SSL/TLS Library
CyaSSL is SSL/TLS library for embedded systems.
Diff: ctaocrypt/src/hc128.c
- Revision:
- 0:9d17e4342598
diff -r 000000000000 -r 9d17e4342598 ctaocrypt/src/hc128.c --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/ctaocrypt/src/hc128.c Sun Apr 20 12:40:57 2014 +0000 @@ -0,0 +1,398 @@ +/* hc128.c + * + * Copyright (C) 2006-2013 wolfSSL Inc. + * + * This file is part of CyaSSL. + * + * CyaSSL is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * CyaSSL is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA + */ + +#ifdef HAVE_CONFIG_H + #include <config.h> +#endif + +#include <cyassl/ctaocrypt/settings.h> + +#ifdef HAVE_HC128 + +#include <cyassl/ctaocrypt/hc128.h> +#include <cyassl/ctaocrypt/error-crypt.h> +#include <cyassl/ctaocrypt/logging.h> +#ifdef NO_INLINE + #include <cyassl/ctaocrypt/hc128.h> + #include <cyassl/ctaocrypt/misc.h> +#else + #include <ctaocrypt/src/misc.c> +#endif + + +#ifdef BIG_ENDIAN_ORDER + #define LITTLE32(x) ByteReverseWord32(x) +#else + #define LITTLE32(x) (x) +#endif + + +/*h1 function*/ +#define h1(ctx, x, y) { \ + byte a,c; \ + a = (byte) (x); \ + c = (byte) ((x) >> 16); \ + y = (ctx->T[512+a])+(ctx->T[512+256+c]); \ +} + +/*h2 function*/ +#define h2(ctx, x, y) { \ + byte a,c; \ + a = (byte) (x); \ + c = (byte) ((x) >> 16); \ + y = (ctx->T[a])+(ctx->T[256+c]); \ +} + +/*one step of HC-128, update P and generate 32 bits keystream*/ +#define step_P(ctx,u,v,a,b,c,d,n){ \ + word32 tem0,tem1,tem2,tem3; \ + h1((ctx),(ctx->X[(d)]),tem3); \ + tem0 = rotrFixed((ctx->T[(v)]),23); \ + tem1 = rotrFixed((ctx->X[(c)]),10); \ + tem2 = rotrFixed((ctx->X[(b)]),8); \ + (ctx->T[(u)]) += tem2+(tem0 ^ tem1); \ + (ctx->X[(a)]) = (ctx->T[(u)]); \ + (n) = tem3 ^ (ctx->T[(u)]) ; \ +} + +/*one step of HC-128, update Q and generate 32 bits keystream*/ +#define step_Q(ctx,u,v,a,b,c,d,n){ \ + word32 tem0,tem1,tem2,tem3; \ + h2((ctx),(ctx->Y[(d)]),tem3); \ + tem0 = rotrFixed((ctx->T[(v)]),(32-23)); \ + tem1 = rotrFixed((ctx->Y[(c)]),(32-10)); \ + tem2 = rotrFixed((ctx->Y[(b)]),(32-8)); \ + (ctx->T[(u)]) += tem2 + (tem0 ^ tem1); \ + (ctx->Y[(a)]) = (ctx->T[(u)]); \ + (n) = tem3 ^ (ctx->T[(u)]) ; \ +} + +/*16 steps of HC-128, generate 512 bits keystream*/ +static void generate_keystream(HC128* ctx, word32* keystream) +{ + word32 cc,dd; + cc = ctx->counter1024 & 0x1ff; + dd = (cc+16)&0x1ff; + + if (ctx->counter1024 < 512) + { + ctx->counter1024 = (ctx->counter1024 + 16) & 0x3ff; + step_P(ctx, cc+0, cc+1, 0, 6, 13,4, keystream[0]); + step_P(ctx, cc+1, cc+2, 1, 7, 14,5, keystream[1]); + step_P(ctx, cc+2, cc+3, 2, 8, 15,6, keystream[2]); + step_P(ctx, cc+3, cc+4, 3, 9, 0, 7, keystream[3]); + step_P(ctx, cc+4, cc+5, 4, 10,1, 8, keystream[4]); + step_P(ctx, cc+5, cc+6, 5, 11,2, 9, keystream[5]); + step_P(ctx, cc+6, cc+7, 6, 12,3, 10,keystream[6]); + step_P(ctx, cc+7, cc+8, 7, 13,4, 11,keystream[7]); + step_P(ctx, cc+8, cc+9, 8, 14,5, 12,keystream[8]); + step_P(ctx, cc+9, cc+10,9, 15,6, 13,keystream[9]); + step_P(ctx, cc+10,cc+11,10,0, 7, 14,keystream[10]); + step_P(ctx, cc+11,cc+12,11,1, 8, 15,keystream[11]); + step_P(ctx, cc+12,cc+13,12,2, 9, 0, keystream[12]); + step_P(ctx, cc+13,cc+14,13,3, 10,1, keystream[13]); + step_P(ctx, cc+14,cc+15,14,4, 11,2, keystream[14]); + step_P(ctx, cc+15,dd+0, 15,5, 12,3, keystream[15]); + } + else + { + ctx->counter1024 = (ctx->counter1024 + 16) & 0x3ff; + step_Q(ctx, 512+cc+0, 512+cc+1, 0, 6, 13,4, keystream[0]); + step_Q(ctx, 512+cc+1, 512+cc+2, 1, 7, 14,5, keystream[1]); + step_Q(ctx, 512+cc+2, 512+cc+3, 2, 8, 15,6, keystream[2]); + step_Q(ctx, 512+cc+3, 512+cc+4, 3, 9, 0, 7, keystream[3]); + step_Q(ctx, 512+cc+4, 512+cc+5, 4, 10,1, 8, keystream[4]); + step_Q(ctx, 512+cc+5, 512+cc+6, 5, 11,2, 9, keystream[5]); + step_Q(ctx, 512+cc+6, 512+cc+7, 6, 12,3, 10,keystream[6]); + step_Q(ctx, 512+cc+7, 512+cc+8, 7, 13,4, 11,keystream[7]); + step_Q(ctx, 512+cc+8, 512+cc+9, 8, 14,5, 12,keystream[8]); + step_Q(ctx, 512+cc+9, 512+cc+10,9, 15,6, 13,keystream[9]); + step_Q(ctx, 512+cc+10,512+cc+11,10,0, 7, 14,keystream[10]); + step_Q(ctx, 512+cc+11,512+cc+12,11,1, 8, 15,keystream[11]); + step_Q(ctx, 512+cc+12,512+cc+13,12,2, 9, 0, keystream[12]); + step_Q(ctx, 512+cc+13,512+cc+14,13,3, 10,1, keystream[13]); + step_Q(ctx, 512+cc+14,512+cc+15,14,4, 11,2, keystream[14]); + step_Q(ctx, 512+cc+15,512+dd+0, 15,5, 12,3, keystream[15]); + } +} + + +/* The following defines the initialization functions */ +#define f1(x) (rotrFixed((x),7) ^ rotrFixed((x),18) ^ ((x) >> 3)) +#define f2(x) (rotrFixed((x),17) ^ rotrFixed((x),19) ^ ((x) >> 10)) + +/*update table P*/ +#define update_P(ctx,u,v,a,b,c,d){ \ + word32 tem0,tem1,tem2,tem3; \ + tem0 = rotrFixed((ctx->T[(v)]),23); \ + tem1 = rotrFixed((ctx->X[(c)]),10); \ + tem2 = rotrFixed((ctx->X[(b)]),8); \ + h1((ctx),(ctx->X[(d)]),tem3); \ + (ctx->T[(u)]) = ((ctx->T[(u)]) + tem2+(tem0^tem1)) ^ tem3; \ + (ctx->X[(a)]) = (ctx->T[(u)]); \ +} + +/*update table Q*/ +#define update_Q(ctx,u,v,a,b,c,d){ \ + word32 tem0,tem1,tem2,tem3; \ + tem0 = rotrFixed((ctx->T[(v)]),(32-23)); \ + tem1 = rotrFixed((ctx->Y[(c)]),(32-10)); \ + tem2 = rotrFixed((ctx->Y[(b)]),(32-8)); \ + h2((ctx),(ctx->Y[(d)]),tem3); \ + (ctx->T[(u)]) = ((ctx->T[(u)]) + tem2+(tem0^tem1)) ^ tem3; \ + (ctx->Y[(a)]) = (ctx->T[(u)]); \ +} + +/*16 steps of HC-128, without generating keystream, */ +/*but use the outputs to update P and Q*/ +static void setup_update(HC128* ctx) /*each time 16 steps*/ +{ + word32 cc,dd; + cc = ctx->counter1024 & 0x1ff; + dd = (cc+16)&0x1ff; + + if (ctx->counter1024 < 512) + { + ctx->counter1024 = (ctx->counter1024 + 16) & 0x3ff; + update_P(ctx, cc+0, cc+1, 0, 6, 13, 4); + update_P(ctx, cc+1, cc+2, 1, 7, 14, 5); + update_P(ctx, cc+2, cc+3, 2, 8, 15, 6); + update_P(ctx, cc+3, cc+4, 3, 9, 0, 7); + update_P(ctx, cc+4, cc+5, 4, 10,1, 8); + update_P(ctx, cc+5, cc+6, 5, 11,2, 9); + update_P(ctx, cc+6, cc+7, 6, 12,3, 10); + update_P(ctx, cc+7, cc+8, 7, 13,4, 11); + update_P(ctx, cc+8, cc+9, 8, 14,5, 12); + update_P(ctx, cc+9, cc+10,9, 15,6, 13); + update_P(ctx, cc+10,cc+11,10,0, 7, 14); + update_P(ctx, cc+11,cc+12,11,1, 8, 15); + update_P(ctx, cc+12,cc+13,12,2, 9, 0); + update_P(ctx, cc+13,cc+14,13,3, 10, 1); + update_P(ctx, cc+14,cc+15,14,4, 11, 2); + update_P(ctx, cc+15,dd+0, 15,5, 12, 3); + } + else + { + ctx->counter1024 = (ctx->counter1024 + 16) & 0x3ff; + update_Q(ctx, 512+cc+0, 512+cc+1, 0, 6, 13, 4); + update_Q(ctx, 512+cc+1, 512+cc+2, 1, 7, 14, 5); + update_Q(ctx, 512+cc+2, 512+cc+3, 2, 8, 15, 6); + update_Q(ctx, 512+cc+3, 512+cc+4, 3, 9, 0, 7); + update_Q(ctx, 512+cc+4, 512+cc+5, 4, 10,1, 8); + update_Q(ctx, 512+cc+5, 512+cc+6, 5, 11,2, 9); + update_Q(ctx, 512+cc+6, 512+cc+7, 6, 12,3, 10); + update_Q(ctx, 512+cc+7, 512+cc+8, 7, 13,4, 11); + update_Q(ctx, 512+cc+8, 512+cc+9, 8, 14,5, 12); + update_Q(ctx, 512+cc+9, 512+cc+10,9, 15,6, 13); + update_Q(ctx, 512+cc+10,512+cc+11,10,0, 7, 14); + update_Q(ctx, 512+cc+11,512+cc+12,11,1, 8, 15); + update_Q(ctx, 512+cc+12,512+cc+13,12,2, 9, 0); + update_Q(ctx, 512+cc+13,512+cc+14,13,3, 10, 1); + update_Q(ctx, 512+cc+14,512+cc+15,14,4, 11, 2); + update_Q(ctx, 512+cc+15,512+dd+0, 15,5, 12, 3); + } +} + + +/* for the 128-bit key: key[0]...key[15] +* key[0] is the least significant byte of ctx->key[0] (K_0); +* key[3] is the most significant byte of ctx->key[0] (K_0); +* ... +* key[12] is the least significant byte of ctx->key[3] (K_3) +* key[15] is the most significant byte of ctx->key[3] (K_3) +* +* for the 128-bit iv: iv[0]...iv[15] +* iv[0] is the least significant byte of ctx->iv[0] (IV_0); +* iv[3] is the most significant byte of ctx->iv[0] (IV_0); +* ... +* iv[12] is the least significant byte of ctx->iv[3] (IV_3) +* iv[15] is the most significant byte of ctx->iv[3] (IV_3) +*/ + + + +static void Hc128_SetIV(HC128* ctx, const byte* inIv) +{ + word32 i; + word32 iv[4]; + + if (inIv) + XMEMCPY(iv, inIv, sizeof(iv)); + else + XMEMSET(iv, 0, sizeof(iv)); + + for (i = 0; i < (128 >> 5); i++) + ctx->iv[i] = LITTLE32(iv[i]); + + for (; i < 8; i++) ctx->iv[i] = ctx->iv[i-4]; + + /* expand the key and IV into the table T */ + /* (expand the key and IV into the table P and Q) */ + + for (i = 0; i < 8; i++) ctx->T[i] = ctx->key[i]; + for (i = 8; i < 16; i++) ctx->T[i] = ctx->iv[i-8]; + + for (i = 16; i < (256+16); i++) + ctx->T[i] = f2(ctx->T[i-2]) + ctx->T[i-7] + f1(ctx->T[i-15]) + + ctx->T[i-16]+i; + + for (i = 0; i < 16; i++) ctx->T[i] = ctx->T[256+i]; + + for (i = 16; i < 1024; i++) + ctx->T[i] = f2(ctx->T[i-2]) + ctx->T[i-7] + f1(ctx->T[i-15]) + + ctx->T[i-16]+256+i; + + /* initialize counter1024, X and Y */ + ctx->counter1024 = 0; + for (i = 0; i < 16; i++) ctx->X[i] = ctx->T[512-16+i]; + for (i = 0; i < 16; i++) ctx->Y[i] = ctx->T[512+512-16+i]; + + /* run the cipher 1024 steps before generating the output */ + for (i = 0; i < 64; i++) setup_update(ctx); +} + + +static INLINE int DoKey(HC128* ctx, const byte* key, const byte* iv) +{ + word32 i; + + /* Key size in bits 128 */ + for (i = 0; i < (128 >> 5); i++) + ctx->key[i] = LITTLE32(((word32*)key)[i]); + + for ( ; i < 8 ; i++) ctx->key[i] = ctx->key[i-4]; + + Hc128_SetIV(ctx, iv); + + return 0; +} + + +/* Key setup */ +int Hc128_SetKey(HC128* ctx, const byte* key, const byte* iv) +{ +#ifdef XSTREAM_ALIGN + if ((word)key % 4) { + int alignKey[4]; + + /* iv gets aligned in SetIV */ + CYASSL_MSG("Hc128SetKey unaligned key"); + + XMEMCPY(alignKey, key, sizeof(alignKey)); + + return DoKey(ctx, (const byte*)alignKey, iv); + } +#endif /* XSTREAM_ALIGN */ + + return DoKey(ctx, key, iv); +} + + + +/* The following defines the encryption of data stream */ +static INLINE int DoProcess(HC128* ctx, byte* output, const byte* input, + word32 msglen) +{ + word32 i, keystream[16]; + + for ( ; msglen >= 64; msglen -= 64, input += 64, output += 64) + { + generate_keystream(ctx, keystream); + + /* unroll loop */ + ((word32*)output)[0] = ((word32*)input)[0] ^ LITTLE32(keystream[0]); + ((word32*)output)[1] = ((word32*)input)[1] ^ LITTLE32(keystream[1]); + ((word32*)output)[2] = ((word32*)input)[2] ^ LITTLE32(keystream[2]); + ((word32*)output)[3] = ((word32*)input)[3] ^ LITTLE32(keystream[3]); + ((word32*)output)[4] = ((word32*)input)[4] ^ LITTLE32(keystream[4]); + ((word32*)output)[5] = ((word32*)input)[5] ^ LITTLE32(keystream[5]); + ((word32*)output)[6] = ((word32*)input)[6] ^ LITTLE32(keystream[6]); + ((word32*)output)[7] = ((word32*)input)[7] ^ LITTLE32(keystream[7]); + ((word32*)output)[8] = ((word32*)input)[8] ^ LITTLE32(keystream[8]); + ((word32*)output)[9] = ((word32*)input)[9] ^ LITTLE32(keystream[9]); + ((word32*)output)[10] = ((word32*)input)[10] ^ LITTLE32(keystream[10]); + ((word32*)output)[11] = ((word32*)input)[11] ^ LITTLE32(keystream[11]); + ((word32*)output)[12] = ((word32*)input)[12] ^ LITTLE32(keystream[12]); + ((word32*)output)[13] = ((word32*)input)[13] ^ LITTLE32(keystream[13]); + ((word32*)output)[14] = ((word32*)input)[14] ^ LITTLE32(keystream[14]); + ((word32*)output)[15] = ((word32*)input)[15] ^ LITTLE32(keystream[15]); + } + + if (msglen > 0) + { + generate_keystream(ctx, keystream); + +#ifdef BIG_ENDIAN_ORDER + { + word32 wordsLeft = msglen / sizeof(word32); + if (msglen % sizeof(word32)) wordsLeft++; + + ByteReverseWords(keystream, keystream, wordsLeft * sizeof(word32)); + } +#endif + + for (i = 0; i < msglen; i++) + output[i] = input[i] ^ ((byte*)keystream)[i]; + } + + return 0; +} + + +/* Encrypt/decrypt a message of any size */ +int Hc128_Process(HC128* ctx, byte* output, const byte* input, word32 msglen) +{ +#ifdef XSTREAM_ALIGN + if ((word)input % 4 || (word)output % 4) { + #ifndef NO_CYASSL_ALLOC_ALIGN + byte* tmp; + CYASSL_MSG("Hc128Process unaligned"); + + tmp = (byte*)XMALLOC(msglen, NULL, DYNAMIC_TYPE_TMP_BUFFER); + if (tmp == NULL) return MEMORY_E; + + XMEMCPY(tmp, input, msglen); + DoProcess(ctx, tmp, tmp, msglen); + XMEMCPY(output, tmp, msglen); + + XFREE(tmp, NULL, DYNAMIC_TYPE_TMP_BUFFER); + + return 0; + #else + return BAD_ALIGN_E; + #endif + } +#endif /* XSTREAM_ALIGN */ + + return DoProcess(ctx, output, input, msglen); +} + + +#else /* HAVE_HC128 */ + + +#ifdef _MSC_VER + /* 4206 warning for blank file */ + #pragma warning(disable: 4206) +#endif + + +#endif /* HAVE_HC128 */