Nordic stack and drivers for the mbed BLE API

Fork of nRF51822 by Nordic Semiconductor

Committer:
rgrover1
Date:
Wed Apr 15 08:59:11 2015 +0100
Revision:
103:138bdc859cc9
Synchronized with git rev fa183c40
Author: Rohit Grover
updating to v7.1 of the Nordic SDK.
Re-organized file layout to match that from the SDK.

Who changed what in which revision?

UserRevisionLine numberNew contents of line
rgrover1 103:138bdc859cc9 1 /* Copyright (c) 2012 Nordic Semiconductor. All Rights Reserved.
rgrover1 103:138bdc859cc9 2 *
rgrover1 103:138bdc859cc9 3 * The information contained herein is property of Nordic Semiconductor ASA.
rgrover1 103:138bdc859cc9 4 * Terms and conditions of usage are described in detail in NORDIC
rgrover1 103:138bdc859cc9 5 * SEMICONDUCTOR STANDARD SOFTWARE LICENSE AGREEMENT.
rgrover1 103:138bdc859cc9 6 *
rgrover1 103:138bdc859cc9 7 * Licensees are granted free, non-transferable use of the information. NO
rgrover1 103:138bdc859cc9 8 * WARRANTY of ANY KIND is provided. This heading must NOT be removed from
rgrover1 103:138bdc859cc9 9 * the file.
rgrover1 103:138bdc859cc9 10 *
rgrover1 103:138bdc859cc9 11 */
rgrover1 103:138bdc859cc9 12
rgrover1 103:138bdc859cc9 13 /** @file
rgrover1 103:138bdc859cc9 14 *
rgrover1 103:138bdc859cc9 15 * @defgroup app_util Utility Functions and Definitions
rgrover1 103:138bdc859cc9 16 * @{
rgrover1 103:138bdc859cc9 17 * @ingroup app_common
rgrover1 103:138bdc859cc9 18 *
rgrover1 103:138bdc859cc9 19 * @brief Various types and definitions available to all applications.
rgrover1 103:138bdc859cc9 20 */
rgrover1 103:138bdc859cc9 21
rgrover1 103:138bdc859cc9 22 #ifndef APP_UTIL_H__
rgrover1 103:138bdc859cc9 23 #define APP_UTIL_H__
rgrover1 103:138bdc859cc9 24
rgrover1 103:138bdc859cc9 25 #include <stdint.h>
rgrover1 103:138bdc859cc9 26 #include <stdbool.h>
rgrover1 103:138bdc859cc9 27 #include "compiler_abstraction.h"
rgrover1 103:138bdc859cc9 28
rgrover1 103:138bdc859cc9 29 enum
rgrover1 103:138bdc859cc9 30 {
rgrover1 103:138bdc859cc9 31 UNIT_0_625_MS = 625, /**< Number of microseconds in 0.625 milliseconds. */
rgrover1 103:138bdc859cc9 32 UNIT_1_25_MS = 1250, /**< Number of microseconds in 1.25 milliseconds. */
rgrover1 103:138bdc859cc9 33 UNIT_10_MS = 10000 /**< Number of microseconds in 10 milliseconds. */
rgrover1 103:138bdc859cc9 34 };
rgrover1 103:138bdc859cc9 35
rgrover1 103:138bdc859cc9 36 /**@brief Macro for doing static (i.e. compile time) assertion.
rgrover1 103:138bdc859cc9 37 *
rgrover1 103:138bdc859cc9 38 * @note If the assertion fails when compiling using Keil, the compiler will report error message
rgrover1 103:138bdc859cc9 39 * "error: #94: the size of an array must be greater than zero" (while gcc will list the
rgrover1 103:138bdc859cc9 40 * symbol static_assert_failed, making the error message more readable).
rgrover1 103:138bdc859cc9 41 * If the supplied expression can not be evaluated at compile time, Keil will report
rgrover1 103:138bdc859cc9 42 * "error: #28: expression must have a constant value".
rgrover1 103:138bdc859cc9 43 *
rgrover1 103:138bdc859cc9 44 * @note The macro is intentionally implemented not using do while(0), allowing it to be used
rgrover1 103:138bdc859cc9 45 * outside function blocks (e.g. close to global type- and variable declarations).
rgrover1 103:138bdc859cc9 46 * If used in a code block, it must be used before any executable code in this block.
rgrover1 103:138bdc859cc9 47 *
rgrover1 103:138bdc859cc9 48 * @param[in] EXPR Constant expression to be verified.
rgrover1 103:138bdc859cc9 49 */
rgrover1 103:138bdc859cc9 50
rgrover1 103:138bdc859cc9 51 #if defined(__GNUC__)
rgrover1 103:138bdc859cc9 52 #define STATIC_ASSERT(EXPR) typedef char __attribute__((unused)) static_assert_failed[(EXPR) ? 1 : -1]
rgrover1 103:138bdc859cc9 53 #else
rgrover1 103:138bdc859cc9 54 #define STATIC_ASSERT(EXPR) typedef char static_assert_failed[(EXPR) ? 1 : -1]
rgrover1 103:138bdc859cc9 55 #endif
rgrover1 103:138bdc859cc9 56
rgrover1 103:138bdc859cc9 57
rgrover1 103:138bdc859cc9 58 /**@brief type for holding an encoded (i.e. little endian) 16 bit unsigned integer. */
rgrover1 103:138bdc859cc9 59 typedef uint8_t uint16_le_t[2];
rgrover1 103:138bdc859cc9 60
rgrover1 103:138bdc859cc9 61 /**@brief type for holding an encoded (i.e. little endian) 32 bit unsigned integer. */
rgrover1 103:138bdc859cc9 62 typedef uint8_t uint32_le_t[4];
rgrover1 103:138bdc859cc9 63
rgrover1 103:138bdc859cc9 64 /**@brief Byte array type. */
rgrover1 103:138bdc859cc9 65 typedef struct
rgrover1 103:138bdc859cc9 66 {
rgrover1 103:138bdc859cc9 67 uint16_t size; /**< Number of array entries. */
rgrover1 103:138bdc859cc9 68 uint8_t * p_data; /**< Pointer to array entries. */
rgrover1 103:138bdc859cc9 69 } uint8_array_t;
rgrover1 103:138bdc859cc9 70
rgrover1 103:138bdc859cc9 71 /**@brief Perform rounded integer division (as opposed to truncating the result).
rgrover1 103:138bdc859cc9 72 *
rgrover1 103:138bdc859cc9 73 * @param[in] A Numerator.
rgrover1 103:138bdc859cc9 74 * @param[in] B Denominator.
rgrover1 103:138bdc859cc9 75 *
rgrover1 103:138bdc859cc9 76 * @return Rounded (integer) result of dividing A by B.
rgrover1 103:138bdc859cc9 77 */
rgrover1 103:138bdc859cc9 78 #define ROUNDED_DIV(A, B) (((A) + ((B) / 2)) / (B))
rgrover1 103:138bdc859cc9 79
rgrover1 103:138bdc859cc9 80 /**@brief Check if the integer provided is a power of two.
rgrover1 103:138bdc859cc9 81 *
rgrover1 103:138bdc859cc9 82 * @param[in] A Number to be tested.
rgrover1 103:138bdc859cc9 83 *
rgrover1 103:138bdc859cc9 84 * @return true if value is power of two.
rgrover1 103:138bdc859cc9 85 * @return false if value not power of two.
rgrover1 103:138bdc859cc9 86 */
rgrover1 103:138bdc859cc9 87 #define IS_POWER_OF_TWO(A) ( ((A) != 0) && ((((A) - 1) & (A)) == 0) )
rgrover1 103:138bdc859cc9 88
rgrover1 103:138bdc859cc9 89 /**@brief To convert milliseconds to ticks.
rgrover1 103:138bdc859cc9 90 * @param[in] TIME Number of milliseconds to convert.
rgrover1 103:138bdc859cc9 91 * @param[in] RESOLUTION Unit to be converted to in [us/ticks].
rgrover1 103:138bdc859cc9 92 */
rgrover1 103:138bdc859cc9 93 #define MSEC_TO_UNITS(TIME, RESOLUTION) (((TIME) * 1000) / (RESOLUTION))
rgrover1 103:138bdc859cc9 94
rgrover1 103:138bdc859cc9 95
rgrover1 103:138bdc859cc9 96 /**@brief Perform integer division, making sure the result is rounded up.
rgrover1 103:138bdc859cc9 97 *
rgrover1 103:138bdc859cc9 98 * @details One typical use for this is to compute the number of objects with size B is needed to
rgrover1 103:138bdc859cc9 99 * hold A number of bytes.
rgrover1 103:138bdc859cc9 100 *
rgrover1 103:138bdc859cc9 101 * @param[in] A Numerator.
rgrover1 103:138bdc859cc9 102 * @param[in] B Denominator.
rgrover1 103:138bdc859cc9 103 *
rgrover1 103:138bdc859cc9 104 * @return Integer result of dividing A by B, rounded up.
rgrover1 103:138bdc859cc9 105 */
rgrover1 103:138bdc859cc9 106 #define CEIL_DIV(A, B) \
rgrover1 103:138bdc859cc9 107 /*lint -save -e573 */ \
rgrover1 103:138bdc859cc9 108 ((((A) - 1) / (B)) + 1) \
rgrover1 103:138bdc859cc9 109 /*lint -restore */
rgrover1 103:138bdc859cc9 110
rgrover1 103:138bdc859cc9 111 /**@brief Function for encoding a uint16 value.
rgrover1 103:138bdc859cc9 112 *
rgrover1 103:138bdc859cc9 113 * @param[in] value Value to be encoded.
rgrover1 103:138bdc859cc9 114 * @param[out] p_encoded_data Buffer where the encoded data is to be written.
rgrover1 103:138bdc859cc9 115 *
rgrover1 103:138bdc859cc9 116 * @return Number of bytes written.
rgrover1 103:138bdc859cc9 117 */
rgrover1 103:138bdc859cc9 118 static __INLINE uint8_t uint16_encode(uint16_t value, uint8_t * p_encoded_data)
rgrover1 103:138bdc859cc9 119 {
rgrover1 103:138bdc859cc9 120 p_encoded_data[0] = (uint8_t) ((value & 0x00FF) >> 0);
rgrover1 103:138bdc859cc9 121 p_encoded_data[1] = (uint8_t) ((value & 0xFF00) >> 8);
rgrover1 103:138bdc859cc9 122 return sizeof(uint16_t);
rgrover1 103:138bdc859cc9 123 }
rgrover1 103:138bdc859cc9 124
rgrover1 103:138bdc859cc9 125 /**@brief Function for encoding a uint32 value.
rgrover1 103:138bdc859cc9 126 *
rgrover1 103:138bdc859cc9 127 * @param[in] value Value to be encoded.
rgrover1 103:138bdc859cc9 128 * @param[out] p_encoded_data Buffer where the encoded data is to be written.
rgrover1 103:138bdc859cc9 129 *
rgrover1 103:138bdc859cc9 130 * @return Number of bytes written.
rgrover1 103:138bdc859cc9 131 */
rgrover1 103:138bdc859cc9 132 static __INLINE uint8_t uint32_encode(uint32_t value, uint8_t * p_encoded_data)
rgrover1 103:138bdc859cc9 133 {
rgrover1 103:138bdc859cc9 134 p_encoded_data[0] = (uint8_t) ((value & 0x000000FF) >> 0);
rgrover1 103:138bdc859cc9 135 p_encoded_data[1] = (uint8_t) ((value & 0x0000FF00) >> 8);
rgrover1 103:138bdc859cc9 136 p_encoded_data[2] = (uint8_t) ((value & 0x00FF0000) >> 16);
rgrover1 103:138bdc859cc9 137 p_encoded_data[3] = (uint8_t) ((value & 0xFF000000) >> 24);
rgrover1 103:138bdc859cc9 138 return sizeof(uint32_t);
rgrover1 103:138bdc859cc9 139 }
rgrover1 103:138bdc859cc9 140
rgrover1 103:138bdc859cc9 141 /**@brief Function for decoding a uint16 value.
rgrover1 103:138bdc859cc9 142 *
rgrover1 103:138bdc859cc9 143 * @param[in] p_encoded_data Buffer where the encoded data is stored.
rgrover1 103:138bdc859cc9 144 *
rgrover1 103:138bdc859cc9 145 * @return Decoded value.
rgrover1 103:138bdc859cc9 146 */
rgrover1 103:138bdc859cc9 147 static __INLINE uint16_t uint16_decode(const uint8_t * p_encoded_data)
rgrover1 103:138bdc859cc9 148 {
rgrover1 103:138bdc859cc9 149 return ( (((uint16_t)((uint8_t *)p_encoded_data)[0])) |
rgrover1 103:138bdc859cc9 150 (((uint16_t)((uint8_t *)p_encoded_data)[1]) << 8 ));
rgrover1 103:138bdc859cc9 151 }
rgrover1 103:138bdc859cc9 152
rgrover1 103:138bdc859cc9 153 /**@brief Function for decoding a uint32 value.
rgrover1 103:138bdc859cc9 154 *
rgrover1 103:138bdc859cc9 155 * @param[in] p_encoded_data Buffer where the encoded data is stored.
rgrover1 103:138bdc859cc9 156 *
rgrover1 103:138bdc859cc9 157 * @return Decoded value.
rgrover1 103:138bdc859cc9 158 */
rgrover1 103:138bdc859cc9 159 static __INLINE uint32_t uint32_decode(const uint8_t * p_encoded_data)
rgrover1 103:138bdc859cc9 160 {
rgrover1 103:138bdc859cc9 161 return ( (((uint32_t)((uint8_t *)p_encoded_data)[0]) << 0) |
rgrover1 103:138bdc859cc9 162 (((uint32_t)((uint8_t *)p_encoded_data)[1]) << 8) |
rgrover1 103:138bdc859cc9 163 (((uint32_t)((uint8_t *)p_encoded_data)[2]) << 16) |
rgrover1 103:138bdc859cc9 164 (((uint32_t)((uint8_t *)p_encoded_data)[3]) << 24 ));
rgrover1 103:138bdc859cc9 165 }
rgrover1 103:138bdc859cc9 166
rgrover1 103:138bdc859cc9 167 /** @brief Function for converting the input voltage (in milli volts) into percentage of 3.0 Volts.
rgrover1 103:138bdc859cc9 168 *
rgrover1 103:138bdc859cc9 169 * @details The calculation is based on a linearized version of the battery's discharge
rgrover1 103:138bdc859cc9 170 * curve. 3.0V returns 100% battery level. The limit for power failure is 2.1V and
rgrover1 103:138bdc859cc9 171 * is considered to be the lower boundary.
rgrover1 103:138bdc859cc9 172 *
rgrover1 103:138bdc859cc9 173 * The discharge curve for CR2032 is non-linear. In this model it is split into
rgrover1 103:138bdc859cc9 174 * 4 linear sections:
rgrover1 103:138bdc859cc9 175 * - Section 1: 3.0V - 2.9V = 100% - 42% (58% drop on 100 mV)
rgrover1 103:138bdc859cc9 176 * - Section 2: 2.9V - 2.74V = 42% - 18% (24% drop on 160 mV)
rgrover1 103:138bdc859cc9 177 * - Section 3: 2.74V - 2.44V = 18% - 6% (12% drop on 300 mV)
rgrover1 103:138bdc859cc9 178 * - Section 4: 2.44V - 2.1V = 6% - 0% (6% drop on 340 mV)
rgrover1 103:138bdc859cc9 179 *
rgrover1 103:138bdc859cc9 180 * These numbers are by no means accurate. Temperature and
rgrover1 103:138bdc859cc9 181 * load in the actual application is not accounted for!
rgrover1 103:138bdc859cc9 182 *
rgrover1 103:138bdc859cc9 183 * @param[in] mvolts The voltage in mV
rgrover1 103:138bdc859cc9 184 *
rgrover1 103:138bdc859cc9 185 * @return Battery level in percent.
rgrover1 103:138bdc859cc9 186 */
rgrover1 103:138bdc859cc9 187 static __INLINE uint8_t battery_level_in_percent(const uint16_t mvolts)
rgrover1 103:138bdc859cc9 188 {
rgrover1 103:138bdc859cc9 189 uint8_t battery_level;
rgrover1 103:138bdc859cc9 190
rgrover1 103:138bdc859cc9 191 if (mvolts >= 3000)
rgrover1 103:138bdc859cc9 192 {
rgrover1 103:138bdc859cc9 193 battery_level = 100;
rgrover1 103:138bdc859cc9 194 }
rgrover1 103:138bdc859cc9 195 else if (mvolts > 2900)
rgrover1 103:138bdc859cc9 196 {
rgrover1 103:138bdc859cc9 197 battery_level = 100 - ((3000 - mvolts) * 58) / 100;
rgrover1 103:138bdc859cc9 198 }
rgrover1 103:138bdc859cc9 199 else if (mvolts > 2740)
rgrover1 103:138bdc859cc9 200 {
rgrover1 103:138bdc859cc9 201 battery_level = 42 - ((2900 - mvolts) * 24) / 160;
rgrover1 103:138bdc859cc9 202 }
rgrover1 103:138bdc859cc9 203 else if (mvolts > 2440)
rgrover1 103:138bdc859cc9 204 {
rgrover1 103:138bdc859cc9 205 battery_level = 18 - ((2740 - mvolts) * 12) / 300;
rgrover1 103:138bdc859cc9 206 }
rgrover1 103:138bdc859cc9 207 else if (mvolts > 2100)
rgrover1 103:138bdc859cc9 208 {
rgrover1 103:138bdc859cc9 209 battery_level = 6 - ((2440 - mvolts) * 6) / 340;
rgrover1 103:138bdc859cc9 210 }
rgrover1 103:138bdc859cc9 211 else
rgrover1 103:138bdc859cc9 212 {
rgrover1 103:138bdc859cc9 213 battery_level = 0;
rgrover1 103:138bdc859cc9 214 }
rgrover1 103:138bdc859cc9 215
rgrover1 103:138bdc859cc9 216 return battery_level;
rgrover1 103:138bdc859cc9 217 }
rgrover1 103:138bdc859cc9 218
rgrover1 103:138bdc859cc9 219 /**@brief Function for checking if a pointer value is aligned to a 4 byte boundary.
rgrover1 103:138bdc859cc9 220 *
rgrover1 103:138bdc859cc9 221 * @param[in] p Pointer value to be checked.
rgrover1 103:138bdc859cc9 222 *
rgrover1 103:138bdc859cc9 223 * @return TRUE if pointer is aligned to a 4 byte boundary, FALSE otherwise.
rgrover1 103:138bdc859cc9 224 */
rgrover1 103:138bdc859cc9 225 static __INLINE bool is_word_aligned(void * p)
rgrover1 103:138bdc859cc9 226 {
rgrover1 103:138bdc859cc9 227 return (((uintptr_t)p & 0x03) == 0);
rgrover1 103:138bdc859cc9 228 }
rgrover1 103:138bdc859cc9 229
rgrover1 103:138bdc859cc9 230 #endif // APP_UTIL_H__
rgrover1 103:138bdc859cc9 231
rgrover1 103:138bdc859cc9 232 /** @} */