This is a copy of the Reference Standard PID controller ala controlguru.com
Dependents: PIDHeater Printer PIDHeater82 UltiSaverController
Fork of PID by
PID.cpp
- Committer:
- unix_guru
- Date:
- 2016-01-25
- Revision:
- 1:117e0c36eb22
- Parent:
- 0:d58c1b8d63d9
- Child:
- 2:55bf0f813bb4
File content as of revision 1:117e0c36eb22:
/** * Includes */ #include "PID.h" PID::PID(float Kc, float tauI, float tauD, float interval) { usingFeedForward = false; inAuto = false; //Default the limits to the full range of I/O. //Make sure to set these to more appropriate limits for your application. setInputLimits(0.0, 100.0); setOutputLimits(0.0,100.0); tSample_ = interval; setTunings(Kc, tauI, tauD); setPoint_ = 0.0; processVariable_ = 0.0; prevProcessVariable_ = 0.0; controllerOutput_ = 0.0; prevControllerOutput_ = 0.0; accError_ = 0.0; bias_ = 0.0; realOutput_ = 0.0; } void PID::setInputLimits(float inMin, float inMax) { //Make sure we haven't been given impossible values. if (inMin >= inMax) { return; } //Rescale the working variables to reflect the changes. prevProcessVariable_ *= (inMax - inMin) / inSpan_; accError_ *= (inMax - inMin) / inSpan_; //Make sure the working variables are within the new limits. if (prevProcessVariable_ > 1) { prevProcessVariable_ = 1; } else if (prevProcessVariable_ < 0) { prevProcessVariable_ = 0; } inMin_ = inMin; inMax_ = inMax; inSpan_ = inMax - inMin; } void PID::setOutputLimits(float outMin, float outMax) { //Make sure we haven't been given impossible values. if (outMin >= outMax) { return; } //Rescale the working variables to reflect the changes. prevControllerOutput_ *= (outMax - outMin) / outSpan_; //Make sure the working variables are within the new limits. if (prevControllerOutput_ > 1) { prevControllerOutput_ = 1; } else if (prevControllerOutput_ < 0) { prevControllerOutput_ = 0; } outMin_ = outMin; outMax_ = outMax; outSpan_ = outMax - outMin; } void PID::setTunings(float Kc, float tauI, float tauD) { //Verify that the tunings make sense. if (Kc == 0.0 || tauI < 0.0 || tauD < 0.0) { return; } //Store raw values to hand back to user on request. pParam_ = Kc; iParam_ = tauI; dParam_ = tauD; float tempTauR; if (tauI == 0.0) { tempTauR = 0.0; } else { tempTauR = (1.0 / tauI) * tSample_; } //For "bumpless transfer" we need to rescale the accumulated error. //if (inAuto) { //if (tempTauR == 0.0) { //accError_ = 0.0; //} //else { accError_ *= (Kc_ * tauR_) / (Kc * tempTauR); //} //} Kc_ = Kc; tauR_ = tempTauR; tauD_ = tauD / tSample_; } void PID::reset(void) { float scaledBias = 0.0; if (usingFeedForward) { scaledBias = (bias_ - outMin_) / outSpan_; } else { scaledBias = (realOutput_ - outMin_) / outSpan_; } prevControllerOutput_ = scaledBias; prevProcessVariable_ = (processVariable_ - inMin_) / inSpan_; //Clear any error in the integral. accError_ = 0; } void PID::setMode(int mode) { //We were in manual, and we just got set to auto. //Reset the controller internals. if (mode != 0 && !inAuto) { reset(); } inAuto = (mode != 0); } void PID::setInterval(float interval) { if (interval > 0) { //Convert the time-based tunings to reflect this change. tauR_ *= (interval / tSample_); accError_ *= (tSample_ / interval); tauD_ *= (interval / tSample_); tSample_ = interval; } } void PID::setSetPoint(float sp) { setPoint_ = sp; } void PID::setProcessValue(float pv) { processVariable_ = pv; } void PID::setBias(float bias){ bias_ = bias; usingFeedForward = 1; } float PID::compute(float pv, float sp) { //enregistrer variables dans var interne processVariable_ = pv; //ce que l'on mesure setPoint_ = sp; // ce que l'on veut atteindre //Pull in the input and setpoint, and scale them into percent span. float scaledPV = (processVariable_ - inMin_) / inSpan_; if (scaledPV > 1.0) { scaledPV = 1.0; } else if (scaledPV < 0.0) { scaledPV = 0.0; } float scaledSP = (setPoint_ - inMin_) / inSpan_; if (scaledSP > 1.0) { scaledSP = 1; } else if (scaledSP < 0.0) { scaledSP = 0; } float error = scaledSP - scaledPV; //Check and see if the output is pegged at a limit and only //integrate if it is not. This is to prevent reset-windup. if (!(prevControllerOutput_ >= 1 && error > 0) && !(prevControllerOutput_ <= 0 && error < 0)) { accError_ += error; } //Compute the current slope of the input signal. float dMeas = (scaledPV - prevProcessVariable_) / tSample_; //float dMeas = (scaledPV - prevProcessVariable_); float scaledBias = 0.0; if (usingFeedForward) { scaledBias = (bias_ - outMin_) / outSpan_; } //Perform the PID calculation. controllerOutput_ = scaledBias + Kc_ * (error + (tauR_ * accError_) - (tauD_ * dMeas)); //controllerOutput_ = Kc_ * error + tauR_ * accError_ + tauD_ * dMeas; //Make sure the computed output is within output constraints. if (controllerOutput_ < 0.0) { controllerOutput_ = 0.0; } else if (controllerOutput_ > 1.0) { controllerOutput_ = 1.0; } //Remember this output for the windup check next time. prevControllerOutput_ = controllerOutput_; //Remember the input for the derivative calculation next time. prevProcessVariable_ = scaledPV; //Scale the output from percent span back out to a real world number. return ((controllerOutput_ * outSpan_) + outMin_); } float PID::getInMin() { return inMin_; } float PID::getInMax() { return inMax_; } float PID::getOutMin() { return outMin_; } float PID::getOutMax() { return outMax_; } float PID::getInterval() { return tSample_; } float PID::getPParam() { return pParam_; } float PID::getIParam() { return iParam_; } float PID::getDParam() { return dParam_; }