Wesley Schon / Mbed 2 deprecated LSM9DS1_Library_cal

Dependencies:   PinDetect mbed

Dependents:   ECE4180_Robot

Fork of LSM9DS1_Library_cal by jim hamblen

Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers LSM9DS1.cpp Source File

LSM9DS1.cpp

00001 /******************************************************************************
00002 SFE_LSM9DS1.cpp
00003 SFE_LSM9DS1 Library Source File
00004 Jim Lindblom @ SparkFun Electronics
00005 Original Creation Date: February 27, 2015
00006 https://github.com/sparkfun/LSM9DS1_Breakout
00007 
00008 This file implements all functions of the LSM9DS1 class. Functions here range
00009 from higher level stuff, like reading/writing LSM9DS1 registers to low-level,
00010 hardware reads and writes. Both SPI and I2C handler functions can be found
00011 towards the bottom of this file.
00012 
00013 Development environment specifics:
00014     IDE: Arduino 1.6
00015     Hardware Platform: Arduino Uno
00016     LSM9DS1 Breakout Version: 1.0
00017 
00018 This code is beerware; if you see me (or any other SparkFun employee) at the
00019 local, and you've found our code helpful, please buy us a round!
00020 
00021 Distributed as-is; no warranty is given.
00022 ******************************************************************************/
00023 
00024 #include "LSM9DS1.h"
00025 #include "LSM9DS1_Registers.h"
00026 #include "LSM9DS1_Types.h"
00027 //#include <Wire.h> // Wire library is used for I2C
00028 //#include <SPI.h>  // SPI library is used for...SPI.
00029 
00030 //#if defined(ARDUINO) && ARDUINO >= 100
00031 //  #include "Arduino.h"
00032 //#else
00033 //  #include "WProgram.h"
00034 //#endif
00035 
00036 #define LSM9DS1_COMMUNICATION_TIMEOUT 1000
00037 
00038 float magSensitivity[4] = {0.00014, 0.00029, 0.00043, 0.00058};
00039 extern Serial pc;
00040 
00041 LSM9DS1::LSM9DS1(PinName sda, PinName scl, uint8_t xgAddr, uint8_t mAddr)
00042     :i2c(sda, scl)
00043 {
00044     init(IMU_MODE_I2C, xgAddr, mAddr); // dont know about 0xD6 or 0x3B
00045 }
00046 /*
00047 LSM9DS1::LSM9DS1()
00048 {
00049     init(IMU_MODE_I2C, LSM9DS1_AG_ADDR(1), LSM9DS1_M_ADDR(1));
00050 }
00051 
00052 LSM9DS1::LSM9DS1(interface_mode interface, uint8_t xgAddr, uint8_t mAddr)
00053 {
00054     init(interface, xgAddr, mAddr);
00055 }
00056 */
00057 
00058 void LSM9DS1::init(interface_mode interface, uint8_t xgAddr, uint8_t mAddr)
00059 {
00060     settings.device.commInterface = interface;
00061     settings.device.agAddress = xgAddr;
00062     settings.device.mAddress = mAddr;
00063 
00064     settings.gyro.enabled = true;
00065     settings.gyro.enableX = true;
00066     settings.gyro.enableY = true;
00067     settings.gyro.enableZ = true;
00068     // gyro scale can be 245, 500, or 2000
00069     settings.gyro.scale = 245;
00070     // gyro sample rate: value between 1-6
00071     // 1 = 14.9    4 = 238
00072     // 2 = 59.5    5 = 476
00073     // 3 = 119     6 = 952
00074     settings.gyro.sampleRate = 6;
00075     // gyro cutoff frequency: value between 0-3
00076     // Actual value of cutoff frequency depends
00077     // on sample rate.
00078     settings.gyro.bandwidth = 0;
00079     settings.gyro.lowPowerEnable = false;
00080     settings.gyro.HPFEnable = false;
00081     // Gyro HPF cutoff frequency: value between 0-9
00082     // Actual value depends on sample rate. Only applies
00083     // if gyroHPFEnable is true.
00084     settings.gyro.HPFCutoff = 0;
00085     settings.gyro.flipX = false;
00086     settings.gyro.flipY = false;
00087     settings.gyro.flipZ = false;
00088     settings.gyro.orientation = 0;
00089     settings.gyro.latchInterrupt = true;
00090 
00091     settings.accel.enabled = true;
00092     settings.accel.enableX = true;
00093     settings.accel.enableY = true;
00094     settings.accel.enableZ = true;
00095     // accel scale can be 2, 4, 8, or 16
00096     settings.accel.scale = 2;
00097     // accel sample rate can be 1-6
00098     // 1 = 10 Hz    4 = 238 Hz
00099     // 2 = 50 Hz    5 = 476 Hz
00100     // 3 = 119 Hz   6 = 952 Hz
00101     settings.accel.sampleRate = 6;
00102     // Accel cutoff freqeuncy can be any value between -1 - 3.
00103     // -1 = bandwidth determined by sample rate
00104     // 0 = 408 Hz   2 = 105 Hz
00105     // 1 = 211 Hz   3 = 50 Hz
00106     settings.accel.bandwidth = -1;
00107     settings.accel.highResEnable = false;
00108     // accelHighResBandwidth can be any value between 0-3
00109     // LP cutoff is set to a factor of sample rate
00110     // 0 = ODR/50    2 = ODR/9
00111     // 1 = ODR/100   3 = ODR/400
00112     settings.accel.highResBandwidth = 0;
00113 
00114     settings.mag.enabled = true;
00115     // mag scale can be 4, 8, 12, or 16
00116     settings.mag.scale = 4;
00117     // mag data rate can be 0-7
00118     // 0 = 0.625 Hz  4 = 10 Hz
00119     // 1 = 1.25 Hz   5 = 20 Hz
00120     // 2 = 2.5 Hz    6 = 40 Hz
00121     // 3 = 5 Hz      7 = 80 Hz
00122     settings.mag.sampleRate = 7;
00123     settings.mag.tempCompensationEnable = false;
00124     // magPerformance can be any value between 0-3
00125     // 0 = Low power mode      2 = high performance
00126     // 1 = medium performance  3 = ultra-high performance
00127     settings.mag.XYPerformance = 3;
00128     settings.mag.ZPerformance = 3;
00129     settings.mag.lowPowerEnable = false;
00130     // magOperatingMode can be 0-2
00131     // 0 = continuous conversion
00132     // 1 = single-conversion
00133     // 2 = power down
00134     settings.mag.operatingMode = 0;
00135 
00136     settings.temp.enabled = true;
00137     for (int i=0; i<3; i++) {
00138         gBias[i] = 0;
00139         aBias[i] = 0;
00140         mBias[i] = 0;
00141         gBiasRaw[i] = 0;
00142         aBiasRaw[i] = 0;
00143         mBiasRaw[i] = 0;
00144     }
00145     _autoCalc = false;
00146 }
00147 
00148 
00149 uint16_t LSM9DS1::begin()
00150 {
00151     //! Todo: don't use _xgAddress or _mAddress, duplicating memory
00152     _xgAddress = settings.device.agAddress;
00153     _mAddress = settings.device.mAddress;
00154 
00155     constrainScales();
00156     // Once we have the scale values, we can calculate the resolution
00157     // of each sensor. That's what these functions are for. One for each sensor
00158     calcgRes(); // Calculate DPS / ADC tick, stored in gRes variable
00159     calcmRes(); // Calculate Gs / ADC tick, stored in mRes variable
00160     calcaRes(); // Calculate g / ADC tick, stored in aRes variable
00161 
00162     // Now, initialize our hardware interface.
00163     if (settings.device.commInterface == IMU_MODE_I2C)  // If we're using I2C
00164         initI2C();  // Initialize I2C
00165     else if (settings.device.commInterface == IMU_MODE_SPI)     // else, if we're using SPI
00166         initSPI();  // Initialize SPI
00167 
00168     // To verify communication, we can read from the WHO_AM_I register of
00169     // each device. Store those in a variable so we can return them.
00170     uint8_t mTest = mReadByte(WHO_AM_I_M);      // Read the gyro WHO_AM_I
00171     uint8_t xgTest = xgReadByte(WHO_AM_I_XG);   // Read the accel/mag WHO_AM_I
00172     pc.printf("%x, %x, %x, %x\n\r", mTest, xgTest, _xgAddress, _mAddress);
00173     uint16_t whoAmICombined = (xgTest << 8) | mTest;
00174 
00175     if (whoAmICombined != ((WHO_AM_I_AG_RSP << 8) | WHO_AM_I_M_RSP))
00176         return 0;
00177 
00178     // Gyro initialization stuff:
00179     initGyro(); // This will "turn on" the gyro. Setting up interrupts, etc.
00180 
00181     // Accelerometer initialization stuff:
00182     initAccel(); // "Turn on" all axes of the accel. Set up interrupts, etc.
00183 
00184     // Magnetometer initialization stuff:
00185     initMag(); // "Turn on" all axes of the mag. Set up interrupts, etc.
00186 
00187     // Once everything is initialized, return the WHO_AM_I registers we read:
00188     return whoAmICombined;
00189 }
00190 
00191 void LSM9DS1::initGyro()
00192 {
00193     uint8_t tempRegValue = 0;
00194 
00195     // CTRL_REG1_G (Default value: 0x00)
00196     // [ODR_G2][ODR_G1][ODR_G0][FS_G1][FS_G0][0][BW_G1][BW_G0]
00197     // ODR_G[2:0] - Output data rate selection
00198     // FS_G[1:0] - Gyroscope full-scale selection
00199     // BW_G[1:0] - Gyroscope bandwidth selection
00200 
00201     // To disable gyro, set sample rate bits to 0. We'll only set sample
00202     // rate if the gyro is enabled.
00203     if (settings.gyro.enabled) {
00204         tempRegValue = (settings.gyro.sampleRate & 0x07) << 5;
00205     }
00206     switch (settings.gyro.scale) {
00207         case 500:
00208             tempRegValue |= (0x1 << 3);
00209             break;
00210         case 2000:
00211             tempRegValue |= (0x3 << 3);
00212             break;
00213             // Otherwise we'll set it to 245 dps (0x0 << 4)
00214     }
00215     tempRegValue |= (settings.gyro.bandwidth & 0x3);
00216     xgWriteByte(CTRL_REG1_G, tempRegValue);
00217 
00218     // CTRL_REG2_G (Default value: 0x00)
00219     // [0][0][0][0][INT_SEL1][INT_SEL0][OUT_SEL1][OUT_SEL0]
00220     // INT_SEL[1:0] - INT selection configuration
00221     // OUT_SEL[1:0] - Out selection configuration
00222     xgWriteByte(CTRL_REG2_G, 0x00);
00223 
00224     // CTRL_REG3_G (Default value: 0x00)
00225     // [LP_mode][HP_EN][0][0][HPCF3_G][HPCF2_G][HPCF1_G][HPCF0_G]
00226     // LP_mode - Low-power mode enable (0: disabled, 1: enabled)
00227     // HP_EN - HPF enable (0:disabled, 1: enabled)
00228     // HPCF_G[3:0] - HPF cutoff frequency
00229     tempRegValue = settings.gyro.lowPowerEnable ? (1<<7) : 0;
00230     if (settings.gyro.HPFEnable) {
00231         tempRegValue |= (1<<6) | (settings.gyro.HPFCutoff & 0x0F);
00232     }
00233     xgWriteByte(CTRL_REG3_G, tempRegValue);
00234 
00235     // CTRL_REG4 (Default value: 0x38)
00236     // [0][0][Zen_G][Yen_G][Xen_G][0][LIR_XL1][4D_XL1]
00237     // Zen_G - Z-axis output enable (0:disable, 1:enable)
00238     // Yen_G - Y-axis output enable (0:disable, 1:enable)
00239     // Xen_G - X-axis output enable (0:disable, 1:enable)
00240     // LIR_XL1 - Latched interrupt (0:not latched, 1:latched)
00241     // 4D_XL1 - 4D option on interrupt (0:6D used, 1:4D used)
00242     tempRegValue = 0;
00243     if (settings.gyro.enableZ) tempRegValue |= (1<<5);
00244     if (settings.gyro.enableY) tempRegValue |= (1<<4);
00245     if (settings.gyro.enableX) tempRegValue |= (1<<3);
00246     if (settings.gyro.latchInterrupt) tempRegValue |= (1<<1);
00247     xgWriteByte(CTRL_REG4, tempRegValue);
00248 
00249     // ORIENT_CFG_G (Default value: 0x00)
00250     // [0][0][SignX_G][SignY_G][SignZ_G][Orient_2][Orient_1][Orient_0]
00251     // SignX_G - Pitch axis (X) angular rate sign (0: positive, 1: negative)
00252     // Orient [2:0] - Directional user orientation selection
00253     tempRegValue = 0;
00254     if (settings.gyro.flipX) tempRegValue |= (1<<5);
00255     if (settings.gyro.flipY) tempRegValue |= (1<<4);
00256     if (settings.gyro.flipZ) tempRegValue |= (1<<3);
00257     xgWriteByte(ORIENT_CFG_G, tempRegValue);
00258 }
00259 
00260 void LSM9DS1::initAccel()
00261 {
00262     uint8_t tempRegValue = 0;
00263 
00264     //  CTRL_REG5_XL (0x1F) (Default value: 0x38)
00265     //  [DEC_1][DEC_0][Zen_XL][Yen_XL][Zen_XL][0][0][0]
00266     //  DEC[0:1] - Decimation of accel data on OUT REG and FIFO.
00267     //      00: None, 01: 2 samples, 10: 4 samples 11: 8 samples
00268     //  Zen_XL - Z-axis output enabled
00269     //  Yen_XL - Y-axis output enabled
00270     //  Xen_XL - X-axis output enabled
00271     if (settings.accel.enableZ) tempRegValue |= (1<<5);
00272     if (settings.accel.enableY) tempRegValue |= (1<<4);
00273     if (settings.accel.enableX) tempRegValue |= (1<<3);
00274 
00275     xgWriteByte(CTRL_REG5_XL, tempRegValue);
00276 
00277     // CTRL_REG6_XL (0x20) (Default value: 0x00)
00278     // [ODR_XL2][ODR_XL1][ODR_XL0][FS1_XL][FS0_XL][BW_SCAL_ODR][BW_XL1][BW_XL0]
00279     // ODR_XL[2:0] - Output data rate & power mode selection
00280     // FS_XL[1:0] - Full-scale selection
00281     // BW_SCAL_ODR - Bandwidth selection
00282     // BW_XL[1:0] - Anti-aliasing filter bandwidth selection
00283     tempRegValue = 0;
00284     // To disable the accel, set the sampleRate bits to 0.
00285     if (settings.accel.enabled) {
00286         tempRegValue |= (settings.accel.sampleRate & 0x07) << 5;
00287     }
00288     switch (settings.accel.scale) {
00289         case 4:
00290             tempRegValue |= (0x2 << 3);
00291             break;
00292         case 8:
00293             tempRegValue |= (0x3 << 3);
00294             break;
00295         case 16:
00296             tempRegValue |= (0x1 << 3);
00297             break;
00298             // Otherwise it'll be set to 2g (0x0 << 3)
00299     }
00300     if (settings.accel.bandwidth >= 0) {
00301         tempRegValue |= (1<<2); // Set BW_SCAL_ODR
00302         tempRegValue |= (settings.accel.bandwidth & 0x03);
00303     }
00304     xgWriteByte(CTRL_REG6_XL, tempRegValue);
00305 
00306     // CTRL_REG7_XL (0x21) (Default value: 0x00)
00307     // [HR][DCF1][DCF0][0][0][FDS][0][HPIS1]
00308     // HR - High resolution mode (0: disable, 1: enable)
00309     // DCF[1:0] - Digital filter cutoff frequency
00310     // FDS - Filtered data selection
00311     // HPIS1 - HPF enabled for interrupt function
00312     tempRegValue = 0;
00313     if (settings.accel.highResEnable) {
00314         tempRegValue |= (1<<7); // Set HR bit
00315         tempRegValue |= (settings.accel.highResBandwidth & 0x3) << 5;
00316     }
00317     xgWriteByte(CTRL_REG7_XL, tempRegValue);
00318 }
00319 
00320 // This is a function that uses the FIFO to accumulate sample of accelerometer and gyro data, average
00321 // them, scales them to  gs and deg/s, respectively, and then passes the biases to the main sketch
00322 // for subtraction from all subsequent data. There are no gyro and accelerometer bias registers to store
00323 // the data as there are in the ADXL345, a precursor to the LSM9DS0, or the MPU-9150, so we have to
00324 // subtract the biases ourselves. This results in a more accurate measurement in general and can
00325 // remove errors due to imprecise or varying initial placement. Calibration of sensor data in this manner
00326 // is good practice.
00327 void LSM9DS1::calibrate(bool autoCalc)
00328 {
00329     uint8_t data[6] = {0, 0, 0, 0, 0, 0};
00330     uint8_t samples = 0;
00331     int ii;
00332     int32_t aBiasRawTemp[3] = {0, 0, 0};
00333     int32_t gBiasRawTemp[3] = {0, 0, 0};
00334     pc.printf("\n\rPlace IMU on level surface and do not move it for gyro and accel calibration.\n\r");
00335     wait(1);
00336     // Turn on FIFO and set threshold to 32 samples
00337     enableFIFO(true);
00338     setFIFO(FIFO_THS, 0x1F);
00339     while (samples < 0x1F) {
00340         samples = (xgReadByte(FIFO_SRC) & 0x3F); // Read number of stored samples
00341     }
00342     for(ii = 0; ii < samples ; ii++) {
00343         // Read the gyro data stored in the FIFO
00344         readGyro();
00345         gBiasRawTemp[0] += gx;
00346         gBiasRawTemp[1] += gy;
00347         gBiasRawTemp[2] += gz;
00348         readAccel();
00349         aBiasRawTemp[0] += ax;
00350         aBiasRawTemp[1] += ay;
00351         aBiasRawTemp[2] += az - (int16_t)(1./aRes); // Assumes sensor facing up!
00352     }
00353     for (ii = 0; ii < 3; ii++) {
00354         gBiasRaw[ii] = gBiasRawTemp[ii] / samples;
00355         gBias[ii] = calcGyro(gBiasRaw[ii]);
00356         aBiasRaw[ii] = aBiasRawTemp[ii] / samples;
00357         aBias[ii] = calcAccel(aBiasRaw[ii]);
00358     }
00359 
00360     enableFIFO(false);
00361     setFIFO(FIFO_OFF, 0x00);
00362 
00363     if (autoCalc) _autoCalc = true;
00364 }
00365 
00366 void LSM9DS1::calibrateMag(bool loadIn)
00367 {
00368     int i, j;
00369     int16_t magMin[3] = {0, 0, 0};
00370     int16_t magMax[3] = {0, 0, 0}; // The road warrior
00371     pc.printf("\n\n\r Rotate IMU device at least 360 in horizontal plane for magnetometer calibration\n\r");
00372     wait(0.5);
00373     //pc.printf("enter loop\r\n");
00374     for (i=0; i<1000; i++) {
00375         //pc.printf("%d\r\n",i);
00376         while (!magAvailable(ALL_AXIS));
00377         //pc.printf("yes\r\n");
00378         readMag();
00379         int16_t magTemp[3] = {0, 0, 0};
00380         magTemp[0] = mx;
00381         magTemp[1] = my;
00382         magTemp[2] = mz;
00383         for (j = 0; j < 3; j++) {
00384             if (magTemp[j] > magMax[j]) magMax[j] = magTemp[j];
00385             if (magTemp[j] < magMin[j]) magMin[j] = magTemp[j];
00386         }
00387     }
00388     pc.printf("thousand loop done\r\n");
00389     for (j = 0; j < 3; j++) {
00390         mBiasRaw[j] = (magMax[j] + magMin[j]) / 2;
00391         mBias[j] = calcMag(mBiasRaw[j]);
00392         pc.printf("%f  ",mBias[j]);
00393         if (loadIn)
00394             magOffset(j, mBiasRaw[j]);
00395     }
00396     pc.printf("\n\rMAG calibration done\n\r");
00397 }
00398 void LSM9DS1::magOffset(uint8_t axis, int16_t offset)
00399 {
00400     if (axis > 2)
00401         return;
00402     uint8_t msb, lsb;
00403     msb = (offset & 0xFF00) >> 8;
00404     lsb = offset & 0x00FF;
00405     mWriteByte(OFFSET_X_REG_L_M + (2 * axis), lsb);
00406     mWriteByte(OFFSET_X_REG_H_M + (2 * axis), msb);
00407 }
00408 
00409 void LSM9DS1::initMag()
00410 {
00411     uint8_t tempRegValue = 0;
00412 
00413     // CTRL_REG1_M (Default value: 0x10)
00414     // [TEMP_COMP][OM1][OM0][DO2][DO1][DO0][0][ST]
00415     // TEMP_COMP - Temperature compensation
00416     // OM[1:0] - X & Y axes op mode selection
00417     //  00:low-power, 01:medium performance
00418     //  10: high performance, 11:ultra-high performance
00419     // DO[2:0] - Output data rate selection
00420     // ST - Self-test enable
00421     if (settings.mag.tempCompensationEnable) tempRegValue |= (1<<7);
00422     tempRegValue |= (settings.mag.XYPerformance & 0x3) << 5;
00423     tempRegValue |= (settings.mag.sampleRate & 0x7) << 2;
00424     mWriteByte(CTRL_REG1_M, tempRegValue);
00425 
00426     // CTRL_REG2_M (Default value 0x00)
00427     // [0][FS1][FS0][0][REBOOT][SOFT_RST][0][0]
00428     // FS[1:0] - Full-scale configuration
00429     // REBOOT - Reboot memory content (0:normal, 1:reboot)
00430     // SOFT_RST - Reset config and user registers (0:default, 1:reset)
00431     tempRegValue = 0;
00432     switch (settings.mag.scale) {
00433         case 8:
00434             tempRegValue |= (0x1 << 5);
00435             break;
00436         case 12:
00437             tempRegValue |= (0x2 << 5);
00438             break;
00439         case 16:
00440             tempRegValue |= (0x3 << 5);
00441             break;
00442             // Otherwise we'll default to 4 gauss (00)
00443     }
00444     mWriteByte(CTRL_REG2_M, tempRegValue); // +/-4Gauss
00445 
00446     // CTRL_REG3_M (Default value: 0x03)
00447     // [I2C_DISABLE][0][LP][0][0][SIM][MD1][MD0]
00448     // I2C_DISABLE - Disable I2C interace (0:enable, 1:disable)
00449     // LP - Low-power mode cofiguration (1:enable)
00450     // SIM - SPI mode selection (0:write-only, 1:read/write enable)
00451     // MD[1:0] - Operating mode
00452     //  00:continuous conversion, 01:single-conversion,
00453     //  10,11: Power-down
00454     tempRegValue = 0;
00455     if (settings.mag.lowPowerEnable) tempRegValue |= (1<<5);
00456     tempRegValue |= (settings.mag.operatingMode & 0x3);
00457     mWriteByte(CTRL_REG3_M, tempRegValue); // Continuous conversion mode
00458 
00459     // CTRL_REG4_M (Default value: 0x00)
00460     // [0][0][0][0][OMZ1][OMZ0][BLE][0]
00461     // OMZ[1:0] - Z-axis operative mode selection
00462     //  00:low-power mode, 01:medium performance
00463     //  10:high performance, 10:ultra-high performance
00464     // BLE - Big/little endian data
00465     tempRegValue = 0;
00466     tempRegValue = (settings.mag.ZPerformance & 0x3) << 2;
00467     mWriteByte(CTRL_REG4_M, tempRegValue);
00468 
00469     // CTRL_REG5_M (Default value: 0x00)
00470     // [0][BDU][0][0][0][0][0][0]
00471     // BDU - Block data update for magnetic data
00472     //  0:continuous, 1:not updated until MSB/LSB are read
00473     tempRegValue = 0;
00474     mWriteByte(CTRL_REG5_M, tempRegValue);
00475 }
00476 
00477 uint8_t LSM9DS1::accelAvailable()
00478 {
00479     uint8_t status = xgReadByte(STATUS_REG_1);
00480 
00481     return (status & (1<<0));
00482 }
00483 
00484 uint8_t LSM9DS1::gyroAvailable()
00485 {
00486     uint8_t status = xgReadByte(STATUS_REG_1);
00487 
00488     return ((status & (1<<1)) >> 1);
00489 }
00490 
00491 uint8_t LSM9DS1::tempAvailable()
00492 {
00493     uint8_t status = xgReadByte(STATUS_REG_1);
00494 
00495     return ((status & (1<<2)) >> 2);
00496 }
00497 
00498 uint8_t LSM9DS1::magAvailable(lsm9ds1_axis axis)
00499 {
00500     uint8_t status;
00501     status = mReadByte(STATUS_REG_M);
00502 
00503     return ((status & (1<<axis)) >> axis);
00504 }
00505 
00506 void LSM9DS1::readAccel()
00507 {
00508     uint8_t temp[6]; // We'll read six bytes from the accelerometer into temp
00509     xgReadBytes(OUT_X_L_XL, temp, 6); // Read 6 bytes, beginning at OUT_X_L_XL
00510     ax = (temp[1] << 8) | temp[0]; // Store x-axis values into ax
00511     ay = (temp[3] << 8) | temp[2]; // Store y-axis values into ay
00512     az = (temp[5] << 8) | temp[4]; // Store z-axis values into az
00513     if (_autoCalc) {
00514         ax -= aBiasRaw[X_AXIS];
00515         ay -= aBiasRaw[Y_AXIS];
00516         az -= aBiasRaw[Z_AXIS];
00517     }
00518 }
00519 
00520 int16_t LSM9DS1::readAccel(lsm9ds1_axis axis)
00521 {
00522     uint8_t temp[2];
00523     int16_t value;
00524     xgReadBytes(OUT_X_L_XL + (2 * axis), temp, 2);
00525     value = (temp[1] << 8) | temp[0];
00526 
00527     if (_autoCalc)
00528         value -= aBiasRaw[axis];
00529 
00530     return value;
00531 }
00532 
00533 void LSM9DS1::readMag()
00534 {
00535     uint8_t temp[6]; // We'll read six bytes from the mag into temp
00536     mReadBytes(OUT_X_L_M, temp, 6); // Read 6 bytes, beginning at OUT_X_L_M
00537     mx = (temp[1] << 8) | temp[0]; // Store x-axis values into mx
00538     my = (temp[3] << 8) | temp[2]; // Store y-axis values into my
00539     mz = (temp[5] << 8) | temp[4]; // Store z-axis values into mz
00540     mx = mx - mBiasRaw[0];
00541     my = my - mBiasRaw[1];
00542     mz = mz - mBiasRaw[2];
00543 }
00544 
00545 int16_t LSM9DS1::readMag(lsm9ds1_axis axis)
00546 {
00547     uint8_t temp[2];
00548     mReadBytes(OUT_X_L_M + (2 * axis), temp, 2);
00549     return (temp[1] << 8) | temp[0];
00550 }
00551 
00552 void LSM9DS1::readTemp()
00553 {
00554     uint8_t temp[2]; // We'll read two bytes from the temperature sensor into temp
00555     xgReadBytes(OUT_TEMP_L, temp, 2); // Read 2 bytes, beginning at OUT_TEMP_L
00556     temperature = (int16_t)((temp[1] << 8) | temp[0]);
00557 }
00558 
00559 void LSM9DS1::readGyro()
00560 {
00561     uint8_t temp[6]; // We'll read six bytes from the gyro into temp
00562     xgReadBytes(OUT_X_L_G, temp, 6); // Read 6 bytes, beginning at OUT_X_L_G
00563     gx = (temp[1] << 8) | temp[0]; // Store x-axis values into gx
00564     gy = (temp[3] << 8) | temp[2]; // Store y-axis values into gy
00565     gz = (temp[5] << 8) | temp[4]; // Store z-axis values into gz
00566     if (_autoCalc) {
00567         gx -= gBiasRaw[X_AXIS];
00568         gy -= gBiasRaw[Y_AXIS];
00569         gz -= gBiasRaw[Z_AXIS];
00570     }
00571 }
00572 
00573 int16_t LSM9DS1::readGyro(lsm9ds1_axis axis)
00574 {
00575     uint8_t temp[2];
00576     int16_t value;
00577 
00578     xgReadBytes(OUT_X_L_G + (2 * axis), temp, 2);
00579 
00580     value = (temp[1] << 8) | temp[0];
00581 
00582     if (_autoCalc)
00583         value -= gBiasRaw[axis];
00584 
00585     return value;
00586 }
00587 
00588 float LSM9DS1::calcGyro(int16_t gyro)
00589 {
00590     // Return the gyro raw reading times our pre-calculated DPS / (ADC tick):
00591     return gRes * gyro;
00592 }
00593 
00594 float LSM9DS1::calcAccel(int16_t accel)
00595 {
00596     // Return the accel raw reading times our pre-calculated g's / (ADC tick):
00597     return aRes * accel;
00598 }
00599 
00600 float LSM9DS1::calcMag(int16_t mag)
00601 {
00602     // Return the mag raw reading times our pre-calculated Gs / (ADC tick):
00603     return mRes * mag;
00604 }
00605 
00606 void LSM9DS1::setGyroScale(uint16_t gScl)
00607 {
00608     // Read current value of CTRL_REG1_G:
00609     uint8_t ctrl1RegValue = xgReadByte(CTRL_REG1_G);
00610     // Mask out scale bits (3 & 4):
00611     ctrl1RegValue &= 0xE7;
00612     switch (gScl) {
00613         case 500:
00614             ctrl1RegValue |= (0x1 << 3);
00615             settings.gyro.scale = 500;
00616             break;
00617         case 2000:
00618             ctrl1RegValue |= (0x3 << 3);
00619             settings.gyro.scale = 2000;
00620             break;
00621         default: // Otherwise we'll set it to 245 dps (0x0 << 4)
00622             settings.gyro.scale = 245;
00623             break;
00624     }
00625     xgWriteByte(CTRL_REG1_G, ctrl1RegValue);
00626 
00627     calcgRes();
00628 }
00629 
00630 void LSM9DS1::setAccelScale(uint8_t aScl)
00631 {
00632     // We need to preserve the other bytes in CTRL_REG6_XL. So, first read it:
00633     uint8_t tempRegValue = xgReadByte(CTRL_REG6_XL);
00634     // Mask out accel scale bits:
00635     tempRegValue &= 0xE7;
00636 
00637     switch (aScl) {
00638         case 4:
00639             tempRegValue |= (0x2 << 3);
00640             settings.accel.scale = 4;
00641             break;
00642         case 8:
00643             tempRegValue |= (0x3 << 3);
00644             settings.accel.scale = 8;
00645             break;
00646         case 16:
00647             tempRegValue |= (0x1 << 3);
00648             settings.accel.scale = 16;
00649             break;
00650         default: // Otherwise it'll be set to 2g (0x0 << 3)
00651             settings.accel.scale = 2;
00652             break;
00653     }
00654     xgWriteByte(CTRL_REG6_XL, tempRegValue);
00655 
00656     // Then calculate a new aRes, which relies on aScale being set correctly:
00657     calcaRes();
00658 }
00659 
00660 void LSM9DS1::setMagScale(uint8_t mScl)
00661 {
00662     // We need to preserve the other bytes in CTRL_REG6_XM. So, first read it:
00663     uint8_t temp = mReadByte(CTRL_REG2_M);
00664     // Then mask out the mag scale bits:
00665     temp &= 0xFF^(0x3 << 5);
00666 
00667     switch (mScl) {
00668         case 8:
00669             temp |= (0x1 << 5);
00670             settings.mag.scale = 8;
00671             break;
00672         case 12:
00673             temp |= (0x2 << 5);
00674             settings.mag.scale = 12;
00675             break;
00676         case 16:
00677             temp |= (0x3 << 5);
00678             settings.mag.scale = 16;
00679             break;
00680         default: // Otherwise we'll default to 4 gauss (00)
00681             settings.mag.scale = 4;
00682             break;
00683     }
00684 
00685     // And write the new register value back into CTRL_REG6_XM:
00686     mWriteByte(CTRL_REG2_M, temp);
00687 
00688     // We've updated the sensor, but we also need to update our class variables
00689     // First update mScale:
00690     //mScale = mScl;
00691     // Then calculate a new mRes, which relies on mScale being set correctly:
00692     calcmRes();
00693 }
00694 
00695 void LSM9DS1::setGyroODR(uint8_t gRate)
00696 {
00697     // Only do this if gRate is not 0 (which would disable the gyro)
00698     if ((gRate & 0x07) != 0) {
00699         // We need to preserve the other bytes in CTRL_REG1_G. So, first read it:
00700         uint8_t temp = xgReadByte(CTRL_REG1_G);
00701         // Then mask out the gyro ODR bits:
00702         temp &= 0xFF^(0x7 << 5);
00703         temp |= (gRate & 0x07) << 5;
00704         // Update our settings struct
00705         settings.gyro.sampleRate = gRate & 0x07;
00706         // And write the new register value back into CTRL_REG1_G:
00707         xgWriteByte(CTRL_REG1_G, temp);
00708     }
00709 }
00710 
00711 void LSM9DS1::setAccelODR(uint8_t aRate)
00712 {
00713     // Only do this if aRate is not 0 (which would disable the accel)
00714     if ((aRate & 0x07) != 0) {
00715         // We need to preserve the other bytes in CTRL_REG1_XM. So, first read it:
00716         uint8_t temp = xgReadByte(CTRL_REG6_XL);
00717         // Then mask out the accel ODR bits:
00718         temp &= 0x1F;
00719         // Then shift in our new ODR bits:
00720         temp |= ((aRate & 0x07) << 5);
00721         settings.accel.sampleRate = aRate & 0x07;
00722         // And write the new register value back into CTRL_REG1_XM:
00723         xgWriteByte(CTRL_REG6_XL, temp);
00724     }
00725 }
00726 
00727 void LSM9DS1::setMagODR(uint8_t mRate)
00728 {
00729     // We need to preserve the other bytes in CTRL_REG5_XM. So, first read it:
00730     uint8_t temp = mReadByte(CTRL_REG1_M);
00731     // Then mask out the mag ODR bits:
00732     temp &= 0xFF^(0x7 << 2);
00733     // Then shift in our new ODR bits:
00734     temp |= ((mRate & 0x07) << 2);
00735     settings.mag.sampleRate = mRate & 0x07;
00736     // And write the new register value back into CTRL_REG5_XM:
00737     mWriteByte(CTRL_REG1_M, temp);
00738 }
00739 
00740 void LSM9DS1::calcgRes()
00741 {
00742     gRes = ((float) settings.gyro.scale) / 32768.0;
00743 }
00744 
00745 void LSM9DS1::calcaRes()
00746 {
00747     aRes = ((float) settings.accel.scale) / 32768.0;
00748 }
00749 
00750 void LSM9DS1::calcmRes()
00751 {
00752     //mRes = ((float) settings.mag.scale) / 32768.0;
00753     switch (settings.mag.scale) {
00754         case 4:
00755             mRes = magSensitivity[0];
00756             break;
00757         case 8:
00758             mRes = magSensitivity[1];
00759             break;
00760         case 12:
00761             mRes = magSensitivity[2];
00762             break;
00763         case 16:
00764             mRes = magSensitivity[3];
00765             break;
00766     }
00767 
00768 }
00769 
00770 void LSM9DS1::configInt(interrupt_select interrupt, uint8_t generator,
00771                         h_lactive activeLow, pp_od pushPull)
00772 {
00773     // Write to INT1_CTRL or INT2_CTRL. [interupt] should already be one of
00774     // those two values.
00775     // [generator] should be an OR'd list of values from the interrupt_generators enum
00776     xgWriteByte(interrupt, generator);
00777 
00778     // Configure CTRL_REG8
00779     uint8_t temp;
00780     temp = xgReadByte(CTRL_REG8);
00781 
00782     if (activeLow) temp |= (1<<5);
00783     else temp &= ~(1<<5);
00784 
00785     if (pushPull) temp &= ~(1<<4);
00786     else temp |= (1<<4);
00787 
00788     xgWriteByte(CTRL_REG8, temp);
00789 }
00790 
00791 void LSM9DS1::configInactivity(uint8_t duration, uint8_t threshold, bool sleepOn)
00792 {
00793     uint8_t temp = 0;
00794 
00795     temp = threshold & 0x7F;
00796     if (sleepOn) temp |= (1<<7);
00797     xgWriteByte(ACT_THS, temp);
00798 
00799     xgWriteByte(ACT_DUR, duration);
00800 }
00801 
00802 uint8_t LSM9DS1::getInactivity()
00803 {
00804     uint8_t temp = xgReadByte(STATUS_REG_0);
00805     temp &= (0x10);
00806     return temp;
00807 }
00808 
00809 void LSM9DS1::configAccelInt(uint8_t generator, bool andInterrupts)
00810 {
00811     // Use variables from accel_interrupt_generator, OR'd together to create
00812     // the [generator]value.
00813     uint8_t temp = generator;
00814     if (andInterrupts) temp |= 0x80;
00815     xgWriteByte(INT_GEN_CFG_XL, temp);
00816 }
00817 
00818 void LSM9DS1::configAccelThs(uint8_t threshold, lsm9ds1_axis axis, uint8_t duration, bool wait)
00819 {
00820     // Write threshold value to INT_GEN_THS_?_XL.
00821     // axis will be 0, 1, or 2 (x, y, z respectively)
00822     xgWriteByte(INT_GEN_THS_X_XL + axis, threshold);
00823 
00824     // Write duration and wait to INT_GEN_DUR_XL
00825     uint8_t temp;
00826     temp = (duration & 0x7F);
00827     if (wait) temp |= 0x80;
00828     xgWriteByte(INT_GEN_DUR_XL, temp);
00829 }
00830 
00831 uint8_t LSM9DS1::getAccelIntSrc()
00832 {
00833     uint8_t intSrc = xgReadByte(INT_GEN_SRC_XL);
00834 
00835     // Check if the IA_XL (interrupt active) bit is set
00836     if (intSrc & (1<<6)) {
00837         return (intSrc & 0x3F);
00838     }
00839 
00840     return 0;
00841 }
00842 
00843 void LSM9DS1::configGyroInt(uint8_t generator, bool aoi, bool latch)
00844 {
00845     // Use variables from accel_interrupt_generator, OR'd together to create
00846     // the [generator]value.
00847     uint8_t temp = generator;
00848     if (aoi) temp |= 0x80;
00849     if (latch) temp |= 0x40;
00850     xgWriteByte(INT_GEN_CFG_G, temp);
00851 }
00852 
00853 void LSM9DS1::configGyroThs(int16_t threshold, lsm9ds1_axis axis, uint8_t duration, bool wait)
00854 {
00855     uint8_t buffer[2];
00856     buffer[0] = (threshold & 0x7F00) >> 8;
00857     buffer[1] = (threshold & 0x00FF);
00858     // Write threshold value to INT_GEN_THS_?H_G and  INT_GEN_THS_?L_G.
00859     // axis will be 0, 1, or 2 (x, y, z respectively)
00860     xgWriteByte(INT_GEN_THS_XH_G + (axis * 2), buffer[0]);
00861     xgWriteByte(INT_GEN_THS_XH_G + 1 + (axis * 2), buffer[1]);
00862 
00863     // Write duration and wait to INT_GEN_DUR_XL
00864     uint8_t temp;
00865     temp = (duration & 0x7F);
00866     if (wait) temp |= 0x80;
00867     xgWriteByte(INT_GEN_DUR_G, temp);
00868 }
00869 
00870 uint8_t LSM9DS1::getGyroIntSrc()
00871 {
00872     uint8_t intSrc = xgReadByte(INT_GEN_SRC_G);
00873 
00874     // Check if the IA_G (interrupt active) bit is set
00875     if (intSrc & (1<<6)) {
00876         return (intSrc & 0x3F);
00877     }
00878 
00879     return 0;
00880 }
00881 
00882 void LSM9DS1::configMagInt(uint8_t generator, h_lactive activeLow, bool latch)
00883 {
00884     // Mask out non-generator bits (0-4)
00885     uint8_t config = (generator & 0xE0);
00886     // IEA bit is 0 for active-low, 1 for active-high.
00887     if (activeLow == INT_ACTIVE_HIGH) config |= (1<<2);
00888     // IEL bit is 0 for latched, 1 for not-latched
00889     if (!latch) config |= (1<<1);
00890     // As long as we have at least 1 generator, enable the interrupt
00891     if (generator != 0) config |= (1<<0);
00892 
00893     mWriteByte(INT_CFG_M, config);
00894 }
00895 
00896 void LSM9DS1::configMagThs(uint16_t threshold)
00897 {
00898     // Write high eight bits of [threshold] to INT_THS_H_M
00899     mWriteByte(INT_THS_H_M, uint8_t((threshold & 0x7F00) >> 8));
00900     // Write low eight bits of [threshold] to INT_THS_L_M
00901     mWriteByte(INT_THS_L_M, uint8_t(threshold & 0x00FF));
00902 }
00903 
00904 uint8_t LSM9DS1::getMagIntSrc()
00905 {
00906     uint8_t intSrc = mReadByte(INT_SRC_M);
00907 
00908     // Check if the INT (interrupt active) bit is set
00909     if (intSrc & (1<<0)) {
00910         return (intSrc & 0xFE);
00911     }
00912 
00913     return 0;
00914 }
00915 
00916 void LSM9DS1::sleepGyro(bool enable)
00917 {
00918     uint8_t temp = xgReadByte(CTRL_REG9);
00919     if (enable) temp |= (1<<6);
00920     else temp &= ~(1<<6);
00921     xgWriteByte(CTRL_REG9, temp);
00922 }
00923 
00924 void LSM9DS1::enableFIFO(bool enable)
00925 {
00926     uint8_t temp = xgReadByte(CTRL_REG9);
00927     if (enable) temp |= (1<<1);
00928     else temp &= ~(1<<1);
00929     xgWriteByte(CTRL_REG9, temp);
00930 }
00931 
00932 void LSM9DS1::setFIFO(fifoMode_type fifoMode, uint8_t fifoThs)
00933 {
00934     // Limit threshold - 0x1F (31) is the maximum. If more than that was asked
00935     // limit it to the maximum.
00936     uint8_t threshold = fifoThs <= 0x1F ? fifoThs : 0x1F;
00937     xgWriteByte(FIFO_CTRL, ((fifoMode & 0x7) << 5) | (threshold & 0x1F));
00938 }
00939 
00940 uint8_t LSM9DS1::getFIFOSamples()
00941 {
00942     return (xgReadByte(FIFO_SRC) & 0x3F);
00943 }
00944 
00945 void LSM9DS1::constrainScales()
00946 {
00947     if ((settings.gyro.scale != 245) && (settings.gyro.scale != 500) &&
00948             (settings.gyro.scale != 2000)) {
00949         settings.gyro.scale = 245;
00950     }
00951 
00952     if ((settings.accel.scale != 2) && (settings.accel.scale != 4) &&
00953             (settings.accel.scale != 8) && (settings.accel.scale != 16)) {
00954         settings.accel.scale = 2;
00955     }
00956 
00957     if ((settings.mag.scale != 4) && (settings.mag.scale != 8) &&
00958             (settings.mag.scale != 12) && (settings.mag.scale != 16)) {
00959         settings.mag.scale = 4;
00960     }
00961 }
00962 
00963 void LSM9DS1::xgWriteByte(uint8_t subAddress, uint8_t data)
00964 {
00965     // Whether we're using I2C or SPI, write a byte using the
00966     // gyro-specific I2C address or SPI CS pin.
00967     if (settings.device.commInterface == IMU_MODE_I2C) {
00968         pc.printf("yo");
00969         I2CwriteByte(_xgAddress, subAddress, data);
00970     } else if (settings.device.commInterface == IMU_MODE_SPI) {
00971         SPIwriteByte(_xgAddress, subAddress, data);
00972     }
00973 }
00974 
00975 void LSM9DS1::mWriteByte(uint8_t subAddress, uint8_t data)
00976 {
00977     // Whether we're using I2C or SPI, write a byte using the
00978     // accelerometer-specific I2C address or SPI CS pin.
00979     if (settings.device.commInterface == IMU_MODE_I2C) {
00980         pc.printf("mo");
00981         return I2CwriteByte(_mAddress, subAddress, data);
00982     } else if (settings.device.commInterface == IMU_MODE_SPI)
00983         return SPIwriteByte(_mAddress, subAddress, data);
00984 }
00985 
00986 uint8_t LSM9DS1::xgReadByte(uint8_t subAddress)
00987 {
00988     // Whether we're using I2C or SPI, read a byte using the
00989     // gyro-specific I2C address or SPI CS pin.
00990     if (settings.device.commInterface == IMU_MODE_I2C)
00991         return I2CreadByte(_xgAddress, subAddress);
00992     else if (settings.device.commInterface == IMU_MODE_SPI)
00993         return SPIreadByte(_xgAddress, subAddress);
00994 }
00995 
00996 void LSM9DS1::xgReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count)
00997 {
00998     // Whether we're using I2C or SPI, read multiple bytes using the
00999     // gyro-specific I2C address or SPI CS pin.
01000     if (settings.device.commInterface == IMU_MODE_I2C) {
01001         I2CreadBytes(_xgAddress, subAddress, dest, count);
01002     } else if (settings.device.commInterface == IMU_MODE_SPI) {
01003         SPIreadBytes(_xgAddress, subAddress, dest, count);
01004     }
01005 }
01006 
01007 uint8_t LSM9DS1::mReadByte(uint8_t subAddress)
01008 {
01009     // Whether we're using I2C or SPI, read a byte using the
01010     // accelerometer-specific I2C address or SPI CS pin.
01011     if (settings.device.commInterface == IMU_MODE_I2C)
01012         return I2CreadByte(_mAddress, subAddress);
01013     else if (settings.device.commInterface == IMU_MODE_SPI)
01014         return SPIreadByte(_mAddress, subAddress);
01015 }
01016 
01017 void LSM9DS1::mReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count)
01018 {
01019     // Whether we're using I2C or SPI, read multiple bytes using the
01020     // accelerometer-specific I2C address or SPI CS pin.
01021     if (settings.device.commInterface == IMU_MODE_I2C)
01022         I2CreadBytes(_mAddress, subAddress, dest, count);
01023     else if (settings.device.commInterface == IMU_MODE_SPI)
01024         SPIreadBytes(_mAddress, subAddress, dest, count);
01025 }
01026 
01027 void LSM9DS1::initSPI()
01028 {
01029     /*
01030     pinMode(_xgAddress, OUTPUT);
01031     digitalWrite(_xgAddress, HIGH);
01032     pinMode(_mAddress, OUTPUT);
01033     digitalWrite(_mAddress, HIGH);
01034 
01035     SPI.begin();
01036     // Maximum SPI frequency is 10MHz, could divide by 2 here:
01037     SPI.setClockDivider(SPI_CLOCK_DIV2);
01038     // Data is read and written MSb first.
01039     SPI.setBitOrder(MSBFIRST);
01040     // Data is captured on rising edge of clock (CPHA = 0)
01041     // Base value of the clock is HIGH (CPOL = 1)
01042     SPI.setDataMode(SPI_MODE0);
01043     */
01044 }
01045 
01046 void LSM9DS1::SPIwriteByte(uint8_t csPin, uint8_t subAddress, uint8_t data)
01047 {
01048     /*
01049     digitalWrite(csPin, LOW); // Initiate communication
01050 
01051     // If write, bit 0 (MSB) should be 0
01052     // If single write, bit 1 should be 0
01053     SPI.transfer(subAddress & 0x3F); // Send Address
01054     SPI.transfer(data); // Send data
01055 
01056     digitalWrite(csPin, HIGH); // Close communication
01057     */
01058 }
01059 
01060 uint8_t LSM9DS1::SPIreadByte(uint8_t csPin, uint8_t subAddress)
01061 {
01062     uint8_t temp;
01063     // Use the multiple read function to read 1 byte.
01064     // Value is returned to `temp`.
01065     SPIreadBytes(csPin, subAddress, &temp, 1);
01066     return temp;
01067 }
01068 
01069 void LSM9DS1::SPIreadBytes(uint8_t csPin, uint8_t subAddress,
01070                            uint8_t * dest, uint8_t count)
01071 {
01072     // To indicate a read, set bit 0 (msb) of first byte to 1
01073     uint8_t rAddress = 0x80 | (subAddress & 0x3F);
01074     // Mag SPI port is different. If we're reading multiple bytes,
01075     // set bit 1 to 1. The remaining six bytes are the address to be read
01076     if ((csPin == _mAddress) && count > 1)
01077         rAddress |= 0x40;
01078 
01079     /*
01080     digitalWrite(csPin, LOW); // Initiate communication
01081     SPI.transfer(rAddress);
01082     for (int i=0; i<count; i++)
01083     {
01084         dest[i] = SPI.transfer(0x00); // Read into destination array
01085     }
01086     digitalWrite(csPin, HIGH); // Close communication
01087     */
01088 }
01089 
01090 void LSM9DS1::initI2C()
01091 {
01092     /*
01093     Wire.begin();   // Initialize I2C library
01094     */
01095 
01096     //already initialized in constructor!
01097 }
01098 
01099 // Wire.h read and write protocols
01100 void LSM9DS1::I2CwriteByte(uint8_t address, uint8_t subAddress, uint8_t data)
01101 {
01102     /*
01103     Wire.beginTransmission(address);  // Initialize the Tx buffer
01104     Wire.write(subAddress);           // Put slave register address in Tx buffer
01105     Wire.write(data);                 // Put data in Tx buffer
01106     Wire.endTransmission();           // Send the Tx buffer
01107     */
01108     char temp_data[2] = {subAddress, data};
01109     i2c.write(address, temp_data, 2);
01110 }
01111 
01112 uint8_t LSM9DS1::I2CreadByte(uint8_t address, uint8_t subAddress)
01113 {
01114     /*
01115     int timeout = LSM9DS1_COMMUNICATION_TIMEOUT;
01116     uint8_t data; // `data` will store the register data
01117 
01118     Wire.beginTransmission(address);         // Initialize the Tx buffer
01119     Wire.write(subAddress);                  // Put slave register address in Tx buffer
01120     Wire.endTransmission(true);             // Send the Tx buffer, but send a restart to keep connection alive
01121     Wire.requestFrom(address, (uint8_t) 1);  // Read one byte from slave register address
01122     while ((Wire.available() < 1) && (timeout-- > 0))
01123         delay(1);
01124 
01125     if (timeout <= 0)
01126         return 255; //! Bad! 255 will be misinterpreted as a good value.
01127 
01128     data = Wire.read();                      // Fill Rx buffer with result
01129     return data;                             // Return data read from slave register
01130     */
01131     char data;
01132     char temp[2] = {subAddress};
01133 
01134     i2c.write(address, temp, 1);
01135     //i2c.write(address & 0xFE);
01136     temp[1] = 0x00;
01137     i2c.write(address, temp, 1);
01138     //i2c.write( address | 0x01);
01139     int a = i2c.read(address, &data, 1);
01140     return data;
01141 }
01142 
01143 uint8_t LSM9DS1::I2CreadBytes(uint8_t address, uint8_t subAddress, uint8_t * dest, uint8_t count)
01144 {
01145     /*
01146     int timeout = LSM9DS1_COMMUNICATION_TIMEOUT;
01147     Wire.beginTransmission(address);   // Initialize the Tx buffer
01148     // Next send the register to be read. OR with 0x80 to indicate multi-read.
01149     Wire.write(subAddress | 0x80);     // Put slave register address in Tx buffer
01150 
01151     Wire.endTransmission(true);             // Send the Tx buffer, but send a restart to keep connection alive
01152     uint8_t i = 0;
01153     Wire.requestFrom(address, count);  // Read bytes from slave register address
01154     while ((Wire.available() < count) && (timeout-- > 0))
01155         delay(1);
01156     if (timeout <= 0)
01157         return -1;
01158 
01159     for (int i=0; i<count;)
01160     {
01161         if (Wire.available())
01162         {
01163             dest[i++] = Wire.read();
01164         }
01165     }
01166     return count;
01167     */
01168     int i;
01169     char temp_dest[count];
01170     char temp[1] = {subAddress};
01171     i2c.write(address, temp, 1);
01172     i2c.read(address, temp_dest, count);
01173 
01174     //i2c doesn't take uint8_ts, but rather chars so do this nasty af conversion
01175     for (i=0; i < count; i++) {
01176         dest[i] = temp_dest[i];
01177     }
01178     return count;
01179 }