Nordic stack and drivers for the mbed BLE API
Fork of nRF51822 by
Diff: nordic-sdk/components/libraries/util/app_util.h
- Revision:
- 103:138bdc859cc9
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/nordic-sdk/components/libraries/util/app_util.h Wed Apr 15 08:59:11 2015 +0100 @@ -0,0 +1,232 @@ +/* Copyright (c) 2012 Nordic Semiconductor. All Rights Reserved. + * + * The information contained herein is property of Nordic Semiconductor ASA. + * Terms and conditions of usage are described in detail in NORDIC + * SEMICONDUCTOR STANDARD SOFTWARE LICENSE AGREEMENT. + * + * Licensees are granted free, non-transferable use of the information. NO + * WARRANTY of ANY KIND is provided. This heading must NOT be removed from + * the file. + * + */ + +/** @file + * + * @defgroup app_util Utility Functions and Definitions + * @{ + * @ingroup app_common + * + * @brief Various types and definitions available to all applications. + */ + +#ifndef APP_UTIL_H__ +#define APP_UTIL_H__ + +#include <stdint.h> +#include <stdbool.h> +#include "compiler_abstraction.h" + +enum +{ + UNIT_0_625_MS = 625, /**< Number of microseconds in 0.625 milliseconds. */ + UNIT_1_25_MS = 1250, /**< Number of microseconds in 1.25 milliseconds. */ + UNIT_10_MS = 10000 /**< Number of microseconds in 10 milliseconds. */ +}; + +/**@brief Macro for doing static (i.e. compile time) assertion. + * + * @note If the assertion fails when compiling using Keil, the compiler will report error message + * "error: #94: the size of an array must be greater than zero" (while gcc will list the + * symbol static_assert_failed, making the error message more readable). + * If the supplied expression can not be evaluated at compile time, Keil will report + * "error: #28: expression must have a constant value". + * + * @note The macro is intentionally implemented not using do while(0), allowing it to be used + * outside function blocks (e.g. close to global type- and variable declarations). + * If used in a code block, it must be used before any executable code in this block. + * + * @param[in] EXPR Constant expression to be verified. + */ + +#if defined(__GNUC__) +#define STATIC_ASSERT(EXPR) typedef char __attribute__((unused)) static_assert_failed[(EXPR) ? 1 : -1] +#else +#define STATIC_ASSERT(EXPR) typedef char static_assert_failed[(EXPR) ? 1 : -1] +#endif + + +/**@brief type for holding an encoded (i.e. little endian) 16 bit unsigned integer. */ +typedef uint8_t uint16_le_t[2]; + +/**@brief type for holding an encoded (i.e. little endian) 32 bit unsigned integer. */ +typedef uint8_t uint32_le_t[4]; + +/**@brief Byte array type. */ +typedef struct +{ + uint16_t size; /**< Number of array entries. */ + uint8_t * p_data; /**< Pointer to array entries. */ +} uint8_array_t; + +/**@brief Perform rounded integer division (as opposed to truncating the result). + * + * @param[in] A Numerator. + * @param[in] B Denominator. + * + * @return Rounded (integer) result of dividing A by B. + */ +#define ROUNDED_DIV(A, B) (((A) + ((B) / 2)) / (B)) + +/**@brief Check if the integer provided is a power of two. + * + * @param[in] A Number to be tested. + * + * @return true if value is power of two. + * @return false if value not power of two. + */ +#define IS_POWER_OF_TWO(A) ( ((A) != 0) && ((((A) - 1) & (A)) == 0) ) + +/**@brief To convert milliseconds to ticks. + * @param[in] TIME Number of milliseconds to convert. + * @param[in] RESOLUTION Unit to be converted to in [us/ticks]. + */ +#define MSEC_TO_UNITS(TIME, RESOLUTION) (((TIME) * 1000) / (RESOLUTION)) + + +/**@brief Perform integer division, making sure the result is rounded up. + * + * @details One typical use for this is to compute the number of objects with size B is needed to + * hold A number of bytes. + * + * @param[in] A Numerator. + * @param[in] B Denominator. + * + * @return Integer result of dividing A by B, rounded up. + */ +#define CEIL_DIV(A, B) \ + /*lint -save -e573 */ \ + ((((A) - 1) / (B)) + 1) \ + /*lint -restore */ + +/**@brief Function for encoding a uint16 value. + * + * @param[in] value Value to be encoded. + * @param[out] p_encoded_data Buffer where the encoded data is to be written. + * + * @return Number of bytes written. + */ +static __INLINE uint8_t uint16_encode(uint16_t value, uint8_t * p_encoded_data) +{ + p_encoded_data[0] = (uint8_t) ((value & 0x00FF) >> 0); + p_encoded_data[1] = (uint8_t) ((value & 0xFF00) >> 8); + return sizeof(uint16_t); +} + +/**@brief Function for encoding a uint32 value. + * + * @param[in] value Value to be encoded. + * @param[out] p_encoded_data Buffer where the encoded data is to be written. + * + * @return Number of bytes written. + */ +static __INLINE uint8_t uint32_encode(uint32_t value, uint8_t * p_encoded_data) +{ + p_encoded_data[0] = (uint8_t) ((value & 0x000000FF) >> 0); + p_encoded_data[1] = (uint8_t) ((value & 0x0000FF00) >> 8); + p_encoded_data[2] = (uint8_t) ((value & 0x00FF0000) >> 16); + p_encoded_data[3] = (uint8_t) ((value & 0xFF000000) >> 24); + return sizeof(uint32_t); +} + +/**@brief Function for decoding a uint16 value. + * + * @param[in] p_encoded_data Buffer where the encoded data is stored. + * + * @return Decoded value. + */ +static __INLINE uint16_t uint16_decode(const uint8_t * p_encoded_data) +{ + return ( (((uint16_t)((uint8_t *)p_encoded_data)[0])) | + (((uint16_t)((uint8_t *)p_encoded_data)[1]) << 8 )); +} + +/**@brief Function for decoding a uint32 value. + * + * @param[in] p_encoded_data Buffer where the encoded data is stored. + * + * @return Decoded value. + */ +static __INLINE uint32_t uint32_decode(const uint8_t * p_encoded_data) +{ + return ( (((uint32_t)((uint8_t *)p_encoded_data)[0]) << 0) | + (((uint32_t)((uint8_t *)p_encoded_data)[1]) << 8) | + (((uint32_t)((uint8_t *)p_encoded_data)[2]) << 16) | + (((uint32_t)((uint8_t *)p_encoded_data)[3]) << 24 )); +} + +/** @brief Function for converting the input voltage (in milli volts) into percentage of 3.0 Volts. + * + * @details The calculation is based on a linearized version of the battery's discharge + * curve. 3.0V returns 100% battery level. The limit for power failure is 2.1V and + * is considered to be the lower boundary. + * + * The discharge curve for CR2032 is non-linear. In this model it is split into + * 4 linear sections: + * - Section 1: 3.0V - 2.9V = 100% - 42% (58% drop on 100 mV) + * - Section 2: 2.9V - 2.74V = 42% - 18% (24% drop on 160 mV) + * - Section 3: 2.74V - 2.44V = 18% - 6% (12% drop on 300 mV) + * - Section 4: 2.44V - 2.1V = 6% - 0% (6% drop on 340 mV) + * + * These numbers are by no means accurate. Temperature and + * load in the actual application is not accounted for! + * + * @param[in] mvolts The voltage in mV + * + * @return Battery level in percent. +*/ +static __INLINE uint8_t battery_level_in_percent(const uint16_t mvolts) +{ + uint8_t battery_level; + + if (mvolts >= 3000) + { + battery_level = 100; + } + else if (mvolts > 2900) + { + battery_level = 100 - ((3000 - mvolts) * 58) / 100; + } + else if (mvolts > 2740) + { + battery_level = 42 - ((2900 - mvolts) * 24) / 160; + } + else if (mvolts > 2440) + { + battery_level = 18 - ((2740 - mvolts) * 12) / 300; + } + else if (mvolts > 2100) + { + battery_level = 6 - ((2440 - mvolts) * 6) / 340; + } + else + { + battery_level = 0; + } + + return battery_level; +} + +/**@brief Function for checking if a pointer value is aligned to a 4 byte boundary. + * + * @param[in] p Pointer value to be checked. + * + * @return TRUE if pointer is aligned to a 4 byte boundary, FALSE otherwise. + */ +static __INLINE bool is_word_aligned(void * p) +{ + return (((uintptr_t)p & 0x03) == 0); +} + +#endif // APP_UTIL_H__ + +/** @} */ \ No newline at end of file