SSL/TLS Library
CyaSSL is SSL/TLS library for embedded systems.
ctaocrypt/src/hc128.c
- Committer:
- wolfSSL
- Date:
- 2014-04-20
- Revision:
- 0:9d17e4342598
File content as of revision 0:9d17e4342598:
/* hc128.c * * Copyright (C) 2006-2013 wolfSSL Inc. * * This file is part of CyaSSL. * * CyaSSL is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * CyaSSL is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <cyassl/ctaocrypt/settings.h> #ifdef HAVE_HC128 #include <cyassl/ctaocrypt/hc128.h> #include <cyassl/ctaocrypt/error-crypt.h> #include <cyassl/ctaocrypt/logging.h> #ifdef NO_INLINE #include <cyassl/ctaocrypt/hc128.h> #include <cyassl/ctaocrypt/misc.h> #else #include <ctaocrypt/src/misc.c> #endif #ifdef BIG_ENDIAN_ORDER #define LITTLE32(x) ByteReverseWord32(x) #else #define LITTLE32(x) (x) #endif /*h1 function*/ #define h1(ctx, x, y) { \ byte a,c; \ a = (byte) (x); \ c = (byte) ((x) >> 16); \ y = (ctx->T[512+a])+(ctx->T[512+256+c]); \ } /*h2 function*/ #define h2(ctx, x, y) { \ byte a,c; \ a = (byte) (x); \ c = (byte) ((x) >> 16); \ y = (ctx->T[a])+(ctx->T[256+c]); \ } /*one step of HC-128, update P and generate 32 bits keystream*/ #define step_P(ctx,u,v,a,b,c,d,n){ \ word32 tem0,tem1,tem2,tem3; \ h1((ctx),(ctx->X[(d)]),tem3); \ tem0 = rotrFixed((ctx->T[(v)]),23); \ tem1 = rotrFixed((ctx->X[(c)]),10); \ tem2 = rotrFixed((ctx->X[(b)]),8); \ (ctx->T[(u)]) += tem2+(tem0 ^ tem1); \ (ctx->X[(a)]) = (ctx->T[(u)]); \ (n) = tem3 ^ (ctx->T[(u)]) ; \ } /*one step of HC-128, update Q and generate 32 bits keystream*/ #define step_Q(ctx,u,v,a,b,c,d,n){ \ word32 tem0,tem1,tem2,tem3; \ h2((ctx),(ctx->Y[(d)]),tem3); \ tem0 = rotrFixed((ctx->T[(v)]),(32-23)); \ tem1 = rotrFixed((ctx->Y[(c)]),(32-10)); \ tem2 = rotrFixed((ctx->Y[(b)]),(32-8)); \ (ctx->T[(u)]) += tem2 + (tem0 ^ tem1); \ (ctx->Y[(a)]) = (ctx->T[(u)]); \ (n) = tem3 ^ (ctx->T[(u)]) ; \ } /*16 steps of HC-128, generate 512 bits keystream*/ static void generate_keystream(HC128* ctx, word32* keystream) { word32 cc,dd; cc = ctx->counter1024 & 0x1ff; dd = (cc+16)&0x1ff; if (ctx->counter1024 < 512) { ctx->counter1024 = (ctx->counter1024 + 16) & 0x3ff; step_P(ctx, cc+0, cc+1, 0, 6, 13,4, keystream[0]); step_P(ctx, cc+1, cc+2, 1, 7, 14,5, keystream[1]); step_P(ctx, cc+2, cc+3, 2, 8, 15,6, keystream[2]); step_P(ctx, cc+3, cc+4, 3, 9, 0, 7, keystream[3]); step_P(ctx, cc+4, cc+5, 4, 10,1, 8, keystream[4]); step_P(ctx, cc+5, cc+6, 5, 11,2, 9, keystream[5]); step_P(ctx, cc+6, cc+7, 6, 12,3, 10,keystream[6]); step_P(ctx, cc+7, cc+8, 7, 13,4, 11,keystream[7]); step_P(ctx, cc+8, cc+9, 8, 14,5, 12,keystream[8]); step_P(ctx, cc+9, cc+10,9, 15,6, 13,keystream[9]); step_P(ctx, cc+10,cc+11,10,0, 7, 14,keystream[10]); step_P(ctx, cc+11,cc+12,11,1, 8, 15,keystream[11]); step_P(ctx, cc+12,cc+13,12,2, 9, 0, keystream[12]); step_P(ctx, cc+13,cc+14,13,3, 10,1, keystream[13]); step_P(ctx, cc+14,cc+15,14,4, 11,2, keystream[14]); step_P(ctx, cc+15,dd+0, 15,5, 12,3, keystream[15]); } else { ctx->counter1024 = (ctx->counter1024 + 16) & 0x3ff; step_Q(ctx, 512+cc+0, 512+cc+1, 0, 6, 13,4, keystream[0]); step_Q(ctx, 512+cc+1, 512+cc+2, 1, 7, 14,5, keystream[1]); step_Q(ctx, 512+cc+2, 512+cc+3, 2, 8, 15,6, keystream[2]); step_Q(ctx, 512+cc+3, 512+cc+4, 3, 9, 0, 7, keystream[3]); step_Q(ctx, 512+cc+4, 512+cc+5, 4, 10,1, 8, keystream[4]); step_Q(ctx, 512+cc+5, 512+cc+6, 5, 11,2, 9, keystream[5]); step_Q(ctx, 512+cc+6, 512+cc+7, 6, 12,3, 10,keystream[6]); step_Q(ctx, 512+cc+7, 512+cc+8, 7, 13,4, 11,keystream[7]); step_Q(ctx, 512+cc+8, 512+cc+9, 8, 14,5, 12,keystream[8]); step_Q(ctx, 512+cc+9, 512+cc+10,9, 15,6, 13,keystream[9]); step_Q(ctx, 512+cc+10,512+cc+11,10,0, 7, 14,keystream[10]); step_Q(ctx, 512+cc+11,512+cc+12,11,1, 8, 15,keystream[11]); step_Q(ctx, 512+cc+12,512+cc+13,12,2, 9, 0, keystream[12]); step_Q(ctx, 512+cc+13,512+cc+14,13,3, 10,1, keystream[13]); step_Q(ctx, 512+cc+14,512+cc+15,14,4, 11,2, keystream[14]); step_Q(ctx, 512+cc+15,512+dd+0, 15,5, 12,3, keystream[15]); } } /* The following defines the initialization functions */ #define f1(x) (rotrFixed((x),7) ^ rotrFixed((x),18) ^ ((x) >> 3)) #define f2(x) (rotrFixed((x),17) ^ rotrFixed((x),19) ^ ((x) >> 10)) /*update table P*/ #define update_P(ctx,u,v,a,b,c,d){ \ word32 tem0,tem1,tem2,tem3; \ tem0 = rotrFixed((ctx->T[(v)]),23); \ tem1 = rotrFixed((ctx->X[(c)]),10); \ tem2 = rotrFixed((ctx->X[(b)]),8); \ h1((ctx),(ctx->X[(d)]),tem3); \ (ctx->T[(u)]) = ((ctx->T[(u)]) + tem2+(tem0^tem1)) ^ tem3; \ (ctx->X[(a)]) = (ctx->T[(u)]); \ } /*update table Q*/ #define update_Q(ctx,u,v,a,b,c,d){ \ word32 tem0,tem1,tem2,tem3; \ tem0 = rotrFixed((ctx->T[(v)]),(32-23)); \ tem1 = rotrFixed((ctx->Y[(c)]),(32-10)); \ tem2 = rotrFixed((ctx->Y[(b)]),(32-8)); \ h2((ctx),(ctx->Y[(d)]),tem3); \ (ctx->T[(u)]) = ((ctx->T[(u)]) + tem2+(tem0^tem1)) ^ tem3; \ (ctx->Y[(a)]) = (ctx->T[(u)]); \ } /*16 steps of HC-128, without generating keystream, */ /*but use the outputs to update P and Q*/ static void setup_update(HC128* ctx) /*each time 16 steps*/ { word32 cc,dd; cc = ctx->counter1024 & 0x1ff; dd = (cc+16)&0x1ff; if (ctx->counter1024 < 512) { ctx->counter1024 = (ctx->counter1024 + 16) & 0x3ff; update_P(ctx, cc+0, cc+1, 0, 6, 13, 4); update_P(ctx, cc+1, cc+2, 1, 7, 14, 5); update_P(ctx, cc+2, cc+3, 2, 8, 15, 6); update_P(ctx, cc+3, cc+4, 3, 9, 0, 7); update_P(ctx, cc+4, cc+5, 4, 10,1, 8); update_P(ctx, cc+5, cc+6, 5, 11,2, 9); update_P(ctx, cc+6, cc+7, 6, 12,3, 10); update_P(ctx, cc+7, cc+8, 7, 13,4, 11); update_P(ctx, cc+8, cc+9, 8, 14,5, 12); update_P(ctx, cc+9, cc+10,9, 15,6, 13); update_P(ctx, cc+10,cc+11,10,0, 7, 14); update_P(ctx, cc+11,cc+12,11,1, 8, 15); update_P(ctx, cc+12,cc+13,12,2, 9, 0); update_P(ctx, cc+13,cc+14,13,3, 10, 1); update_P(ctx, cc+14,cc+15,14,4, 11, 2); update_P(ctx, cc+15,dd+0, 15,5, 12, 3); } else { ctx->counter1024 = (ctx->counter1024 + 16) & 0x3ff; update_Q(ctx, 512+cc+0, 512+cc+1, 0, 6, 13, 4); update_Q(ctx, 512+cc+1, 512+cc+2, 1, 7, 14, 5); update_Q(ctx, 512+cc+2, 512+cc+3, 2, 8, 15, 6); update_Q(ctx, 512+cc+3, 512+cc+4, 3, 9, 0, 7); update_Q(ctx, 512+cc+4, 512+cc+5, 4, 10,1, 8); update_Q(ctx, 512+cc+5, 512+cc+6, 5, 11,2, 9); update_Q(ctx, 512+cc+6, 512+cc+7, 6, 12,3, 10); update_Q(ctx, 512+cc+7, 512+cc+8, 7, 13,4, 11); update_Q(ctx, 512+cc+8, 512+cc+9, 8, 14,5, 12); update_Q(ctx, 512+cc+9, 512+cc+10,9, 15,6, 13); update_Q(ctx, 512+cc+10,512+cc+11,10,0, 7, 14); update_Q(ctx, 512+cc+11,512+cc+12,11,1, 8, 15); update_Q(ctx, 512+cc+12,512+cc+13,12,2, 9, 0); update_Q(ctx, 512+cc+13,512+cc+14,13,3, 10, 1); update_Q(ctx, 512+cc+14,512+cc+15,14,4, 11, 2); update_Q(ctx, 512+cc+15,512+dd+0, 15,5, 12, 3); } } /* for the 128-bit key: key[0]...key[15] * key[0] is the least significant byte of ctx->key[0] (K_0); * key[3] is the most significant byte of ctx->key[0] (K_0); * ... * key[12] is the least significant byte of ctx->key[3] (K_3) * key[15] is the most significant byte of ctx->key[3] (K_3) * * for the 128-bit iv: iv[0]...iv[15] * iv[0] is the least significant byte of ctx->iv[0] (IV_0); * iv[3] is the most significant byte of ctx->iv[0] (IV_0); * ... * iv[12] is the least significant byte of ctx->iv[3] (IV_3) * iv[15] is the most significant byte of ctx->iv[3] (IV_3) */ static void Hc128_SetIV(HC128* ctx, const byte* inIv) { word32 i; word32 iv[4]; if (inIv) XMEMCPY(iv, inIv, sizeof(iv)); else XMEMSET(iv, 0, sizeof(iv)); for (i = 0; i < (128 >> 5); i++) ctx->iv[i] = LITTLE32(iv[i]); for (; i < 8; i++) ctx->iv[i] = ctx->iv[i-4]; /* expand the key and IV into the table T */ /* (expand the key and IV into the table P and Q) */ for (i = 0; i < 8; i++) ctx->T[i] = ctx->key[i]; for (i = 8; i < 16; i++) ctx->T[i] = ctx->iv[i-8]; for (i = 16; i < (256+16); i++) ctx->T[i] = f2(ctx->T[i-2]) + ctx->T[i-7] + f1(ctx->T[i-15]) + ctx->T[i-16]+i; for (i = 0; i < 16; i++) ctx->T[i] = ctx->T[256+i]; for (i = 16; i < 1024; i++) ctx->T[i] = f2(ctx->T[i-2]) + ctx->T[i-7] + f1(ctx->T[i-15]) + ctx->T[i-16]+256+i; /* initialize counter1024, X and Y */ ctx->counter1024 = 0; for (i = 0; i < 16; i++) ctx->X[i] = ctx->T[512-16+i]; for (i = 0; i < 16; i++) ctx->Y[i] = ctx->T[512+512-16+i]; /* run the cipher 1024 steps before generating the output */ for (i = 0; i < 64; i++) setup_update(ctx); } static INLINE int DoKey(HC128* ctx, const byte* key, const byte* iv) { word32 i; /* Key size in bits 128 */ for (i = 0; i < (128 >> 5); i++) ctx->key[i] = LITTLE32(((word32*)key)[i]); for ( ; i < 8 ; i++) ctx->key[i] = ctx->key[i-4]; Hc128_SetIV(ctx, iv); return 0; } /* Key setup */ int Hc128_SetKey(HC128* ctx, const byte* key, const byte* iv) { #ifdef XSTREAM_ALIGN if ((word)key % 4) { int alignKey[4]; /* iv gets aligned in SetIV */ CYASSL_MSG("Hc128SetKey unaligned key"); XMEMCPY(alignKey, key, sizeof(alignKey)); return DoKey(ctx, (const byte*)alignKey, iv); } #endif /* XSTREAM_ALIGN */ return DoKey(ctx, key, iv); } /* The following defines the encryption of data stream */ static INLINE int DoProcess(HC128* ctx, byte* output, const byte* input, word32 msglen) { word32 i, keystream[16]; for ( ; msglen >= 64; msglen -= 64, input += 64, output += 64) { generate_keystream(ctx, keystream); /* unroll loop */ ((word32*)output)[0] = ((word32*)input)[0] ^ LITTLE32(keystream[0]); ((word32*)output)[1] = ((word32*)input)[1] ^ LITTLE32(keystream[1]); ((word32*)output)[2] = ((word32*)input)[2] ^ LITTLE32(keystream[2]); ((word32*)output)[3] = ((word32*)input)[3] ^ LITTLE32(keystream[3]); ((word32*)output)[4] = ((word32*)input)[4] ^ LITTLE32(keystream[4]); ((word32*)output)[5] = ((word32*)input)[5] ^ LITTLE32(keystream[5]); ((word32*)output)[6] = ((word32*)input)[6] ^ LITTLE32(keystream[6]); ((word32*)output)[7] = ((word32*)input)[7] ^ LITTLE32(keystream[7]); ((word32*)output)[8] = ((word32*)input)[8] ^ LITTLE32(keystream[8]); ((word32*)output)[9] = ((word32*)input)[9] ^ LITTLE32(keystream[9]); ((word32*)output)[10] = ((word32*)input)[10] ^ LITTLE32(keystream[10]); ((word32*)output)[11] = ((word32*)input)[11] ^ LITTLE32(keystream[11]); ((word32*)output)[12] = ((word32*)input)[12] ^ LITTLE32(keystream[12]); ((word32*)output)[13] = ((word32*)input)[13] ^ LITTLE32(keystream[13]); ((word32*)output)[14] = ((word32*)input)[14] ^ LITTLE32(keystream[14]); ((word32*)output)[15] = ((word32*)input)[15] ^ LITTLE32(keystream[15]); } if (msglen > 0) { generate_keystream(ctx, keystream); #ifdef BIG_ENDIAN_ORDER { word32 wordsLeft = msglen / sizeof(word32); if (msglen % sizeof(word32)) wordsLeft++; ByteReverseWords(keystream, keystream, wordsLeft * sizeof(word32)); } #endif for (i = 0; i < msglen; i++) output[i] = input[i] ^ ((byte*)keystream)[i]; } return 0; } /* Encrypt/decrypt a message of any size */ int Hc128_Process(HC128* ctx, byte* output, const byte* input, word32 msglen) { #ifdef XSTREAM_ALIGN if ((word)input % 4 || (word)output % 4) { #ifndef NO_CYASSL_ALLOC_ALIGN byte* tmp; CYASSL_MSG("Hc128Process unaligned"); tmp = (byte*)XMALLOC(msglen, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (tmp == NULL) return MEMORY_E; XMEMCPY(tmp, input, msglen); DoProcess(ctx, tmp, tmp, msglen); XMEMCPY(output, tmp, msglen); XFREE(tmp, NULL, DYNAMIC_TYPE_TMP_BUFFER); return 0; #else return BAD_ALIGN_E; #endif } #endif /* XSTREAM_ALIGN */ return DoProcess(ctx, output, input, msglen); } #else /* HAVE_HC128 */ #ifdef _MSC_VER /* 4206 warning for blank file */ #pragma warning(disable: 4206) #endif #endif /* HAVE_HC128 */