Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: mbed
main.cpp
- Committer:
- bgrissom
- Date:
- 2014-07-11
- Revision:
- 2:a57a5501152c
- Parent:
- 1:256d7a2f8391
- Child:
- 3:6f12c437ab88
File content as of revision 2:a57a5501152c:
#include "mbed.h"
#define OK (0)
#define ERROR (-1)
// Forward Declarations
void pwmout_period_ns(pwmout_t* obj, int us);
int cmd_S0(uint16_t value);
void cmd_S1(void);
bool gSpiMode = false;
SPI* gSpiPtr = NULL;
int main() {
// NOTE: 24MHz is half the 48MHz clock rate. The PWM registers
// seem to only allow 24MHz at this point, so I'm matching
// the SPI bus speed to be the same.
//
// 1/24MHz => 1/(24*10^6) => 41.6*10^-9 second period,
// which means 41.6ns period and 20.8ns pulse width at
// 50% duty cycle (which seems to be right for the SPI clock
// line as well as a reasonable choice for the PWM line).
/////////////////////////////////////////////////
// PWMCLK
/////////////////////////////////////////////////
pwmout_t outs;
pwmout_init(&outs, D9);
//pwmout_period_ns(&outs, 2); // 24 MHz (not very clean on the scope)
pwmout_period_ns(&outs, 40); //
pwmout_write(&outs, 0.5f);
int ret = OK; // Return value
int i = 0;
printf("17:32\n");
while (1) {
//wait_ms(50);
for (i=0; i<16; i++) {
ret = cmd_S0(0x0003);
if (ret != OK) {
printf("ERROR cmd_S0()\n");
return ERROR;
}
}
cmd_S1();
}
}
// This code is based off:
// mbed/libraries/mbed/targets/hal/TARGET_STM/TARGET_NUCLEO_F030R8/pwmout_api.c pwmout_period_us()
void pwmout_period_ns(pwmout_t* obj, int us) {
TIM_TypeDef *tim = (TIM_TypeDef *)(obj->pwm);
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
float dc = pwmout_read(obj);
TIM_Cmd(tim, DISABLE);
obj->period = us;
TIM_TimeBaseStructure.TIM_Period = obj->period - 1;
// Orig code: TIM_TimeBaseStructure.TIM_Prescaler = (uint16_t)(SystemCoreClock / 1000000) - 1; // 1 µs tick
TIM_TimeBaseStructure.TIM_Prescaler = 0; // BAG 1 ns tick (?)
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(tim, &TIM_TimeBaseStructure);
// Set duty cycle again
pwmout_write(obj, dc);
TIM_ARRPreloadConfig(tim, ENABLE);
TIM_Cmd(tim, ENABLE);
}
// S0 Command:
// Needs only SCK and SIN (which are SPI_SCK and SPI_MOSI respectively).
// This is because TRANS can be 0 for this command according to the datasheet.
int cmd_S0(uint16_t value) {
// Command S0 and S1 share the same clock line, so we need to be
// careful which mode we are in. This avoids re-initializing these
// pins if we are already in SPI mode.
// WARNING: Re-initializing every time makes the MOSI line dirty and
// is wasteful for the CPU.
if ( gSpiMode == false &&
gSpiPtr == NULL)
{
// We are not using MISO, this is a one-way bus
gSpiPtr = new SPI(SPI_MOSI, NC, SPI_SCK);
if (gSpiPtr == NULL) {
printf("ERROR: Could not allocate SPI\n");
return ERROR;
}
// Note: Polarity and phase are both 0 for the TC62D723FNG
// For a graphical reminder on polarity and phase, visit:
// http://www.eetimes.com/document.asp?doc_id=1272534
gSpiPtr->format(16, 0);
gSpiPtr->frequency(1000000); // 1 MHz
//gSpiPtr->frequency(24000000); // 24 MHz
gSpiMode = true;
}
gSpiPtr->write(value);
return OK;
}
void cmd_S1(void) {
int i = 0;
int j = 0;
if ( gSpiMode == true &&
gSpiPtr != NULL)
{
delete gSpiPtr;
gSpiPtr = NULL;
gSpiMode = false;
}
DigitalOut bbSCK (D13); // bit bang clock
DigitalOut bbTRANS(D8); // bit bang TRANS (data) line
bbSCK = 0; // Start off/low
bbTRANS = 1; // Set high
// Loop 6 times = 3 clock cycles
for (j=0; j<6; j++) { // Always use an even number here!
// The order of these two lines matter!
i == 0 ? i = 1 : i = 0; // Toggle i
i == 0 ? bbSCK = 0 : bbSCK = 1; // Set SCK to the same value as i
}
bbTRANS = 0; // Set low
}