa_dddd_dddd_UC_9: return "UC_9";
whismanoid 0:68e64068330f 1281 case CMD_r100_0100_xaaa_aaaa_dddd_dddd_UC_10: return "UC_10";
whismanoid 0:68e64068330f 1282 case CMD_r100_0101_xaaa_aaaa_dddd_dddd_UC_11: return "UC_11";
whismanoid 0:68e64068330f 1283 case CMD_r100_0110_xaaa_aaaa_dddd_dddd_UC_12: return "UC_12";
whismanoid 0:68e64068330f 1284 case CMD_r100_0111_xaaa_aaaa_dddd_dddd_UC_13: return "UC_13";
whismanoid 0:68e64068330f 1285 case CMD_r100_1000_xaaa_aaaa_dddd_dddd_UC_14: return "UC_14";
whismanoid 0:68e64068330f 1286 case CMD_r100_1001_xaaa_aaaa_dddd_dddd_UC_15: return "UC_15";
whismanoid 0:68e64068330f 1287 case CMD_r100_1010_xaaa_aaaa_dddd_dddd_UC_16: return "UC_16";
whismanoid 0:68e64068330f 1288 case CMD_r100_1011_xaaa_aaaa_dddd_dddd_UC_17: return "UC_17";
whismanoid 0:68e64068330f 1289 case CMD_r100_1100_xaaa_aaaa_dddd_dddd_UC_18: return "UC_18";
whismanoid 0:68e64068330f 1290 case CMD_r100_1101_xaaa_aaaa_dddd_dddd_UC_19: return "UC_19";
whismanoid 0:68e64068330f 1291 case CMD_r100_1110_xaaa_aaaa_dddd_dddd_UC_20: return "UC_20";
whismanoid 0:68e64068330f 1292 case CMD_r100_1111_xaaa_aaaa_dddd_dddd_UC_21: return "UC_21";
whismanoid 0:68e64068330f 1293 case CMD_r101_0000_xaaa_aaaa_dddd_dddd_UC_22: return "UC_22";
whismanoid 0:68e64068330f 1294 case CMD_r101_0001_xaaa_aaaa_dddd_dddd_UC_23: return "UC_23";
whismanoid 0:68e64068330f 1295 case CMD_r101_0010_xaaa_aaaa_dddd_dddd_UC_24: return "UC_24";
whismanoid 0:68e64068330f 1296 case CMD_r101_0011_xaaa_aaaa_dddd_dddd_UC_25: return "UC_25";
whismanoid 0:68e64068330f 1297 case CMD_r101_0100_xaaa_aaaa_dddd_dddd_UC_26: return "UC_26";
whismanoid 0:68e64068330f 1298 case CMD_r101_0101_xaaa_aaaa_dddd_dddd_UC_27: return "UC_27";
whismanoid 0:68e64068330f 1299 case CMD_r101_0110_xaaa_aaaa_dddd_dddd_UC_28: return "UC_28";
whismanoid 0:68e64068330f 1300 case CMD_r101_0111_xaaa_aaaa_dddd_dddd_UC_29: return "UC_29";
whismanoid 0:68e64068330f 1301 case CMD_r101_1000_xaaa_aaaa_dddd_dddd_UC_30: return "UC_30";
whismanoid 0:68e64068330f 1302 case CMD_r101_1001_xaaa_aaaa_dddd_dddd_UC_31: return "UC_31";
whismanoid 0:68e64068330f 1303 case CMD_r101_1010_xaaa_aaaa_dddd_dddd_UC_32: return "UC_32";
whismanoid 0:68e64068330f 1304 case CMD_r101_1011_xaaa_aaaa_dddd_dddd_UC_33: return "UC_33";
whismanoid 0:68e64068330f 1305 case CMD_r101_1100_xaaa_aaaa_dddd_dddd_UC_34: return "UC_34";
whismanoid 0:68e64068330f 1306 case CMD_r101_1101_xaaa_aaaa_dddd_dddd_UC_35: return "UC_35";
whismanoid 0:68e64068330f 1307 case CMD_r101_1110_xaaa_aaaa_dddd_dddd_UC_36: return "UC_36";
whismanoid 0:68e64068330f 1308 case CMD_r101_1111_xaaa_aaaa_dddd_dddd_UC_37: return "UC_37";
whismanoid 0:68e64068330f 1309 case CMD_r110_0000_xaaa_aaaa_dddd_dddd_UC_38: return "UC_38";
whismanoid 0:68e64068330f 1310 case CMD_r110_0001_xaaa_aaaa_dddd_dddd_UC_39: return "UC_39";
whismanoid 0:68e64068330f 1311 case CMD_r110_0010_xaaa_aaaa_dddd_dddd_UC_40: return "UC_40";
whismanoid 0:68e64068330f 1312 case CMD_r110_0011_xaaa_aaaa_dddd_dddd_UC_41: return "UC_41";
whismanoid 0:68e64068330f 1313 case CMD_r110_0100_xaaa_aaaa_dddd_dddd_UC_42: return "UC_42";
whismanoid 0:68e64068330f 1314 case CMD_r110_0101_xaaa_aaaa_dddd_dddd_UC_43: return "UC_43";
whismanoid 0:68e64068330f 1315 case CMD_r110_0110_xaaa_aaaa_dddd_dddd_UC_44: return "UC_44";
whismanoid 0:68e64068330f 1316 case CMD_r110_0111_xaaa_aaaa_dddd_dddd_UC_45: return "UC_45";
whismanoid 0:68e64068330f 1317 case CMD_r110_1000_xaaa_aaaa_dddd_dddd_UC_46: return "UC_46";
whismanoid 0:68e64068330f 1318 case CMD_r110_1001_xaaa_aaaa_dddd_dddd_UC_47: return "UC_47";
whismanoid 0:68e64068330f 1319 case CMD_r110_1010_xaaa_aaaa_dddd_dddd_UC_48: return "UC_48";
whismanoid 0:68e64068330f 1320 case CMD_r110_1011_xaaa_aaaa_dddd_dddd_UC_49: return "UC_49";
whismanoid 0:68e64068330f 1321 case CMD_r110_1100_xaaa_aaaa_dddd_dddd_UC_50: return "UC_50";
whismanoid 0:68e64068330f 1322 case CMD_r110_1101_xaaa_aaaa_dddd_dddd_UC_51: return "UC_51";
whismanoid 0:68e64068330f 1323 case CMD_r110_1110_xaaa_aaaa_dddd_dddd_UC_52: return "UC_52";
whismanoid 0:68e64068330f 1324 case CMD_r110_1111_xxxx_xxxx_xaaa_aaaa_UCADDR: return "UCADDR";
whismanoid 0:68e64068330f 1325 }
whismanoid 0:68e64068330f 1326 }
whismanoid 0:68e64068330f 1327
whismanoid 0:68e64068330f 1328 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1329 // Menu item 'XF'
whismanoid 1:d57c1a2cb83c 1330 //
whismanoid 1:d57c1a2cb83c 1331 // FILTER Select Filter and Rate.
whismanoid 1:d57c1a2cb83c 1332 // Sets conversion rate based on RATE, LINEF, and CONV_TYPE value. See Table 9a through Table 9d for details.
whismanoid 1:d57c1a2cb83c 1333 // For CONV_TYPE_01_Continuous, linef=LINEF_11_SINC4, rate=RATE_0100 selects output data rate 60SPS.
whismanoid 1:d57c1a2cb83c 1334 //
whismanoid 1:d57c1a2cb83c 1335 // @param[in] linef = filter type, default=MAX11410::LINEF_enum_t::LINEF_11_SINC4
whismanoid 1:d57c1a2cb83c 1336 // @param[in] rate = output data rate selection, default=MAX11410::RATE_enum_t::RATE_0100
whismanoid 1:d57c1a2cb83c 1337 //
whismanoid 1:d57c1a2cb83c 1338 // @return 1 on success; 0 on failure
whismanoid 1:d57c1a2cb83c 1339 uint8_t MAX11410::Configure_FILTER(uint8_t linef, uint8_t rate)
whismanoid 1:d57c1a2cb83c 1340 {
whismanoid 1:d57c1a2cb83c 1341
whismanoid 1:d57c1a2cb83c 1342 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1343 // write8 0x08 FILTER
whismanoid 1:d57c1a2cb83c 1344 RegWrite(CMD_r000_1000_x0dd_dddd_FILTER, (uint8_t)(0
whismanoid 1:d57c1a2cb83c 1345 | (((uint8_t)linef & 3) << 4)
whismanoid 1:d57c1a2cb83c 1346 | (((uint8_t)rate & 15) << 0)
whismanoid 1:d57c1a2cb83c 1347 ));
whismanoid 1:d57c1a2cb83c 1348
whismanoid 1:d57c1a2cb83c 1349 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1350 // success
whismanoid 1:d57c1a2cb83c 1351 return 1;
whismanoid 1:d57c1a2cb83c 1352 }
whismanoid 1:d57c1a2cb83c 1353
whismanoid 1:d57c1a2cb83c 1354 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1355 // Menu item 'XP'
whismanoid 1:d57c1a2cb83c 1356 //
whismanoid 1:d57c1a2cb83c 1357 // PGA Select Gain and Signal Path.
whismanoid 1:d57c1a2cb83c 1358 //
whismanoid 1:d57c1a2cb83c 1359 // @param[in] sigpath = signal path, default=MAX11410::SIG_PATH_enum_t::SIG_PATH_00_BUFFERED
whismanoid 1:d57c1a2cb83c 1360 // @param[in] gain = gain selection, default=MAX11410::GAIN_enum_t::GAIN_000_1
whismanoid 1:d57c1a2cb83c 1361 //
whismanoid 1:d57c1a2cb83c 1362 // @return 1 on success; 0 on failure
whismanoid 1:d57c1a2cb83c 1363 uint8_t MAX11410::Configure_PGA(uint8_t sigpath, uint8_t gain)
whismanoid 1:d57c1a2cb83c 1364 {
whismanoid 1:d57c1a2cb83c 1365
whismanoid 1:d57c1a2cb83c 1366 //----------------------------------------
whismanoid 23:22e7830bcccb 1367 // pga gain 1, 2, 4, 8, 16, 32, 64, or 128 based on gain index in register pga CMD_r000_1110_00ss_0ggg_PGA
whismanoid 1:d57c1a2cb83c 1368 static uint8_t pgaGainTable[8] = {1, 2, 4, 8, 16, 32, 64, 128};
whismanoid 1:d57c1a2cb83c 1369 pgaGain = (sigpath == SIG_PATH_10_PGA) ? pgaGainTable[(uint8_t)gain] : 1;
whismanoid 1:d57c1a2cb83c 1370
whismanoid 1:d57c1a2cb83c 1371 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1372 // write8 0x0E PGA
whismanoid 23:22e7830bcccb 1373 RegWrite(CMD_r000_1110_00ss_0ggg_PGA, (uint8_t)(0
whismanoid 1:d57c1a2cb83c 1374 | (((uint8_t)sigpath & 2) << 4)
whismanoid 1:d57c1a2cb83c 1375 | (((uint8_t)gain & 7) << 0)
whismanoid 1:d57c1a2cb83c 1376 ));
whismanoid 1:d57c1a2cb83c 1377
whismanoid 1:d57c1a2cb83c 1378 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1379 // success
whismanoid 1:d57c1a2cb83c 1380 return 1;
whismanoid 1:d57c1a2cb83c 1381 }
whismanoid 1:d57c1a2cb83c 1382
whismanoid 1:d57c1a2cb83c 1383 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1384 // Menu item 'XC'
whismanoid 1:d57c1a2cb83c 1385 //
whismanoid 1:d57c1a2cb83c 1386 // CTRL Select clock, format, and reference.
whismanoid 1:d57c1a2cb83c 1387 //
whismanoid 1:d57c1a2cb83c 1388 // @param[in] extclk = external clock enable, default=0
whismanoid 1:d57c1a2cb83c 1389 // @param[in] u_bn = unipolar input range enable, default=0
whismanoid 1:d57c1a2cb83c 1390 // @param[in] format = offset binary format enable, default=0
whismanoid 1:d57c1a2cb83c 1391 // @param[in] refbufp_en = REFP reference buffer enable, default=0
whismanoid 1:d57c1a2cb83c 1392 // @param[in] refbufn_en = REFN reference buffer enable, default=0
whismanoid 1:d57c1a2cb83c 1393 // @param[in] ref_sel = reference selection, default=MAX11410::REF_SEL_enum_t::REF_SEL_001_REF1P_REF1N
whismanoid 1:d57c1a2cb83c 1394 //
whismanoid 1:d57c1a2cb83c 1395 // @return 1 on success; 0 on failure
whismanoid 1:d57c1a2cb83c 1396 uint8_t MAX11410::Configure_CTRL(uint8_t extclk, uint8_t u_bn, uint8_t format, uint8_t refbufp_en, uint8_t refbufn_en, uint8_t ref_sel)
whismanoid 1:d57c1a2cb83c 1397 {
whismanoid 1:d57c1a2cb83c 1398
whismanoid 1:d57c1a2cb83c 1399 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1400 // shadow of register CMD_r000_1001_dddd_dddd_CTRL
whismanoid 1:d57c1a2cb83c 1401 ctrl = (uint8_t)(0
whismanoid 1:d57c1a2cb83c 1402 | (((uint8_t)extclk & 1) << 7)
whismanoid 1:d57c1a2cb83c 1403 | (((uint8_t)u_bn & 1) << 6)
whismanoid 1:d57c1a2cb83c 1404 | (((uint8_t)format & 1) << 5)
whismanoid 1:d57c1a2cb83c 1405 | (((uint8_t)refbufp_en & 1) << 4)
whismanoid 1:d57c1a2cb83c 1406 | (((uint8_t)refbufn_en & 1) << 3)
whismanoid 1:d57c1a2cb83c 1407 | (((uint8_t)ref_sel & 7) << 0)
whismanoid 1:d57c1a2cb83c 1408 );
whismanoid 1:d57c1a2cb83c 1409
whismanoid 1:d57c1a2cb83c 1410 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1411 // write8 0x09 CTRL
whismanoid 1:d57c1a2cb83c 1412 RegWrite(CMD_r000_1001_dddd_dddd_CTRL, ctrl);
whismanoid 1:d57c1a2cb83c 1413
whismanoid 1:d57c1a2cb83c 1414 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1415 // success
whismanoid 1:d57c1a2cb83c 1416 return 1;
whismanoid 1:d57c1a2cb83c 1417 }
whismanoid 1:d57c1a2cb83c 1418
whismanoid 1:d57c1a2cb83c 1419 //----------------------------------------
whismanoid 14:b49eecf7e4d8 1420 // Menu item 'XR'
whismanoid 14:b49eecf7e4d8 1421 //
whismanoid 14:b49eecf7e4d8 1422 // CTRL select reference, without changing the other fields.
whismanoid 14:b49eecf7e4d8 1423 //
whismanoid 14:b49eecf7e4d8 1424 // @pre ctrl = shadow of CTRL register
whismanoid 14:b49eecf7e4d8 1425 // @param[in] ref_sel = reference selection, default=MAX11410::REF_SEL_enum_t::REF_SEL_001_REF1P_REF1N
whismanoid 14:b49eecf7e4d8 1426 //
whismanoid 14:b49eecf7e4d8 1427 // @return 1 on success; 0 on failure
whismanoid 14:b49eecf7e4d8 1428 uint8_t MAX11410::Configure_CTRL_REF(uint8_t ref_sel)
whismanoid 14:b49eecf7e4d8 1429 {
whismanoid 14:b49eecf7e4d8 1430
whismanoid 14:b49eecf7e4d8 1431 //----------------------------------------
whismanoid 14:b49eecf7e4d8 1432 // shadow of register CMD_r000_1001_dddd_dddd_CTRL
whismanoid 14:b49eecf7e4d8 1433 ctrl = (ctrl & ((~ 7) << 0))
whismanoid 14:b49eecf7e4d8 1434 | (((uint8_t)ref_sel & 7) << 0);
whismanoid 14:b49eecf7e4d8 1435
whismanoid 14:b49eecf7e4d8 1436 //----------------------------------------
whismanoid 14:b49eecf7e4d8 1437 // write8 0x09 CTRL
whismanoid 14:b49eecf7e4d8 1438 RegWrite(CMD_r000_1001_dddd_dddd_CTRL, ctrl);
whismanoid 14:b49eecf7e4d8 1439
whismanoid 14:b49eecf7e4d8 1440 //----------------------------------------
whismanoid 14:b49eecf7e4d8 1441 // success
whismanoid 14:b49eecf7e4d8 1442 return 1;
whismanoid 14:b49eecf7e4d8 1443 }
whismanoid 14:b49eecf7e4d8 1444
whismanoid 14:b49eecf7e4d8 1445 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1446 // Menu item 'XS'
whismanoid 1:d57c1a2cb83c 1447 //
whismanoid 1:d57c1a2cb83c 1448 // SOURCE Configure voltage bias source, current source, burnout mode
whismanoid 1:d57c1a2cb83c 1449 //
whismanoid 1:d57c1a2cb83c 1450 // @param[in] vbias_mode = _______, default=MAX11410::VBIAS_MODE_enum_t::VBIAS_MODE_00_Active
whismanoid 1:d57c1a2cb83c 1451 // @param[in] brn_mode = _______, default=MAX11410::BRN_MODE_enum_t::BRN_MODE_00_disabled
whismanoid 1:d57c1a2cb83c 1452 // @param[in] idac_mode = _______, default=MAX11410::IDAC_MODE_enum_t::IDAC_MODE_0000_10uA
whismanoid 1:d57c1a2cb83c 1453 //
whismanoid 1:d57c1a2cb83c 1454 // @return 1 on success; 0 on failure
whismanoid 1:d57c1a2cb83c 1455 uint8_t MAX11410::Configure_SOURCE(uint8_t vbias_mode, uint8_t brn_mode, uint8_t idac_mode)
whismanoid 1:d57c1a2cb83c 1456 {
whismanoid 1:d57c1a2cb83c 1457
whismanoid 1:d57c1a2cb83c 1458 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1459 // warning -- WIP work in progress
whismanoid 1:d57c1a2cb83c 1460 #warning "Not Tested Yet: MAX11410::Configure_SOURCE..."
whismanoid 1:d57c1a2cb83c 1461
whismanoid 1:d57c1a2cb83c 1462 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1463 // write8 0x0A SOURCE
whismanoid 1:d57c1a2cb83c 1464 RegWrite(CMD_r000_1010_dddd_dddd_SOURCE, (uint8_t)(0
whismanoid 1:d57c1a2cb83c 1465 | (((uint8_t)vbias_mode & 3) << 6)
whismanoid 1:d57c1a2cb83c 1466 | (((uint8_t)brn_mode & 3) << 4)
whismanoid 1:d57c1a2cb83c 1467 | (((uint8_t)idac_mode & 15) << 0)
whismanoid 1:d57c1a2cb83c 1468 ));
whismanoid 1:d57c1a2cb83c 1469
whismanoid 1:d57c1a2cb83c 1470 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1471 // success
whismanoid 1:d57c1a2cb83c 1472 return 1;
whismanoid 1:d57c1a2cb83c 1473 }
whismanoid 1:d57c1a2cb83c 1474
whismanoid 1:d57c1a2cb83c 1475 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1476 // Menu item 'XM'
whismanoid 1:d57c1a2cb83c 1477 //
whismanoid 1:d57c1a2cb83c 1478 // MUX_CTRL0 Select pins for analog input AINP and AINN
whismanoid 1:d57c1a2cb83c 1479 //
whismanoid 1:d57c1a2cb83c 1480 // @param[in] ainp = channel high side, default=MAX11410::AINP_SEL_enum_t::AINP_SEL_0000_AIN0
whismanoid 1:d57c1a2cb83c 1481 // @param[in] ainn = channel low side, default=MAX11410::AINN_SEL_enum_t::AINN_SEL_1010_GND
whismanoid 1:d57c1a2cb83c 1482 //
whismanoid 1:d57c1a2cb83c 1483 // @return 1 on success; 0 on failure
whismanoid 1:d57c1a2cb83c 1484 uint8_t MAX11410::Configure_MUX_CTRL0(uint8_t ainp, uint8_t ainn)
whismanoid 1:d57c1a2cb83c 1485 {
whismanoid 1:d57c1a2cb83c 1486
whismanoid 1:d57c1a2cb83c 1487 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1488 // warning -- WIP work in progress
whismanoid 1:d57c1a2cb83c 1489 #warning "Not Tested Yet: MAX11410::Configure_MUX_CTRL0..."
whismanoid 1:d57c1a2cb83c 1490
whismanoid 1:d57c1a2cb83c 1491 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1492 // write8 0x0B MUX_CTRL0
whismanoid 1:d57c1a2cb83c 1493 RegWrite(CMD_r000_1011_dddd_dddd_MUX_CTRL0, (uint8_t)(0
whismanoid 1:d57c1a2cb83c 1494 | (((uint8_t)ainp & 15) << 4)
whismanoid 1:d57c1a2cb83c 1495 | (((uint8_t)ainn & 15) << 0)
whismanoid 1:d57c1a2cb83c 1496 ));
whismanoid 1:d57c1a2cb83c 1497
whismanoid 1:d57c1a2cb83c 1498 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1499 // success
whismanoid 1:d57c1a2cb83c 1500 return 1;
whismanoid 1:d57c1a2cb83c 1501 }
whismanoid 1:d57c1a2cb83c 1502
whismanoid 1:d57c1a2cb83c 1503 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1504 // Menu item 'XI'
whismanoid 1:d57c1a2cb83c 1505 //
whismanoid 1:d57c1a2cb83c 1506 // MUX_CTRL1 Select pins for current source
whismanoid 1:d57c1a2cb83c 1507 //
whismanoid 1:d57c1a2cb83c 1508 // @param[in] idac1_sel = channel high side, default=MAX11410::IDAC1_SEL_enum_t::IDAC1_SEL_1111_unconnected
whismanoid 1:d57c1a2cb83c 1509 // @param[in] idac0_sel = channel low side, default=MAX11410::IDAC0_SEL_enum_t::IDAC0_SEL_1111_unconnected
whismanoid 1:d57c1a2cb83c 1510 //
whismanoid 1:d57c1a2cb83c 1511 // @return 1 on success; 0 on failure
whismanoid 1:d57c1a2cb83c 1512 uint8_t MAX11410::Configure_MUX_CTRL1(uint8_t idac1_sel, uint8_t idac0_sel)
whismanoid 1:d57c1a2cb83c 1513 {
whismanoid 1:d57c1a2cb83c 1514
whismanoid 1:d57c1a2cb83c 1515 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1516 // warning -- WIP work in progress
whismanoid 1:d57c1a2cb83c 1517 #warning "Not Tested Yet: MAX11410::Configure_MUX_CTRL1..."
whismanoid 1:d57c1a2cb83c 1518
whismanoid 1:d57c1a2cb83c 1519 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1520 // write8 0x0C MUX_CTRL1
whismanoid 1:d57c1a2cb83c 1521 RegWrite(CMD_r000_1100_dddd_dddd_MUX_CTRL1, (uint8_t)(0
whismanoid 1:d57c1a2cb83c 1522 | (((uint8_t)idac1_sel & 15) << 4)
whismanoid 1:d57c1a2cb83c 1523 | (((uint8_t)idac0_sel & 15) << 0)
whismanoid 1:d57c1a2cb83c 1524 ));
whismanoid 1:d57c1a2cb83c 1525
whismanoid 1:d57c1a2cb83c 1526 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1527 // success
whismanoid 1:d57c1a2cb83c 1528 return 1;
whismanoid 1:d57c1a2cb83c 1529 }
whismanoid 1:d57c1a2cb83c 1530
whismanoid 1:d57c1a2cb83c 1531 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1532 // Menu item 'XV'
whismanoid 1:d57c1a2cb83c 1533 //
whismanoid 1:d57c1a2cb83c 1534 // MUX_CTRL2 Select pins for voltage bias source
whismanoid 1:d57c1a2cb83c 1535 //
whismanoid 1:d57c1a2cb83c 1536 // @param[in] vbias_ain7_ain0_bitmap = bit map of AIN7..AIN0 enables for voltage bias, default=0
whismanoid 1:d57c1a2cb83c 1537 //
whismanoid 1:d57c1a2cb83c 1538 // @return 1 on success; 0 on failure
whismanoid 1:d57c1a2cb83c 1539 uint8_t MAX11410::Configure_MUX_CTRL2(uint8_t vbias_ain7_ain0_bitmap)
whismanoid 1:d57c1a2cb83c 1540 {
whismanoid 1:d57c1a2cb83c 1541
whismanoid 1:d57c1a2cb83c 1542 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1543 // warning -- WIP work in progress
whismanoid 1:d57c1a2cb83c 1544 #warning "Not Tested Yet: MAX11410::Configure_MUX_CTRL2..."
whismanoid 1:d57c1a2cb83c 1545
whismanoid 1:d57c1a2cb83c 1546 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1547 // write8 0x0D MUX_CTRL2
whismanoid 1:d57c1a2cb83c 1548 RegWrite(CMD_r000_1101_dddd_dddd_MUX_CTRL2, vbias_ain7_ain0_bitmap);
whismanoid 1:d57c1a2cb83c 1549
whismanoid 1:d57c1a2cb83c 1550 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1551 // success
whismanoid 1:d57c1a2cb83c 1552 return 1;
whismanoid 1:d57c1a2cb83c 1553 }
whismanoid 1:d57c1a2cb83c 1554
whismanoid 1:d57c1a2cb83c 1555 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1556 // Menu item 'X0'
whismanoid 1:d57c1a2cb83c 1557 //
whismanoid 1:d57c1a2cb83c 1558 // CAL_START Calibrate Self Offset and Gain.
whismanoid 1:d57c1a2cb83c 1559 //
whismanoid 1:d57c1a2cb83c 1560 // @return 1 on success; 0 on failure
whismanoid 1:d57c1a2cb83c 1561 uint8_t MAX11410::Calibrate_Self_Offset_Gain(void)
whismanoid 1:d57c1a2cb83c 1562 {
whismanoid 1:d57c1a2cb83c 1563
whismanoid 1:d57c1a2cb83c 1564 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1565 // warning -- WIP work in progress
whismanoid 1:d57c1a2cb83c 1566 #warning "Not Tested Yet: MAX11410::Calibrate_Self_Offset_Gain..."
whismanoid 1:d57c1a2cb83c 1567
whismanoid 1:d57c1a2cb83c 1568 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1569 // write8 0x03 CAL_START
whismanoid 1:d57c1a2cb83c 1570 RegWrite(CMD_r000_0011_xxxx_xddd_CAL_START, (uint8_t)CAL_TYPE_000_SELF_CAL);
whismanoid 1:d57c1a2cb83c 1571
whismanoid 1:d57c1a2cb83c 1572 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1573 // success
whismanoid 1:d57c1a2cb83c 1574 return 1;
whismanoid 1:d57c1a2cb83c 1575 }
whismanoid 1:d57c1a2cb83c 1576
whismanoid 1:d57c1a2cb83c 1577 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1578 // Menu item 'X1'
whismanoid 1:d57c1a2cb83c 1579 //
whismanoid 1:d57c1a2cb83c 1580 // CAL_START Calibrate Selected PGA.
whismanoid 1:d57c1a2cb83c 1581 //
whismanoid 1:d57c1a2cb83c 1582 // @return 1 on success; 0 on failure
whismanoid 1:d57c1a2cb83c 1583 uint8_t MAX11410::Calibrate_PGA_Gain(void)
whismanoid 1:d57c1a2cb83c 1584 {
whismanoid 1:d57c1a2cb83c 1585
whismanoid 1:d57c1a2cb83c 1586 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1587 // warning -- WIP work in progress
whismanoid 1:d57c1a2cb83c 1588 #warning "Not Tested Yet: MAX11410::Calibrate_PGA_Gain..."
whismanoid 1:d57c1a2cb83c 1589
whismanoid 1:d57c1a2cb83c 1590 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1591 // write8 0x03 CAL_START
whismanoid 1:d57c1a2cb83c 1592 RegWrite(CMD_r000_0011_xxxx_xddd_CAL_START, (uint8_t)CAL_TYPE_001_PGA_GAIN);
whismanoid 1:d57c1a2cb83c 1593
whismanoid 1:d57c1a2cb83c 1594 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1595 // success
whismanoid 1:d57c1a2cb83c 1596 return 1;
whismanoid 1:d57c1a2cb83c 1597 }
whismanoid 1:d57c1a2cb83c 1598
whismanoid 1:d57c1a2cb83c 1599 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1600 // Menu item 'X4'
whismanoid 1:d57c1a2cb83c 1601 //
whismanoid 1:d57c1a2cb83c 1602 // CAL_START Calibrate System Offset A.
whismanoid 1:d57c1a2cb83c 1603 //
whismanoid 1:d57c1a2cb83c 1604 // @return 1 on success; 0 on failure
whismanoid 1:d57c1a2cb83c 1605 uint8_t MAX11410::Calibrate_System_Offset_A(void)
whismanoid 1:d57c1a2cb83c 1606 {
whismanoid 1:d57c1a2cb83c 1607
whismanoid 1:d57c1a2cb83c 1608 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1609 // warning -- WIP work in progress
whismanoid 1:d57c1a2cb83c 1610 #warning "Not Tested Yet: MAX11410::Calibrate_System_Offset_A..."
whismanoid 1:d57c1a2cb83c 1611
whismanoid 1:d57c1a2cb83c 1612 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1613 // write8 0x03 CAL_START
whismanoid 1:d57c1a2cb83c 1614 RegWrite(CMD_r000_0011_xxxx_xddd_CAL_START, (uint8_t)CAL_TYPE_100_SYS_OFF_A);
whismanoid 1:d57c1a2cb83c 1615
whismanoid 1:d57c1a2cb83c 1616 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1617 // success
whismanoid 1:d57c1a2cb83c 1618 return 1;
whismanoid 1:d57c1a2cb83c 1619 }
whismanoid 1:d57c1a2cb83c 1620
whismanoid 1:d57c1a2cb83c 1621 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1622 // Menu item 'X5'
whismanoid 1:d57c1a2cb83c 1623 //
whismanoid 1:d57c1a2cb83c 1624 // X6 0x03 CAL_START 0x06 Calibrate System Offset B
whismanoid 1:d57c1a2cb83c 1625 // X7 0x03 CAL_START 0x07 Calibrate System Gain B
whismanoid 1:d57c1a2cb83c 1626 // CAL_START Calibrate System Gain A.
whismanoid 1:d57c1a2cb83c 1627 //
whismanoid 1:d57c1a2cb83c 1628 // @return 1 on success; 0 on failure
whismanoid 1:d57c1a2cb83c 1629 uint8_t MAX11410::Calibrate_System_Gain_A(void)
whismanoid 1:d57c1a2cb83c 1630 {
whismanoid 1:d57c1a2cb83c 1631
whismanoid 1:d57c1a2cb83c 1632 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1633 // warning -- WIP work in progress
whismanoid 1:d57c1a2cb83c 1634 #warning "Not Tested Yet: MAX11410::Calibrate_System_Gain_A..."
whismanoid 1:d57c1a2cb83c 1635
whismanoid 1:d57c1a2cb83c 1636 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1637 // write8 0x03 CAL_START
whismanoid 1:d57c1a2cb83c 1638 RegWrite(CMD_r000_0011_xxxx_xddd_CAL_START, (uint8_t)CAL_TYPE_101_SYS_GAIN_A);
whismanoid 1:d57c1a2cb83c 1639
whismanoid 1:d57c1a2cb83c 1640 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1641 // success
whismanoid 1:d57c1a2cb83c 1642 return 1;
whismanoid 1:d57c1a2cb83c 1643 }
whismanoid 1:d57c1a2cb83c 1644
whismanoid 1:d57c1a2cb83c 1645 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1646 // Menu item 'X6'
whismanoid 1:d57c1a2cb83c 1647 //
whismanoid 1:d57c1a2cb83c 1648 // CAL_START Calibrate System Offset B.
whismanoid 1:d57c1a2cb83c 1649 //
whismanoid 1:d57c1a2cb83c 1650 // @return 1 on success; 0 on failure
whismanoid 1:d57c1a2cb83c 1651 uint8_t MAX11410::Calibrate_System_Offset_B(void)
whismanoid 1:d57c1a2cb83c 1652 {
whismanoid 1:d57c1a2cb83c 1653
whismanoid 1:d57c1a2cb83c 1654 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1655 // warning -- WIP work in progress
whismanoid 1:d57c1a2cb83c 1656 #warning "Not Tested Yet: MAX11410::Calibrate_System_Offset_B..."
whismanoid 1:d57c1a2cb83c 1657
whismanoid 1:d57c1a2cb83c 1658 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1659 // write8 0x03 CAL_START
whismanoid 1:d57c1a2cb83c 1660 RegWrite(CMD_r000_0011_xxxx_xddd_CAL_START, (uint8_t)CAL_TYPE_110_SYS_OFF_B);
whismanoid 1:d57c1a2cb83c 1661
whismanoid 1:d57c1a2cb83c 1662 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1663 // success
whismanoid 1:d57c1a2cb83c 1664 return 1;
whismanoid 1:d57c1a2cb83c 1665 }
whismanoid 1:d57c1a2cb83c 1666
whismanoid 1:d57c1a2cb83c 1667 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1668 // Menu item 'X7'
whismanoid 1:d57c1a2cb83c 1669 //
whismanoid 1:d57c1a2cb83c 1670 // CAL_START Calibrate System Gain B.
whismanoid 1:d57c1a2cb83c 1671 //
whismanoid 1:d57c1a2cb83c 1672 // @return 1 on success; 0 on failure
whismanoid 1:d57c1a2cb83c 1673 uint8_t MAX11410::Calibrate_System_Gain_B(void)
whismanoid 1:d57c1a2cb83c 1674 {
whismanoid 1:d57c1a2cb83c 1675
whismanoid 1:d57c1a2cb83c 1676 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1677 // warning -- WIP work in progress
whismanoid 1:d57c1a2cb83c 1678 #warning "Not Tested Yet: MAX11410::Calibrate_System_Gain_B..."
whismanoid 1:d57c1a2cb83c 1679
whismanoid 1:d57c1a2cb83c 1680 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1681 // write8 0x03 CAL_START
whismanoid 1:d57c1a2cb83c 1682 RegWrite(CMD_r000_0011_xxxx_xddd_CAL_START, (uint8_t)CAL_TYPE_111_SYS_GAIN_B);
whismanoid 1:d57c1a2cb83c 1683
whismanoid 1:d57c1a2cb83c 1684 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1685 // success
whismanoid 1:d57c1a2cb83c 1686 return 1;
whismanoid 1:d57c1a2cb83c 1687 }
whismanoid 1:d57c1a2cb83c 1688
whismanoid 1:d57c1a2cb83c 1689 //----------------------------------------
whismanoid 13:df96a784cda6 1690 // Menu item '$' -> AINcode[0], AINcode[1], AINcode[2], AINcode[3], AINcode[4], AINcode[5], AINcode[6], AINcode[7], AINcode[8], AINcode[9], AINcode[10]
whismanoid 17:0e9f2dfc2a30 1691 //
whismanoid 1:d57c1a2cb83c 1692 // Measure all ADC channels in sequence.
whismanoid 17:0e9f2dfc2a30 1693 // Diagnostic output pulse on GP0 for each channel's measurement.
whismanoid 17:0e9f2dfc2a30 1694 // Diagnostic output pulse on GP1 for entire loop.
whismanoid 17:0e9f2dfc2a30 1695 //
whismanoid 8:3a9dfa2e8234 1696 // @post AINcode[0..10]: measurement result LSB code
whismanoid 0:68e64068330f 1697 //
whismanoid 0:68e64068330f 1698 // @return 1 on success; 0 on failure
whismanoid 1:d57c1a2cb83c 1699 uint8_t MAX11410::Read_All_Voltages(void)
whismanoid 0:68e64068330f 1700 {
whismanoid 0:68e64068330f 1701
whismanoid 0:68e64068330f 1702 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1703 // scan AIN0..AIN9
whismanoid 17:0e9f2dfc2a30 1704 //
whismanoid 17:0e9f2dfc2a30 1705 // diagnostic GPIO pulse on MAX11410 GP1 pin (0xc3 = logic 0, 0xc4 = logic 1)
whismanoid 17:0e9f2dfc2a30 1706 RegWrite(CMD_r000_0101_dddd_xddd_GP1_CTRL, 0xc3); // GP1 = 0
whismanoid 17:0e9f2dfc2a30 1707 //
whismanoid 1:d57c1a2cb83c 1708 const MAX11410_AINN_SEL_enum_t ainn = AINN_SEL_1010_GND;
whismanoid 2:eac67184cc0c 1709 for(uint8_t ainp = /* MAX11410_AINP_SEL_enum_t:: */ AINP_SEL_0000_AIN0; ainp <= /* MAX11410_AINP_SEL_enum_t:: */ AINP_SEL_1010_AVDD; ainp++)
whismanoid 1:d57c1a2cb83c 1710 {
whismanoid 17:0e9f2dfc2a30 1711 // diagnostic GPIO pulse on MAX11410 GP0 pin (0xc3 = logic 0, 0xc4 = logic 1)
whismanoid 17:0e9f2dfc2a30 1712 RegWrite(CMD_r000_0100_dddd_xddd_GP0_CTRL, 0xc3); // GP0 = 0
whismanoid 17:0e9f2dfc2a30 1713 //
whismanoid 1:d57c1a2cb83c 1714 Measure_Voltage((MAX11410_AINP_SEL_enum_t)ainp, ainn);
whismanoid 17:0e9f2dfc2a30 1715 // @post AINcode[ainp]: measurement result LSB code
whismanoid 17:0e9f2dfc2a30 1716 //
whismanoid 17:0e9f2dfc2a30 1717 // diagnostic GPIO pulse on MAX11410 GP0 pin (0xc3 = logic 0, 0xc4 = logic 1)
whismanoid 17:0e9f2dfc2a30 1718 RegWrite(CMD_r000_0100_dddd_xddd_GP0_CTRL, 0xc4); // GP0 = 1
whismanoid 17:0e9f2dfc2a30 1719 //
whismanoid 1:d57c1a2cb83c 1720 }
whismanoid 17:0e9f2dfc2a30 1721 // diagnostic GPIO pulse on MAX11410 GP1 pin (0xc3 = logic 0, 0xc4 = logic 1)
whismanoid 17:0e9f2dfc2a30 1722 RegWrite(CMD_r000_0101_dddd_xddd_GP1_CTRL, 0xc4); // GP1 = 1
whismanoid 17:0e9f2dfc2a30 1723 //
whismanoid 0:68e64068330f 1724
whismanoid 0:68e64068330f 1725 //----------------------------------------
whismanoid 0:68e64068330f 1726 // success
whismanoid 0:68e64068330f 1727 return 1;
whismanoid 0:68e64068330f 1728 }
whismanoid 0:68e64068330f 1729
whismanoid 0:68e64068330f 1730 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1731 // Menu item 'V'
whismanoid 0:68e64068330f 1732 // Trigger Measurement for voltage input.
whismanoid 0:68e64068330f 1733 //
whismanoid 0:68e64068330f 1734 // Example code for typical voltage measurement.
whismanoid 0:68e64068330f 1735 //
whismanoid 1:d57c1a2cb83c 1736 // @pre external connection REF2P-REF2N is a reference voltage
whismanoid 1:d57c1a2cb83c 1737 // @pre VRef = Voltage of REF input, in Volts
whismanoid 1:d57c1a2cb83c 1738 // @param[in] ainp = channel high side, default=AINP_SEL_0000_AIN0
whismanoid 1:d57c1a2cb83c 1739 // @param[in] ainn = channel low side, default=AINN_SEL_1010_GND
whismanoid 1:d57c1a2cb83c 1740 // @post AINcode[ainp]: measurement result LSB code
whismanoid 0:68e64068330f 1741 //
whismanoid 1:d57c1a2cb83c 1742 // @return ideal voltage calculated from raw LSB code and reference voltage
whismanoid 1:d57c1a2cb83c 1743 double MAX11410::Measure_Voltage(MAX11410_AINP_SEL_enum_t ainp, MAX11410_AINN_SEL_enum_t ainn)
whismanoid 0:68e64068330f 1744 {
whismanoid 0:68e64068330f 1745
whismanoid 0:68e64068330f 1746 //----------------------------------------
whismanoid 8:3a9dfa2e8234 1747 // restrict channel selection to valid index range
whismanoid 8:3a9dfa2e8234 1748 if ((uint8_t)ainp > /* MAX11410_AINP_SEL_enum_t:: */ AINP_SEL_1010_AVDD)
whismanoid 8:3a9dfa2e8234 1749 {
whismanoid 8:3a9dfa2e8234 1750 ainp = /* MAX11410_AINP_SEL_enum_t:: */ AINP_SEL_1010_AVDD;
whismanoid 8:3a9dfa2e8234 1751 }
whismanoid 8:3a9dfa2e8234 1752
whismanoid 8:3a9dfa2e8234 1753 //----------------------------------------
whismanoid 8:3a9dfa2e8234 1754 // restrict channel selection to valid index range
whismanoid 8:3a9dfa2e8234 1755 if ((uint8_t)ainn > /* MAX11410_AINN_SEL_enum_t:: */ AINN_SEL_1010_GND)
whismanoid 8:3a9dfa2e8234 1756 {
whismanoid 8:3a9dfa2e8234 1757 ainn = /* MAX11410_AINN_SEL_enum_t:: */ AINN_SEL_1010_GND;
whismanoid 8:3a9dfa2e8234 1758 }
whismanoid 8:3a9dfa2e8234 1759
whismanoid 8:3a9dfa2e8234 1760 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1761 // write8 0x0B MUX_CTRL0 = 0x0A to select AINP=AIN0 and AINN=GND
whismanoid 1:d57c1a2cb83c 1762 Configure_MUX_CTRL0((uint8_t)ainp, (uint8_t)ainn);
whismanoid 1:d57c1a2cb83c 1763
whismanoid 1:d57c1a2cb83c 1764 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1765 // write8 0x09 CTRL to select reference REF2P/REF2N; Data Format = Bipolar 2's Complement
whismanoid 1:d57c1a2cb83c 1766 Configure_CTRL(/*extclk*/ 0, /*u_bn*/ 0, /*format*/ 0,
whismanoid 1:d57c1a2cb83c 1767 /*refbufp_en*/ 0, /*refbufn_en*/ 0,
whismanoid 1:d57c1a2cb83c 1768 /*ref_sel*/ (uint8_t)REF_SEL_010_REF2P_REF2N);
whismanoid 1:d57c1a2cb83c 1769
whismanoid 1:d57c1a2cb83c 1770 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1771 // write8 0x0E PGA
whismanoid 2:eac67184cc0c 1772 Configure_PGA((uint8_t) /* MAX11410_SIG_PATH_enum_t:: */ SIG_PATH_00_BUFFERED,
whismanoid 2:eac67184cc0c 1773 (uint8_t) /* MAX11410_GAIN_enum_t:: */ GAIN_000_1);
whismanoid 1:d57c1a2cb83c 1774
whismanoid 1:d57c1a2cb83c 1775 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1776 // write8 0x08 FILTER = 0x34 to select RATE_0100, LINEF_11_SINC4 60SPS (given CONV_TYPE_01_Continuous)
whismanoid 2:eac67184cc0c 1777 Configure_FILTER((uint8_t) /* MAX11410::MAX11410_LINEF_enum_t:: */ LINEF_11_SINC4,
whismanoid 2:eac67184cc0c 1778 (uint8_t) /* MAX11410::MAX11410_RATE_enum_t:: */ RATE_0100);
whismanoid 1:d57c1a2cb83c 1779
whismanoid 1:d57c1a2cb83c 1780 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1781 // write8 0x01 CONV_START = 0x01 to set Conversion Mode = Continuous
whismanoid 1:d57c1a2cb83c 1782 RegWrite(CMD_r000_0001_xddd_xxdd_CONV_START, 0x01);
whismanoid 0:68e64068330f 1783
whismanoid 0:68e64068330f 1784 //----------------------------------------
whismanoid 22:c6812214a933 1785 // purge any old data from data0 register
whismanoid 22:c6812214a933 1786 RegRead(CMD_r011_0000_dddd_dddd_dddd_dddd_dddd_dddd_DATA0, &AINcode[((int)ainp & 0x0F)]);
whismanoid 22:c6812214a933 1787 data0 = AINcode[((int)ainp & 0x0F)];
whismanoid 22:c6812214a933 1788
whismanoid 22:c6812214a933 1789 //----------------------------------------
whismanoid 0:68e64068330f 1790 // read24 0x80|0x38 STATUS (%SW 0xB8 0 0 0)
whismanoid 0:68e64068330f 1791 RegRead(CMD_r011_1000_dddd_dddd_dddd_dddd_dxxx_dddd_STATUS, &status);
whismanoid 0:68e64068330f 1792
whismanoid 0:68e64068330f 1793 //----------------------------------------
whismanoid 9:06ca88952f1c 1794 // TODO1: wait until STATUS_enum_t::STATUS_000010_DATA_RDY indicates data is available
whismanoid 13:df96a784cda6 1795 // A bad SPI interface can cause bit slippage, which makes this loop get stuck. Expect *PART_ID? = 0x000F02
whismanoid 13:df96a784cda6 1796 // while ((status & /* MAX11410_STATUS_enum_t:: */ STATUS_000010_DATA_RDY) == 0) {
whismanoid 13:df96a784cda6 1797 // possible infinite loop; need a timeout or futility countdown to escape
whismanoid 22:c6812214a933 1798 for (int futility_countdown = loop_limit;
whismanoid 13:df96a784cda6 1799 ((futility_countdown > 0) &&
whismanoid 13:df96a784cda6 1800 ((status & /* MAX11410_STATUS_enum_t:: */ STATUS_000010_DATA_RDY) == 0));
whismanoid 13:df96a784cda6 1801 futility_countdown--)
whismanoid 13:df96a784cda6 1802 {
whismanoid 9:06ca88952f1c 1803 RegRead(CMD_r011_1000_dddd_dddd_dddd_dddd_dxxx_dddd_STATUS, &status);
whismanoid 9:06ca88952f1c 1804 }
whismanoid 9:06ca88952f1c 1805
whismanoid 9:06ca88952f1c 1806 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1807 // read24 0x80|0x30 DATA0 (%SW 0xB0 0 0 0): AINcode[ainp] = measurement
whismanoid 1:d57c1a2cb83c 1808 RegRead(CMD_r011_0000_dddd_dddd_dddd_dddd_dddd_dddd_DATA0, &AINcode[((int)ainp & 0x0F)]);
whismanoid 1:d57c1a2cb83c 1809 data0 = AINcode[((int)ainp & 0x0F)];
whismanoid 0:68e64068330f 1810
whismanoid 0:68e64068330f 1811 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1812 // ideal voltage calculated from raw LSB code and reference voltage
whismanoid 1:d57c1a2cb83c 1813 return VoltageOfCode(AINcode[((int)ainp & 0x0F)]);
whismanoid 0:68e64068330f 1814 }
whismanoid 0:68e64068330f 1815
whismanoid 0:68e64068330f 1816 //----------------------------------------
whismanoid 22:c6812214a933 1817 // Menu item 'R' -> rtd_ohm, rtd_degc
whismanoid 0:68e64068330f 1818 // Trigger Measurement for Resistive Temperature Device (RTD).
whismanoid 0:68e64068330f 1819 //
whismanoid 0:68e64068330f 1820 // Example code for typical RTD measurement.
whismanoid 0:68e64068330f 1821 //
whismanoid 1:d57c1a2cb83c 1822 // @pre external connection REF1P-REF1N is a reference resistor
whismanoid 22:c6812214a933 1823 // @pre ref1_v = reference resistance in ohms, default=4999
whismanoid 23:22e7830bcccb 1824 // @pre rtd_filter = filter register configuration, 0x34 for LINEF_11_SINC4 RATE_0100 output data rate 60SPS
whismanoid 23:22e7830bcccb 1825 // @pre rtd_ctrl = ctrl register configuration, 0x40 for ref0_v, 0x41 for ref1_v, 0x42 for ref2_v
whismanoid 1:d57c1a2cb83c 1826 // @param[in] rtd_iout = channel RTD high side force, default=AINP_SEL_0111_AIN7
whismanoid 1:d57c1a2cb83c 1827 // @param[in] rtd_ainp = channel RTD high side sense, default=AINP_SEL_1000_AIN8
whismanoid 1:d57c1a2cb83c 1828 // @param[in] rtd_ainn = channel RTD low side, default=AINN_SEL_1001_AIN9
whismanoid 1:d57c1a2cb83c 1829 // @post AINcode[rtd_ainp]: measurement result LSB code
whismanoid 22:c6812214a933 1830 // @post rtd_ohm: measurement result resistance in Ohms
whismanoid 22:c6812214a933 1831 // @post rtd_degc: Temperature calculated from RTD Resistance; Thermocouple Cold Junction, in degrees C
whismanoid 0:68e64068330f 1832 //
whismanoid 3:658a93dfb2d8 1833 // @return resistance calculated from raw LSB code and reference resistance
whismanoid 1:d57c1a2cb83c 1834 double MAX11410::Measure_RTD(MAX11410_AINP_SEL_enum_t rtd_iout, MAX11410_AINP_SEL_enum_t rtd_ainp, MAX11410_AINN_SEL_enum_t rtd_ainn)
whismanoid 0:68e64068330f 1835 {
whismanoid 0:68e64068330f 1836
whismanoid 0:68e64068330f 1837 //----------------------------------------
whismanoid 8:3a9dfa2e8234 1838 // restrict channel selection to valid index range
whismanoid 8:3a9dfa2e8234 1839 if ((uint8_t)rtd_iout > /* MAX11410_AINP_SEL_enum_t:: */ AINP_SEL_1010_AVDD)
whismanoid 8:3a9dfa2e8234 1840 {
whismanoid 8:3a9dfa2e8234 1841 rtd_iout = /* MAX11410_AINP_SEL_enum_t:: */ AINP_SEL_1010_AVDD;
whismanoid 8:3a9dfa2e8234 1842 }
whismanoid 8:3a9dfa2e8234 1843
whismanoid 8:3a9dfa2e8234 1844 //----------------------------------------
whismanoid 8:3a9dfa2e8234 1845 // restrict channel selection to valid index range
whismanoid 8:3a9dfa2e8234 1846 if ((uint8_t)rtd_ainp > /* MAX11410_AINP_SEL_enum_t:: */ AINP_SEL_1010_AVDD)
whismanoid 8:3a9dfa2e8234 1847 {
whismanoid 8:3a9dfa2e8234 1848 rtd_ainp = /* MAX11410_AINP_SEL_enum_t:: */ AINP_SEL_1010_AVDD;
whismanoid 8:3a9dfa2e8234 1849 }
whismanoid 8:3a9dfa2e8234 1850
whismanoid 8:3a9dfa2e8234 1851 //----------------------------------------
whismanoid 8:3a9dfa2e8234 1852 // restrict channel selection to valid index range
whismanoid 8:3a9dfa2e8234 1853 if ((uint8_t)rtd_ainn > /* MAX11410_AINN_SEL_enum_t:: */ AINN_SEL_1010_GND)
whismanoid 8:3a9dfa2e8234 1854 {
whismanoid 8:3a9dfa2e8234 1855 rtd_ainn = /* MAX11410_AINN_SEL_enum_t:: */ AINN_SEL_1010_GND;
whismanoid 8:3a9dfa2e8234 1856 }
whismanoid 8:3a9dfa2e8234 1857
whismanoid 8:3a9dfa2e8234 1858 //----------------------------------------
whismanoid 23:22e7830bcccb 1859 // write8 0x08 FILTER to select output data rate
whismanoid 23:22e7830bcccb 1860 RegWrite(CMD_r000_1000_x0dd_dddd_FILTER, rtd_filter);
whismanoid 1:d57c1a2cb83c 1861
whismanoid 1:d57c1a2cb83c 1862 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1863 // write8 0x09 CTRL to select reference resistor REF1P/REF1N; Data Format = Unipolar
whismanoid 23:22e7830bcccb 1864 RegWrite(CMD_r000_1001_dddd_dddd_CTRL, rtd_ctrl);
whismanoid 23:22e7830bcccb 1865 ctrl = rtd_ctrl;
whismanoid 1:d57c1a2cb83c 1866
whismanoid 1:d57c1a2cb83c 1867 //----------------------------------------
whismanoid 23:22e7830bcccb 1868 // write8 0x0A SOURCE to select IDAC_MODE 400uA; AIN9=2.000V, AIN8(PT100)=2.040V, AIN8(PT1000)=2.400V
whismanoid 23:22e7830bcccb 1869 RegWrite(CMD_r000_1010_dddd_dddd_SOURCE, rtd_source);
whismanoid 1:d57c1a2cb83c 1870
whismanoid 1:d57c1a2cb83c 1871 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1872 // write8 0x0B MUX_CTRL0 = 0x89 to select AINP=AIN8 and AINN=AIN9
whismanoid 1:d57c1a2cb83c 1873 Configure_MUX_CTRL0((uint8_t)rtd_ainp, (uint8_t)rtd_ainn);
whismanoid 1:d57c1a2cb83c 1874
whismanoid 1:d57c1a2cb83c 1875 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1876 // write8 0x0C MUX_CTRL1 = 0xF7 to select IDAC1_SEL=NC, IDAC0_SEL=AIN7
whismanoid 1:d57c1a2cb83c 1877 Configure_MUX_CTRL1((uint8_t)IDAC1_SEL_1111_unconnected, (uint8_t)rtd_iout);
whismanoid 1:d57c1a2cb83c 1878
whismanoid 1:d57c1a2cb83c 1879 //----------------------------------------
whismanoid 23:22e7830bcccb 1880 // write8 0x0E PGA and update pgaGain
whismanoid 23:22e7830bcccb 1881 Configure_PGA(
whismanoid 23:22e7830bcccb 1882 ((rtd_pga >> 4) & 2), // sigpath
whismanoid 23:22e7830bcccb 1883 ( rtd_pga & 7)); // gain
whismanoid 1:d57c1a2cb83c 1884
whismanoid 1:d57c1a2cb83c 1885 //----------------------------------------
whismanoid 22:c6812214a933 1886 // diagnostic GPIO pulse on GP1 during RTD power-up interval rtd_ms
whismanoid 16:00aa1e5a6843 1887 RegWrite(CMD_r000_0101_dddd_xddd_GP1_CTRL, 0xc3); // diagnostic GPIO pulse GP1
whismanoid 16:00aa1e5a6843 1888 // write8 0x05 GP1_CTRL (%SW 0x05 0xc3) 11000 output 011 logic 0
whismanoid 16:00aa1e5a6843 1889
whismanoid 16:00aa1e5a6843 1890 //----------------------------------------
whismanoid 21:847b2220e96e 1891 // timing delay after enable RTD bias current
whismanoid 22:c6812214a933 1892 // const int rtd_ms = 100; // timing delay after enable RTD bias current
whismanoid 22:c6812214a933 1893 wait_ms(rtd_ms); // timing delay function, platform-specific
whismanoid 9:06ca88952f1c 1894
whismanoid 9:06ca88952f1c 1895 //----------------------------------------
whismanoid 22:c6812214a933 1896 // diagnostic GPIO pulse on GP1 during RTD power-up interval rtd_ms
whismanoid 16:00aa1e5a6843 1897 RegWrite(CMD_r000_0101_dddd_xddd_GP1_CTRL, 0xc4); // diagnostic GPIO pulse GP1
whismanoid 16:00aa1e5a6843 1898 // write8 0x05 GP1_CTRL (%SW 0x05 0xc4) 11000 output 100 logic 1
whismanoid 16:00aa1e5a6843 1899
whismanoid 16:00aa1e5a6843 1900 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1901 // write8 0x01 CONV_START = 0x01 to set Conversion Mode = Continuous
whismanoid 1:d57c1a2cb83c 1902 RegWrite(CMD_r000_0001_xddd_xxdd_CONV_START, 0x01);
whismanoid 1:d57c1a2cb83c 1903
whismanoid 1:d57c1a2cb83c 1904 //----------------------------------------
whismanoid 0:68e64068330f 1905 // read24 0x80|0x38 STATUS (%SW 0xB8 0 0 0)
whismanoid 0:68e64068330f 1906 RegRead(CMD_r011_1000_dddd_dddd_dddd_dddd_dxxx_dddd_STATUS, &status);
whismanoid 0:68e64068330f 1907
whismanoid 0:68e64068330f 1908 //----------------------------------------
whismanoid 16:00aa1e5a6843 1909 // TODO1: wait until STATUS_enum_t::STATUS_000010_DATA_RDY indicates data is available
whismanoid 16:00aa1e5a6843 1910 // A bad SPI interface can cause bit slippage, which makes this loop get stuck. Expect *PART_ID? = 0x000F02
whismanoid 16:00aa1e5a6843 1911 // while ((status & /* MAX11410_STATUS_enum_t:: */ STATUS_000010_DATA_RDY) == 0) {
whismanoid 16:00aa1e5a6843 1912 // possible infinite loop; need a timeout or futility countdown to escape
whismanoid 22:c6812214a933 1913 for (int futility_countdown = loop_limit;
whismanoid 16:00aa1e5a6843 1914 ((futility_countdown > 0) &&
whismanoid 16:00aa1e5a6843 1915 ((status & /* MAX11410_STATUS_enum_t:: */ STATUS_000010_DATA_RDY) == 0));
whismanoid 16:00aa1e5a6843 1916 futility_countdown--)
whismanoid 16:00aa1e5a6843 1917 {
whismanoid 16:00aa1e5a6843 1918 RegRead(CMD_r011_1000_dddd_dddd_dddd_dddd_dxxx_dddd_STATUS, &status);
whismanoid 16:00aa1e5a6843 1919 }
whismanoid 16:00aa1e5a6843 1920
whismanoid 16:00aa1e5a6843 1921 //----------------------------------------
whismanoid 1:d57c1a2cb83c 1922 // read24 0x80|0x30 DATA0 (%SW 0xB0 0 0 0): AINcode[ainp] = measurement
whismanoid 1:d57c1a2cb83c 1923 RegRead(CMD_r011_0000_dddd_dddd_dddd_dddd_dddd_dddd_DATA0, &AINcode[((int)rtd_ainp & 0x0F)]);
whismanoid 1:d57c1a2cb83c 1924 data0 = AINcode[((int)rtd_ainp & 0x0F)];
whismanoid 0:68e64068330f 1925
whismanoid 0:68e64068330f 1926 //----------------------------------------
whismanoid 15:d5781c8fc002 1927 // TODO1: turn off RTD bias current to avoid self-heating: write8 0x0C MUX_CTRL1 = 0xFF to select IDAC1_SEL=NC, IDAC0_SEL=NC
whismanoid 15:d5781c8fc002 1928 Configure_MUX_CTRL1((uint8_t)IDAC1_SEL_1111_unconnected, (uint8_t)IDAC0_SEL_1111_unconnected);
whismanoid 9:06ca88952f1c 1929
whismanoid 9:06ca88952f1c 1930 //----------------------------------------
whismanoid 22:c6812214a933 1931 // resistance calculated from raw LSB code and ref1_v reference resistance in ohms
whismanoid 22:c6812214a933 1932 rtd_ohm = VoltageOfCode(AINcode[((int)rtd_ainp & 0x0F)]);
whismanoid 22:c6812214a933 1933 TemperatureOfRTD(rtd_ohm); // calculate rtd_degc
whismanoid 22:c6812214a933 1934 return rtd_ohm;
whismanoid 0:68e64068330f 1935 }
whismanoid 0:68e64068330f 1936
whismanoid 0:68e64068330f 1937 //----------------------------------------
whismanoid 3:658a93dfb2d8 1938 // Return the physical temperature corresponding to measured resistance
whismanoid 3:658a93dfb2d8 1939 // of a PT1000 type Resistive Temperature Device (RTD).
whismanoid 3:658a93dfb2d8 1940 //
whismanoid 22:c6812214a933 1941 // @param[in] rtd_ohm = RTD resistance in ohms, default=1000
whismanoid 22:c6812214a933 1942 // @post rtd_degc: Temperature calculated from RTD Resistance; Thermocouple Cold Junction, in degrees C
whismanoid 3:658a93dfb2d8 1943 //
whismanoid 3:658a93dfb2d8 1944 // @return ideal temperature in degrees C, calculated from RTD resistance in ohms
whismanoid 21:847b2220e96e 1945 // @test group RTD_PT1000 // PT1000 type Resistive Temperature Device (RTD)
whismanoid 21:847b2220e96e 1946 // @test group RTD_PT1000 tinyTester.blink_time_msec = 20 // quickly speed through the software verification
whismanoid 19:50cf5da53d36 1947 // @test group RTD_PT1000 TemperatureOfRTD_PT1000(842.94) expect -40.0 within 0.1 // PT-1000 RTD at -40C
whismanoid 19:50cf5da53d36 1948 // @test group RTD_PT1000 TemperatureOfRTD_PT1000(1000.0) expect 0.0 within 0.1 // PT-1000 RTD at 0C
whismanoid 19:50cf5da53d36 1949 // @test group RTD_PT1000 TemperatureOfRTD_PT1000(1097.3) expect 25.0 within 0.1 // PT-1000 RTD at 25C
whismanoid 19:50cf5da53d36 1950 // @test group RTD_PT1000 TemperatureOfRTD_PT1000(1328.1) expect 85.0 within 0.1 // PT-1000 RTD at 85C
whismanoid 19:50cf5da53d36 1951 // @test group RTD_PT1000 TemperatureOfRTD_PT1000(1479.5) expect 125.0 within 0.1 // PT-1000 RTD at 125C
whismanoid 21:847b2220e96e 1952 // @test group RTD_PT1000 tinyTester.blink_time_msec = 75 // default 75 resume hardware self test
whismanoid 3:658a93dfb2d8 1953 //
whismanoid 22:c6812214a933 1954 double MAX11410::TemperatureOfRTD_PT1000(double rtd_ohm)
whismanoid 3:658a93dfb2d8 1955 {
whismanoid 3:658a93dfb2d8 1956
whismanoid 3:658a93dfb2d8 1957 //----------------------------------------
whismanoid 3:658a93dfb2d8 1958 // Temperature from RTD Resistance maths
whismanoid 4:c169ba85d673 1959 // ITS-90 PT-1000 RTD
whismanoid 4:c169ba85d673 1960 double R0 = 1000.0;
whismanoid 4:c169ba85d673 1961 double a = 3.9083e-3;
whismanoid 4:c169ba85d673 1962 double b = -5.7750e-7;
whismanoid 5:a2e74357cfc0 1963 // calculate T from R and R0
whismanoid 22:c6812214a933 1964 double sqrtTerm = sqrt(R0*R0 * a*a - 4*R0*b*(R0 - rtd_ohm));
whismanoid 4:c169ba85d673 1965 double denominator = 2 * R0 * b;
whismanoid 22:c6812214a933 1966 rtd_degc = ((-R0 * a) + (sqrtTerm)) / denominator;
whismanoid 22:c6812214a933 1967 return rtd_degc;
whismanoid 3:658a93dfb2d8 1968 }
whismanoid 3:658a93dfb2d8 1969
whismanoid 3:658a93dfb2d8 1970 //----------------------------------------
whismanoid 16:00aa1e5a6843 1971 // Return the physical temperature corresponding to measured resistance
whismanoid 16:00aa1e5a6843 1972 // of a PT100 type Resistive Temperature Device (RTD).
whismanoid 16:00aa1e5a6843 1973 //
whismanoid 22:c6812214a933 1974 // @param[in] rtd_ohm = RTD resistance in ohms, default=100
whismanoid 22:c6812214a933 1975 // @post rtd_degc: Temperature calculated from RTD Resistance; Thermocouple Cold Junction, in degrees C
whismanoid 16:00aa1e5a6843 1976 //
whismanoid 16:00aa1e5a6843 1977 // @return ideal temperature in degrees C, calculated from RTD resistance in ohms
whismanoid 21:847b2220e96e 1978 // @test group RTD_PT100 // PT100 type Resistive Temperature Device (RTD)
whismanoid 21:847b2220e96e 1979 // @test group RTD_PT100 tinyTester.blink_time_msec = 20 // quickly speed through the software verification
whismanoid 19:50cf5da53d36 1980 // @test group RTD_PT100 TemperatureOfRTD_PT100(84.294) expect -40.0 within 0.1 // PT-100 RTD at -40C
whismanoid 19:50cf5da53d36 1981 // @test group RTD_PT100 TemperatureOfRTD_PT100(100.00) expect 0.0 within 0.1 // PT-100 RTD at 0C
whismanoid 19:50cf5da53d36 1982 // @test group RTD_PT100 TemperatureOfRTD_PT100(109.73) expect 25.0 within 0.1 // PT-100 RTD at 25C
whismanoid 19:50cf5da53d36 1983 // @test group RTD_PT100 TemperatureOfRTD_PT100(132.81) expect 85.0 within 0.1 // PT-100 RTD at 85C
whismanoid 19:50cf5da53d36 1984 // @test group RTD_PT100 TemperatureOfRTD_PT100(147.95) expect 125.0 within 0.1 // PT-100 RTD at 125C
whismanoid 21:847b2220e96e 1985 // @test group RTD_PT100 tinyTester.blink_time_msec = 75 // default 75 resume hardware self test
whismanoid 16:00aa1e5a6843 1986 //
whismanoid 22:c6812214a933 1987 double MAX11410::TemperatureOfRTD_PT100(double rtd_ohm)
whismanoid 16:00aa1e5a6843 1988 {
whismanoid 16:00aa1e5a6843 1989
whismanoid 16:00aa1e5a6843 1990 //----------------------------------------
whismanoid 16:00aa1e5a6843 1991 // Temperature from RTD Resistance maths
whismanoid 16:00aa1e5a6843 1992 // ITS-90 PT-100 RTD
whismanoid 16:00aa1e5a6843 1993 double R0 = 100.0;
whismanoid 16:00aa1e5a6843 1994 double a = 3.9083e-3;
whismanoid 16:00aa1e5a6843 1995 double b = -5.7750e-7;
whismanoid 16:00aa1e5a6843 1996 // calculate T from R and R0
whismanoid 22:c6812214a933 1997 double sqrtTerm = sqrt(R0*R0 * a*a - 4*R0*b*(R0 - rtd_ohm));
whismanoid 16:00aa1e5a6843 1998 double denominator = 2 * R0 * b;
whismanoid 22:c6812214a933 1999 rtd_degc = ((-R0 * a) + (sqrtTerm)) / denominator;
whismanoid 22:c6812214a933 2000 return rtd_degc;
whismanoid 16:00aa1e5a6843 2001 }
whismanoid 16:00aa1e5a6843 2002
whismanoid 16:00aa1e5a6843 2003 //----------------------------------------
whismanoid 16:00aa1e5a6843 2004 // Return the physical temperature corresponding to measured resistance
whismanoid 16:00aa1e5a6843 2005 // of a PT100 or PT1000 type Resistive Temperature Device (RTD).
whismanoid 16:00aa1e5a6843 2006 //
whismanoid 22:c6812214a933 2007 // @param[in] rtd_ohm = RTD resistance in ohms, default=100
whismanoid 22:c6812214a933 2008 // @post rtd_degc: Temperature calculated from RTD Resistance; Thermocouple Cold Junction, in degrees C
whismanoid 16:00aa1e5a6843 2009 //
whismanoid 16:00aa1e5a6843 2010 // @return ideal temperature in degrees C, calculated from RTD resistance in ohms
whismanoid 19:50cf5da53d36 2011 // @test group RTD // Verify function TemperatureOfRTD
whismanoid 19:50cf5da53d36 2012 // @test group RTD tinyTester.blink_time_msec = 20 // quickly speed through the software verification
whismanoid 19:50cf5da53d36 2013 // @test group RTD TemperatureOfRTD(84.294) expect -40.0 within 0.1 // PT-100 RTD at -40C
whismanoid 19:50cf5da53d36 2014 // @test group RTD TemperatureOfRTD(100.00) expect 0.0 within 0.1 // PT-100 RTD at 0C
whismanoid 19:50cf5da53d36 2015 // @test group RTD TemperatureOfRTD(109.73) expect 25.0 within 0.1 // PT-100 RTD at 25C
whismanoid 19:50cf5da53d36 2016 // @test group RTD TemperatureOfRTD(132.81) expect 85.0 within 0.1 // PT-100 RTD at 85C
whismanoid 19:50cf5da53d36 2017 // @test group RTD TemperatureOfRTD(147.95) expect 125.0 within 0.1 // PT-100 RTD at 125C
whismanoid 19:50cf5da53d36 2018 // @test group RTD TemperatureOfRTD(842.94) expect -40.0 within 0.1 // PT-1000 RTD at -40C
whismanoid 19:50cf5da53d36 2019 // @test group RTD TemperatureOfRTD(1000.0) expect 0.0 within 0.1 // PT-1000 RTD at 0C
whismanoid 19:50cf5da53d36 2020 // @test group RTD TemperatureOfRTD(1097.3) expect 25.0 within 0.1 // PT-1000 RTD at 25C
whismanoid 19:50cf5da53d36 2021 // @test group RTD TemperatureOfRTD(1328.1) expect 85.0 within 0.1 // PT-1000 RTD at 85C
whismanoid 19:50cf5da53d36 2022 // @test group RTD TemperatureOfRTD(1479.5) expect 125.0 within 0.1 // PT-1000 RTD at 125C
whismanoid 21:847b2220e96e 2023 // @test group RTD tinyTester.blink_time_msec = 75 // default 75 resume hardware self test
whismanoid 16:00aa1e5a6843 2024 //
whismanoid 22:c6812214a933 2025 double MAX11410::TemperatureOfRTD(double rtd_ohm)
whismanoid 16:00aa1e5a6843 2026 {
whismanoid 16:00aa1e5a6843 2027
whismanoid 16:00aa1e5a6843 2028 //----------------------------------------
whismanoid 16:00aa1e5a6843 2029 // return TemperatureOfRTD_PT100 or TemperatureOfRTD_PT1000
whismanoid 22:c6812214a933 2030 if (rtd_ohm > 500.0)
whismanoid 16:00aa1e5a6843 2031 {
whismanoid 22:c6812214a933 2032 return TemperatureOfRTD_PT1000(rtd_ohm);
whismanoid 16:00aa1e5a6843 2033 }
whismanoid 16:00aa1e5a6843 2034 else
whismanoid 16:00aa1e5a6843 2035 {
whismanoid 22:c6812214a933 2036 return TemperatureOfRTD_PT100(rtd_ohm);
whismanoid 16:00aa1e5a6843 2037 }
whismanoid 16:00aa1e5a6843 2038 }
whismanoid 16:00aa1e5a6843 2039
whismanoid 16:00aa1e5a6843 2040 //----------------------------------------
whismanoid 22:c6812214a933 2041 // Menu item 'TM' -> tc_v, tc_delta_degc, tc_degc
whismanoid 0:68e64068330f 2042 // Trigger Measurement for Thermocouple
whismanoid 0:68e64068330f 2043 //
whismanoid 0:68e64068330f 2044 // Example code for typical Thermocouple measurement.
whismanoid 1:d57c1a2cb83c 2045 // An RTD measures the "cold junction" where TC connects to the board,
whismanoid 1:d57c1a2cb83c 2046 // and the TC measures the temperature difference above the cold junction.
whismanoid 0:68e64068330f 2047 //
whismanoid 1:d57c1a2cb83c 2048 // @param[in] tc_ainp = channel of Thermocouple high side, default=AINP_SEL_0101_AIN5
whismanoid 1:d57c1a2cb83c 2049 // @param[in] tc_ainn = channel of Thermocouple low side, default=AINN_SEL_0110_AIN6
whismanoid 1:d57c1a2cb83c 2050 // @param[in] rtd_iout = channel RTD high side force, default=AINP_SEL_0111_AIN7
whismanoid 1:d57c1a2cb83c 2051 // @param[in] rtd_ainp = channel RTD high side sense, default=AINP_SEL_1000_AIN8
whismanoid 1:d57c1a2cb83c 2052 // @param[in] rtd_ainn = channel RTD low side, default=AINN_SEL_1001_AIN9
whismanoid 1:d57c1a2cb83c 2053 // @post AINcode[tc_ainp]: measurement result LSB code
whismanoid 22:c6812214a933 2054 // @post tc_v: raw thermocouple voltage in Volts
whismanoid 22:c6812214a933 2055 // @post tc_delta_degc: temperature in degC above cold junction
whismanoid 22:c6812214a933 2056 // @post tc_degc: temperature in degC
whismanoid 0:68e64068330f 2057 //
whismanoid 0:68e64068330f 2058 // @return 1 on success; 0 on failure
whismanoid 1:d57c1a2cb83c 2059 double MAX11410::Measure_Thermocouple(MAX11410_AINP_SEL_enum_t tc_ainp, MAX11410_AINN_SEL_enum_t tc_ainn, MAX11410_AINP_SEL_enum_t rtd_iout, MAX11410_AINP_SEL_enum_t rtd_ainp, MAX11410_AINN_SEL_enum_t rtd_ainn)
whismanoid 0:68e64068330f 2060 {
whismanoid 0:68e64068330f 2061
whismanoid 0:68e64068330f 2062 //----------------------------------------
whismanoid 8:3a9dfa2e8234 2063 // restrict channel selection to valid index range
whismanoid 8:3a9dfa2e8234 2064 if ((uint8_t)tc_ainp > /* MAX11410_AINP_SEL_enum_t:: */ AINP_SEL_1010_AVDD)
whismanoid 8:3a9dfa2e8234 2065 {
whismanoid 8:3a9dfa2e8234 2066 tc_ainp = /* MAX11410_AINP_SEL_enum_t:: */ AINP_SEL_1010_AVDD;
whismanoid 8:3a9dfa2e8234 2067 }
whismanoid 8:3a9dfa2e8234 2068
whismanoid 8:3a9dfa2e8234 2069 //----------------------------------------
whismanoid 8:3a9dfa2e8234 2070 // restrict channel selection to valid index range
whismanoid 8:3a9dfa2e8234 2071 if ((uint8_t)tc_ainn > /* MAX11410_AINN_SEL_enum_t:: */ AINN_SEL_1010_GND)
whismanoid 8:3a9dfa2e8234 2072 {
whismanoid 8:3a9dfa2e8234 2073 tc_ainn = /* MAX11410_AINN_SEL_enum_t:: */ AINN_SEL_1010_GND;
whismanoid 8:3a9dfa2e8234 2074 }
whismanoid 8:3a9dfa2e8234 2075
whismanoid 8:3a9dfa2e8234 2076 //----------------------------------------
whismanoid 8:3a9dfa2e8234 2077 // restrict channel selection to valid index range
whismanoid 8:3a9dfa2e8234 2078 if ((uint8_t)rtd_iout > /* MAX11410_AINP_SEL_enum_t:: */ AINP_SEL_1010_AVDD)
whismanoid 8:3a9dfa2e8234 2079 {
whismanoid 8:3a9dfa2e8234 2080 rtd_iout = /* MAX11410_AINP_SEL_enum_t:: */ AINP_SEL_1010_AVDD;
whismanoid 8:3a9dfa2e8234 2081 }
whismanoid 8:3a9dfa2e8234 2082
whismanoid 8:3a9dfa2e8234 2083 //----------------------------------------
whismanoid 8:3a9dfa2e8234 2084 // restrict channel selection to valid index range
whismanoid 8:3a9dfa2e8234 2085 if ((uint8_t)rtd_ainp > /* MAX11410_AINP_SEL_enum_t:: */ AINP_SEL_1010_AVDD)
whismanoid 8:3a9dfa2e8234 2086 {
whismanoid 8:3a9dfa2e8234 2087 rtd_ainp = /* MAX11410_AINP_SEL_enum_t:: */ AINP_SEL_1010_AVDD;
whismanoid 8:3a9dfa2e8234 2088 }
whismanoid 8:3a9dfa2e8234 2089
whismanoid 8:3a9dfa2e8234 2090 //----------------------------------------
whismanoid 8:3a9dfa2e8234 2091 // restrict channel selection to valid index range
whismanoid 8:3a9dfa2e8234 2092 if ((uint8_t)rtd_ainn > /* MAX11410_AINN_SEL_enum_t:: */ AINN_SEL_1010_GND)
whismanoid 8:3a9dfa2e8234 2093 {
whismanoid 8:3a9dfa2e8234 2094 rtd_ainn = /* MAX11410_AINN_SEL_enum_t:: */ AINN_SEL_1010_GND;
whismanoid 8:3a9dfa2e8234 2095 }
whismanoid 8:3a9dfa2e8234 2096
whismanoid 8:3a9dfa2e8234 2097 //----------------------------------------
whismanoid 8:3a9dfa2e8234 2098 // write8 0x0B MUX_CTRL0 = 0x0A to select AINP=AIN0 and AINN=GND
whismanoid 8:3a9dfa2e8234 2099 Configure_MUX_CTRL0((uint8_t)tc_ainp, (uint8_t)tc_ainn);
whismanoid 8:3a9dfa2e8234 2100
whismanoid 8:3a9dfa2e8234 2101 //----------------------------------------
whismanoid 8:3a9dfa2e8234 2102 // write8 0x09 CTRL to select reference REF2P/REF2N; Data Format = Bipolar 2's Complement
whismanoid 8:3a9dfa2e8234 2103 Configure_CTRL(/*extclk*/ 0, /*u_bn*/ 0, /*format*/ 0,
whismanoid 8:3a9dfa2e8234 2104 /*refbufp_en*/ 0, /*refbufn_en*/ 0,
whismanoid 8:3a9dfa2e8234 2105 /*ref_sel*/ (uint8_t)REF_SEL_010_REF2P_REF2N);
whismanoid 8:3a9dfa2e8234 2106
whismanoid 8:3a9dfa2e8234 2107 //----------------------------------------
whismanoid 8:3a9dfa2e8234 2108 // write8 0x0E PGA
whismanoid 8:3a9dfa2e8234 2109 Configure_PGA((uint8_t) /* MAX11410_SIG_PATH_enum_t:: */ SIG_PATH_00_BUFFERED,
whismanoid 8:3a9dfa2e8234 2110 (uint8_t) /* MAX11410_GAIN_enum_t:: */ GAIN_000_1);
whismanoid 8:3a9dfa2e8234 2111
whismanoid 8:3a9dfa2e8234 2112 //----------------------------------------
whismanoid 8:3a9dfa2e8234 2113 // write8 0x08 FILTER = 0x34 to select RATE_0100, LINEF_11_SINC4 60SPS (given CONV_TYPE_01_Continuous)
whismanoid 8:3a9dfa2e8234 2114 Configure_FILTER((uint8_t) /* MAX11410::MAX11410_LINEF_enum_t:: */ LINEF_11_SINC4,
whismanoid 8:3a9dfa2e8234 2115 (uint8_t) /* MAX11410::MAX11410_RATE_enum_t:: */ RATE_0100);
whismanoid 8:3a9dfa2e8234 2116
whismanoid 8:3a9dfa2e8234 2117 //----------------------------------------
whismanoid 8:3a9dfa2e8234 2118 // write8 0x01 CONV_START = 0x01 to set Conversion Mode = Continuous
whismanoid 8:3a9dfa2e8234 2119 RegWrite(CMD_r000_0001_xddd_xxdd_CONV_START, 0x01);
whismanoid 8:3a9dfa2e8234 2120
whismanoid 8:3a9dfa2e8234 2121 //----------------------------------------
whismanoid 0:68e64068330f 2122 // read24 0x80|0x38 STATUS (%SW 0xB8 0 0 0)
whismanoid 0:68e64068330f 2123 RegRead(CMD_r011_1000_dddd_dddd_dddd_dddd_dxxx_dddd_STATUS, &status);
whismanoid 0:68e64068330f 2124
whismanoid 0:68e64068330f 2125 //----------------------------------------
whismanoid 16:00aa1e5a6843 2126 // TODO1: wait until STATUS_enum_t::STATUS_000010_DATA_RDY indicates data is available
whismanoid 16:00aa1e5a6843 2127 // A bad SPI interface can cause bit slippage, which makes this loop get stuck. Expect *PART_ID? = 0x000F02
whismanoid 16:00aa1e5a6843 2128 // while ((status & /* MAX11410_STATUS_enum_t:: */ STATUS_000010_DATA_RDY) == 0) {
whismanoid 16:00aa1e5a6843 2129 // possible infinite loop; need a timeout or futility countdown to escape
whismanoid 22:c6812214a933 2130 for (int futility_countdown = loop_limit;
whismanoid 16:00aa1e5a6843 2131 ((futility_countdown > 0) &&
whismanoid 16:00aa1e5a6843 2132 ((status & /* MAX11410_STATUS_enum_t:: */ STATUS_000010_DATA_RDY) == 0));
whismanoid 16:00aa1e5a6843 2133 futility_countdown--)
whismanoid 16:00aa1e5a6843 2134 {
whismanoid 16:00aa1e5a6843 2135 RegRead(CMD_r011_1000_dddd_dddd_dddd_dddd_dxxx_dddd_STATUS, &status);
whismanoid 16:00aa1e5a6843 2136 }
whismanoid 16:00aa1e5a6843 2137
whismanoid 16:00aa1e5a6843 2138 //----------------------------------------
whismanoid 8:3a9dfa2e8234 2139 // read24 0x80|0x30 DATA0 (%SW 0xB0 0 0 0): AINcode[tc_ainp] = measurement
whismanoid 8:3a9dfa2e8234 2140 RegRead(CMD_r011_0000_dddd_dddd_dddd_dddd_dddd_dddd_DATA0, &AINcode[((int)tc_ainp & 0x0F)]);
whismanoid 8:3a9dfa2e8234 2141 data0 = AINcode[((int)tc_ainp & 0x0F)];
whismanoid 0:68e64068330f 2142
whismanoid 0:68e64068330f 2143 //----------------------------------------
whismanoid 1:d57c1a2cb83c 2144 // ideal voltage calculated from raw LSB code and reference voltage
whismanoid 22:c6812214a933 2145 tc_v = VoltageOfCode(AINcode[((int)tc_ainp & 0x0F)]);
whismanoid 21:847b2220e96e 2146
whismanoid 21:847b2220e96e 2147 //----------------------------------------
whismanoid 21:847b2220e96e 2148 // ideal voltage calculated from raw LSB code and reference voltage
whismanoid 22:c6812214a933 2149 tc_delta_degc = TemperatureOfTC_TypeK(tc_v);
whismanoid 21:847b2220e96e 2150
whismanoid 21:847b2220e96e 2151 //----------------------------------------
whismanoid 21:847b2220e96e 2152 // ideal voltage calculated from raw LSB code and reference voltage
whismanoid 22:c6812214a933 2153 tc_degc = rtd_degc + tc_delta_degc;
whismanoid 21:847b2220e96e 2154
whismanoid 21:847b2220e96e 2155 //----------------------------------------
whismanoid 21:847b2220e96e 2156 // ideal voltage calculated from raw LSB code and reference voltage
whismanoid 22:c6812214a933 2157 return tc_v;
whismanoid 0:68e64068330f 2158 }
whismanoid 0:68e64068330f 2159
whismanoid 3:658a93dfb2d8 2160 //----------------------------------------
whismanoid 3:658a93dfb2d8 2161 // Return the physical temperature corresponding to measured voltage
whismanoid 3:658a93dfb2d8 2162 // of a type K Thermocouple (TC).
whismanoid 3:658a93dfb2d8 2163 //
whismanoid 22:c6812214a933 2164 // @pre {0}.rtd_degc = cold junction temperature, in degrees C
whismanoid 22:c6812214a933 2165 // @param[in] tc_v = Thermocouple voltage in volts, default=0.0254
whismanoid 3:658a93dfb2d8 2166 //
whismanoid 3:658a93dfb2d8 2167 // @return ideal temperature in degrees C, calculated from RTD resistance in ohms
whismanoid 21:847b2220e96e 2168 // @test group TC_1 // Verify Thermocouple function TemperatureOfTC_TypeK
whismanoid 21:847b2220e96e 2169 // @test group TC_2 // Verify Thermocouple function TemperatureOfTC_TypeK in more detail
whismanoid 21:847b2220e96e 2170 // @test group TC_1 tinyTester.blink_time_msec = 20 // quickly speed through the software verification
whismanoid 19:50cf5da53d36 2171 // @test group TC_1 TemperatureOfTC_TypeK(0.000e-3) expect 0.0 within 0.1 // TC_TypeK at 0C = 0.000mV
whismanoid 19:50cf5da53d36 2172 // @test group TC_1 TemperatureOfTC_TypeK(0.039e-3) expect 1.0 within 0.1 // TC_TypeK at 1C = 0.039mV
whismanoid 19:50cf5da53d36 2173 // @test group TC_1 TemperatureOfTC_TypeK(0.079e-3) expect 2.0 within 0.1 // TC_TypeK at 2C = 0.079mV
whismanoid 19:50cf5da53d36 2174 // @test group TC_1 TemperatureOfTC_TypeK(0.119e-3) expect 3.0 within 0.1 // TC_TypeK at 3C = 0.119mV
whismanoid 19:50cf5da53d36 2175 // @test group TC_2 TemperatureOfTC_TypeK(0.158e-3) expect 4.0 within 0.1 // TC_TypeK at 4C = 0.158mV
whismanoid 19:50cf5da53d36 2176 // @test group TC_2 TemperatureOfTC_TypeK(0.198e-3) expect 5.0 within 0.1 // TC_TypeK at 5C = 0.198mV
whismanoid 19:50cf5da53d36 2177 // @test group TC_2 TemperatureOfTC_TypeK(0.238e-3) expect 6.0 within 0.1 // TC_TypeK at 6C = 0.238mV
whismanoid 19:50cf5da53d36 2178 // @test group TC_2 TemperatureOfTC_TypeK(0.2775e-3) expect 7.0 within 0.1 // TC_TypeK at 7C = 0.2775mV
whismanoid 19:50cf5da53d36 2179 // @test group TC_2 TemperatureOfTC_TypeK(0.317e-3) expect 8.0 within 0.1 // TC_TypeK at 8C = 0.317mV
whismanoid 19:50cf5da53d36 2180 // @test group TC_2 TemperatureOfTC_TypeK(0.357e-3) expect 9.0 within 0.1 // TC_TypeK at 9C = 0.357mV
whismanoid 19:50cf5da53d36 2181 // @test group TC_1 TemperatureOfTC_TypeK(0.397e-3) expect 10.0 within 0.1 // TC_TypeK at 10C = 0.397mV
whismanoid 19:50cf5da53d36 2182 // @test group TC_1 TemperatureOfTC_TypeK(0.798e-3) expect 20.0 within 0.1 // TC_TypeK at 20C = 0.798mV
whismanoid 19:50cf5da53d36 2183 // @test group TC_1 TemperatureOfTC_TypeK(1.081e-3) expect 27.0 within 0.1 // TC_TypeK at 27C = 1.081mV
whismanoid 19:50cf5da53d36 2184 // @test group TC_1 TemperatureOfTC_TypeK(1.203e-3) expect 30.0 within 0.1 // TC_TypeK at 30C = 1.203mV
whismanoid 19:50cf5da53d36 2185 // @test group TC_1 TemperatureOfTC_TypeK(1.612e-3) expect 40.0 within 0.1 // TC_TypeK at 40C = 1.612mV
whismanoid 19:50cf5da53d36 2186 // @test group TC_1 TemperatureOfTC_TypeK(2.023e-3) expect 50.0 within 0.1 // TC_TypeK at 50C = 2.023mV
whismanoid 19:50cf5da53d36 2187 // @test group TC_1 TemperatureOfTC_TypeK(2.436e-3) expect 60.0 within 0.1 // TC_TypeK at 60C = 2.436mV
whismanoid 19:50cf5da53d36 2188 // @test group TC_1 TemperatureOfTC_TypeK(2.851e-3) expect 70.0 within 0.1 // TC_TypeK at 70C = 2.851mV
whismanoid 19:50cf5da53d36 2189 // @test group TC_1 TemperatureOfTC_TypeK(3.267e-3) expect 80.0 within 0.1 // TC_TypeK at 80C = 3.267mV
whismanoid 19:50cf5da53d36 2190 // @test group TC_1 TemperatureOfTC_TypeK(3.682e-3) expect 90.0 within 0.1 // TC_TypeK at 90C = 3.682mV
whismanoid 19:50cf5da53d36 2191 // @test group TC_1 TemperatureOfTC_TypeK(4.096e-3) expect 100.0 within 0.1 // TC_TypeK at 100C = 4.096mV
whismanoid 19:50cf5da53d36 2192 // @test group TC_2 TemperatureOfTC_TypeK(4.509e-3) expect 110.0 within 0.1 // TC_TypeK at 110C = 4.509mV
whismanoid 19:50cf5da53d36 2193 // @test group TC_2 TemperatureOfTC_TypeK(4.920e-3) expect 120.0 within 0.1 // TC_TypeK at 120C = 4.920mV
whismanoid 19:50cf5da53d36 2194 // @test group TC_2 TemperatureOfTC_TypeK(5.328e-3) expect 130.0 within 0.1 // TC_TypeK at 130C = 5.328mV
whismanoid 19:50cf5da53d36 2195 // @test group TC_2 TemperatureOfTC_TypeK(5.735e-3) expect 140.0 within 0.1 // TC_TypeK at 140C = 5.735mV
whismanoid 19:50cf5da53d36 2196 // @test group TC_2 TemperatureOfTC_TypeK(6.138e-3) expect 150.0 within 0.1 // TC_TypeK at 150C = 6.138mV
whismanoid 19:50cf5da53d36 2197 // @test group TC_2 TemperatureOfTC_TypeK(6.540e-3) expect 160.0 within 0.1 // TC_TypeK at 160C = 6.540mV
whismanoid 19:50cf5da53d36 2198 // @test group TC_2 TemperatureOfTC_TypeK(6.941e-3) expect 170.0 within 0.1 // TC_TypeK at 170C = 6.941mV
whismanoid 19:50cf5da53d36 2199 // @test group TC_2 TemperatureOfTC_TypeK(7.340e-3) expect 180.0 within 0.1 // TC_TypeK at 180C = 7.340mV
whismanoid 19:50cf5da53d36 2200 // @test group TC_1 TemperatureOfTC_TypeK(7.739e-3) expect 190.0 within 0.1 // TC_TypeK at 190C = 7.739mV
whismanoid 19:50cf5da53d36 2201 // @test group TC_1 TemperatureOfTC_TypeK(8.138e-3) expect 200.0 within 0.1 // TC_TypeK at 200C = 8.138mV
whismanoid 19:50cf5da53d36 2202 // @test group TC_1 TemperatureOfTC_TypeK(8.539e-3) expect 210.0 within 0.1 // TC_TypeK at 210C = 8.539mV
whismanoid 19:50cf5da53d36 2203 // @test group TC_1 TemperatureOfTC_TypeK(8.940e-3) expect 220.0 within 0.1 // TC_TypeK at 220C = 8.940mV
whismanoid 19:50cf5da53d36 2204 // @test group TC_2 TemperatureOfTC_TypeK(9.343e-3) expect 230.0 within 0.1 // TC_TypeK at 230C = 9.343mV
whismanoid 19:50cf5da53d36 2205 // @test group TC_2 TemperatureOfTC_TypeK(9.747e-3) expect 240.0 within 0.1 // TC_TypeK at 240C = 9.747mV
whismanoid 19:50cf5da53d36 2206 // @test group TC_2 TemperatureOfTC_TypeK(10.153e-3) expect 250.0 within 0.1 // TC_TypeK at 250C = 10.153mV
whismanoid 19:50cf5da53d36 2207 // @test group TC_2 TemperatureOfTC_TypeK(10.561e-3) expect 260.0 within 0.1 // TC_TypeK at 260C = 10.561mV
whismanoid 19:50cf5da53d36 2208 // @test group TC_2 TemperatureOfTC_TypeK(10.971e-3) expect 270.0 within 0.1 // TC_TypeK at 270C = 10.971mV
whismanoid 19:50cf5da53d36 2209 // @test group TC_2 TemperatureOfTC_TypeK(11.382e-3) expect 280.0 within 0.1 // TC_TypeK at 280C = 11.382mV
whismanoid 19:50cf5da53d36 2210 // @test group TC_2 TemperatureOfTC_TypeK(11.795e-3) expect 290.0 within 0.1 // TC_TypeK at 290C = 11.795mV
whismanoid 19:50cf5da53d36 2211 // @test group TC_1 TemperatureOfTC_TypeK(12.209e-3) expect 300.0 within 0.1 // TC_TypeK at 300C = 12.209mV
whismanoid 19:50cf5da53d36 2212 // @test group TC_2 TemperatureOfTC_TypeK(14.293e-3) expect 350.0 within 0.1 // TC_TypeK at 350C = 14.293mV
whismanoid 19:50cf5da53d36 2213 // @test group TC_1 TemperatureOfTC_TypeK(16.397e-3) expect 400.0 within 0.1 // TC_TypeK at 400C = 16.397mV
whismanoid 19:50cf5da53d36 2214 // @test group TC_1 TemperatureOfTC_TypeK(18.516e-3) expect 450.0 within 0.1 // TC_TypeK at 450C = 18.516mV
whismanoid 19:50cf5da53d36 2215 // @test group TC_1 TemperatureOfTC_TypeK(20.218e-3) expect 490.0 // TC_TypeK at 490C = 20.218mV
whismanoid 21:847b2220e96e 2216 // @test group TC_1 tinyTester.blink_time_msec = 75 // default 75 resume hardware self test
whismanoid 3:658a93dfb2d8 2217 //
whismanoid 22:c6812214a933 2218 double MAX11410::TemperatureOfTC_TypeK(double tc_v)
whismanoid 3:658a93dfb2d8 2219 {
whismanoid 3:658a93dfb2d8 2220
whismanoid 3:658a93dfb2d8 2221 //----------------------------------------
whismanoid 3:658a93dfb2d8 2222 // Temperature from TC_TypeK voltage maths
whismanoid 5:a2e74357cfc0 2223 // define standard TC_TypeK coefficients
whismanoid 4:c169ba85d673 2224 // ITS-90 Thermocouple Inverse Polynomial for a Type K thermocouple
whismanoid 22:c6812214a933 2225 // calculate deltaT from tc_v
whismanoid 4:c169ba85d673 2226 //
whismanoid 22:c6812214a933 2227 // Voltage range -5891uV < tc_v < 0uV,
whismanoid 4:c169ba85d673 2228 // Temperature Range -200 deg C to 0 deg C
whismanoid 4:c169ba85d673 2229 static double coefficients_TCtypeK_V_lt_0[] = {
whismanoid 4:c169ba85d673 2230 0.00000,
whismanoid 4:c169ba85d673 2231 2.5173462e-2,
whismanoid 4:c169ba85d673 2232 -1.1662878e-6,
whismanoid 4:c169ba85d673 2233 -1.0833638e-9,
whismanoid 4:c169ba85d673 2234 -8.9773540e-13,
whismanoid 4:c169ba85d673 2235 -3.7342377e-16,
whismanoid 4:c169ba85d673 2236 -8.6632643e-20,
whismanoid 4:c169ba85d673 2237 -1.0450598e-23,
whismanoid 4:c169ba85d673 2238 -5.1920577e-28,
whismanoid 4:c169ba85d673 2239 };
whismanoid 4:c169ba85d673 2240 //
whismanoid 22:c6812214a933 2241 // Voltage range 0uV < tc_v < 20.644uV,
whismanoid 4:c169ba85d673 2242 // Temperature Range 0 deg C to 500 deg C
whismanoid 4:c169ba85d673 2243 static double coefficients_TCtypeK_0_lt_V_lt_20u644V[] = {
whismanoid 4:c169ba85d673 2244 0.00000,
whismanoid 4:c169ba85d673 2245 2.508355e-2,
whismanoid 4:c169ba85d673 2246 7.860106e-8,
whismanoid 4:c169ba85d673 2247 -2.503131e-10,
whismanoid 4:c169ba85d673 2248 8.315270e-14,
whismanoid 4:c169ba85d673 2249 -1.228034e-17,
whismanoid 4:c169ba85d673 2250 9.804036e-22,
whismanoid 4:c169ba85d673 2251 -4.413030e-26,
whismanoid 4:c169ba85d673 2252 1.057734e-30,
whismanoid 4:c169ba85d673 2253 -1.052755e-35,
whismanoid 4:c169ba85d673 2254 };
whismanoid 4:c169ba85d673 2255 //
whismanoid 22:c6812214a933 2256 // Voltage range 20.6440uV < tc_v < 54.886uV,
whismanoid 4:c169ba85d673 2257 // Temperature Range 500 deg C to 1372 deg C
whismanoid 4:c169ba85d673 2258 static double coefficients_TCtypeK_20u644V_lt_V_lt_54u886V[] = {
whismanoid 4:c169ba85d673 2259 -1.318058e2,
whismanoid 4:c169ba85d673 2260 4.830222e-2,
whismanoid 4:c169ba85d673 2261 -1.646031e-6,
whismanoid 4:c169ba85d673 2262 5.464731e-11,
whismanoid 4:c169ba85d673 2263 -9.650715e-16,
whismanoid 4:c169ba85d673 2264 8.802193e-21,
whismanoid 4:c169ba85d673 2265 -3.110810e-26,
whismanoid 4:c169ba85d673 2266 };
whismanoid 4:c169ba85d673 2267 //
whismanoid 3:658a93dfb2d8 2268 double deltaT = 0;
whismanoid 22:c6812214a933 2269 double thermocouple_voltage_uV = tc_v * 1e6;
whismanoid 4:c169ba85d673 2270 if (thermocouple_voltage_uV < 0)
whismanoid 4:c169ba85d673 2271 {
whismanoid 4:c169ba85d673 2272 // Voltage range -5891uV < DMMavg < 0uV, Temperature Range -200 deg C to 0 deg C
whismanoid 4:c169ba85d673 2273 deltaT = temperatureDegC_polynomial(thermocouple_voltage_uV, 9, coefficients_TCtypeK_V_lt_0);
whismanoid 4:c169ba85d673 2274 }
whismanoid 4:c169ba85d673 2275 else if (thermocouple_voltage_uV > 20644)
whismanoid 4:c169ba85d673 2276 {
whismanoid 4:c169ba85d673 2277 // Voltage range 206440uV < DMMavg < 54886uV, Temperature Range 500 deg C to 1372 deg C
whismanoid 4:c169ba85d673 2278 deltaT = temperatureDegC_polynomial(thermocouple_voltage_uV, 7, coefficients_TCtypeK_20u644V_lt_V_lt_54u886V);
whismanoid 4:c169ba85d673 2279 }
whismanoid 4:c169ba85d673 2280 else
whismanoid 4:c169ba85d673 2281 {
whismanoid 4:c169ba85d673 2282 // Voltage range 0uV < DMMavg < 20.644uV, Temperature Range 0 deg C to 500 deg C
whismanoid 4:c169ba85d673 2283 deltaT = temperatureDegC_polynomial(thermocouple_voltage_uV, 10, coefficients_TCtypeK_0_lt_V_lt_20u644V);
whismanoid 4:c169ba85d673 2284 }
whismanoid 22:c6812214a933 2285 return deltaT; // + rtd_degc; // cold junction
whismanoid 4:c169ba85d673 2286 }
whismanoid 4:c169ba85d673 2287
whismanoid 4:c169ba85d673 2288 //----------------------------------------
whismanoid 4:c169ba85d673 2289 // Calculate temperature in degrees C from input voltage,
whismanoid 4:c169ba85d673 2290 // using a given set of polynomial coefficients.
whismanoid 4:c169ba85d673 2291 // For example:
whismanoid 4:c169ba85d673 2292 //
whismanoid 4:c169ba85d673 2293 // t = coefficients[0] + coefficients[1] * DMMavg + coefficients[2] * DmMMavg**2
whismanoid 4:c169ba85d673 2294 //
whismanoid 4:c169ba85d673 2295 // @param[in] thermocouple_voltage_uV = Thermocouple voltage in microvolts
whismanoid 4:c169ba85d673 2296 //
whismanoid 4:c169ba85d673 2297 // @return ideal temperature in degrees C, calculated from polynomial coefficients
whismanoid 4:c169ba85d673 2298 //
whismanoid 4:c169ba85d673 2299 double MAX11410::temperatureDegC_polynomial(double thermocouple_voltage_uV, int num_coefficients, double coefficients[])
whismanoid 4:c169ba85d673 2300 {
whismanoid 4:c169ba85d673 2301
whismanoid 4:c169ba85d673 2302 //----------------------------------------
whismanoid 4:c169ba85d673 2303 // Temperature from polynomial coefficients maths
whismanoid 4:c169ba85d673 2304 double temperatureDegC = 0;
whismanoid 4:c169ba85d673 2305 int index;
whismanoid 4:c169ba85d673 2306 for (index = num_coefficients-1; index >= 0; index--)
whismanoid 4:c169ba85d673 2307 {
whismanoid 4:c169ba85d673 2308 temperatureDegC = (temperatureDegC * thermocouple_voltage_uV) + coefficients[index];
whismanoid 4:c169ba85d673 2309 }
whismanoid 4:c169ba85d673 2310 return temperatureDegC;
whismanoid 3:658a93dfb2d8 2311 }
whismanoid 3:658a93dfb2d8 2312
whismanoid 0:68e64068330f 2313
whismanoid 0:68e64068330f 2314 // End of file