Test program running on MAX32625MBED. Control through USB Serial commands using a terminal emulator such as teraterm or putty.
Dependencies: MaximTinyTester CmdLine MAX541 USBDevice
MAX11043/MAX11043.cpp
- Committer:
- whismanoid
- Date:
- 2020-03-02
- Revision:
- 91:9e78c6194d6e
- Parent:
- 90:d6ed8a8c5f26
- Child:
- 93:6b22269935a6
File content as of revision 91:9e78c6194d6e:
// /******************************************************************************* // * Copyright (C) 2020 Maxim Integrated Products, Inc., All Rights Reserved. // * // * Permission is hereby granted, free of charge, to any person obtaining a // * copy of this software and associated documentation files (the "Software"), // * to deal in the Software without restriction, including without limitation // * the rights to use, copy, modify, merge, publish, distribute, sublicense, // * and/or sell copies of the Software, and to permit persons to whom the // * Software is furnished to do so, subject to the following conditions: // * // * The above copyright notice and this permission notice shall be included // * in all copies or substantial portions of the Software. // * // * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. // * IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES // * OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, // * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR // * OTHER DEALINGS IN THE SOFTWARE. // * // * Except as contained in this notice, the name of Maxim Integrated // * Products, Inc. shall not be used except as stated in the Maxim Integrated // * Products, Inc. Branding Policy. // * // * The mere transfer of this software does not imply any licenses // * of trade secrets, proprietary technology, copyrights, patents, // * trademarks, maskwork rights, or any other form of intellectual // * property whatsoever. Maxim Integrated Products, Inc. retains all // * ownership rights. // ******************************************************************************* // */ // ********************************************************************* // @file MAX11043.cpp // ********************************************************************* // Device Driver file // DO NOT EDIT; except areas designated "CUSTOMIZE". Automatically generated file. * MANUAL EDITS PRESENT * // generated by XMLSystemOfDevicesToMBED.py // System Name = ExampleSystem // System Description = Device driver example #include "MAX11043.h" //-------------------------------------------------- // MAX11043 ADC Read operations must be synchronized to EOC End Of Conversion // EOC# asserts low when new data is available. // Initiate a data read prior to the next rising edge of EOC# or the result is overwritten. #ifndef MAX11043_EOC_INTERRUPT_POLLING #define MAX11043_EOC_INTERRUPT_POLLING 1 #endif // MAX11043_EOC_INTERRUPT_POLLING //-------------------------------------------------- // SPI is not interrupt-safe, so use EventQueue to defer execution to user context. #ifndef MAX11043_EOC_INTERRUPT_EVENTQUEUE #define MAX11043_EOC_INTERRUPT_EVENTQUEUE 0 #endif // MAX11043_EOC_INTERRUPT_EVENTQUEUE #if MAX11043_EOC_INTERRUPT_EVENTQUEUE #else // MAX11043_EOC_INTERRUPT_EVENTQUEUE #endif // MAX11043_EOC_INTERRUPT_EVENTQUEUE #if MAX11043_EOC_INTERRUPT_EVENTQUEUE // SPI is not interrupt-safe, so use EventQueue to defer execution to user context. #include "mbed_events.h" #define MYONEOCTHREADEVENTFLAG_ENABLE_SPI (1UL << 0) EventFlags myOnEOCThread_event_flags; Thread myOnEOCThread; #if MAX11043_EOC_INTERRUPT_POLLING // MAX11043 myOnEOCThread_POLLING_handler needs 18.80us, still too slow extern DigitalInOut digitalInOut2; // m_EOC_pin declared in Test_Main_MAX11043.cpp extern void myOnEOCThread_POLLING_handler(); #else // MAX11043_EOC_INTERRUPT_POLLING extern void myOnEOCThread_EVENTFLAG_ENABLE_SPI_handler(); #endif // MAX11043_EOC_INTERRUPT_POLLING #else // MAX11043_EOC_INTERRUPT_EVENTQUEUE #endif // MAX11043_EOC_INTERRUPT_EVENTQUEUE //-------------------------------------------------- // Diagnostic: Use MAX32625MBED pin D5 as DigitalOut EOC#-detected #ifndef MAX11043_ScopeTrigger_MAX32625MBED_D5 #define MAX11043_ScopeTrigger_MAX32625MBED_D5 1 #endif // MAX11043_ScopeTrigger_MAX32625MBED_D5 #if MAX11043_ScopeTrigger_MAX32625MBED_D5 // Diagnostic: Use MAX32625MBED pin D5 as DigitalOut EOC#-detected // WIP MAX11043 interrupt EOC echo - moving DigitalOut ScopeTrigger to global scope, it compiles but there is no activity on scope extern DigitalInOut digitalInOut5; // declared in Test_Main_MAX11043.cpp (D5, PIN_INPUT, PullUp, 1) const size_t byteCount_onEOCFallingEdge = 1 + (2 * 4); const uint8_t mosiData_onEOCFallingEdge[9] = { MAX11043::CMD_0001_1010_d16o8_d16o8_d16o8_d16o8_Rd06_ADCabcd, 0, 0, 0, 0, 0, 0, 0, 0 }; uint8_t misoData_onEOCFallingEdge[9]; #endif // MAX11043_ScopeTrigger_MAX32625MBED_D5 // Device Name = MAX11043 // Device Description = 200ksps, Low-Power, Serial SPI 24-Bit, 4-Channel, Differential/Single-Ended Input, Simultaneous-Sampling SD ADC // Device DeviceBriefDescription = 24-bit 200ksps Delta-Sigma ADC // Device Manufacturer = Maxim Integrated // Device PartNumber = MAX11043ATL+ // Device RegValue_Width = DataWidth16bit_HL // // ADC MaxOutputDataRate = 200ksps // ADC NumChannels = 4 // ADC ResolutionBits = 24 // // SPI CS = ActiveLow // SPI FrameStart = CS // SPI CPOL = 0 // SPI CPHA = 0 // SPI MOSI and MISO Data are both stable on Rising edge of SCLK // SPI SCLK Idle Low // SPI SCLKMaxMHz = 40 // SPI SCLKMinMHz = 0 // // InputPin Name = CONVRUN // InputPin Description = CONVRUN (digital input). Convert Run. Drive high to start continuous conversions on all 4 channels. The device is idle when // CONVRUN is low. // InputPin Function = Configuration // // InputPin Name = SHDN // InputPin Description = Shutdown (digital input). Active-High Shutdown Input. Drive high to shut down the MAX11043. // InputPin Function = Configuration // // InputPin Name = DACSTEP // InputPin Description = DACSTEP (digital input). DAC Step Input. Drive high to move the DAC output in the direction of UP/DWN on the next rising // edge of the system clock. // InputPin Function = Configuration // // InputPin Name = UP/DWN# // InputPin Description = UP/DWN# (digital input). DAC Step Direction Select. Drive high to step up, drive low to step down when DACSTEP is toggled. // InputPin Function = Configuration // // OutputPin Name = EOC // OutputPin Description = End of Conversion Output. Active-Low End-of-Conversion Indicator. EOC asserts low to indicate that new data is ready. // OutputPin Function = Event // // SupplyPin Name = AVDD // SupplyPin Description = Analog Power-Supply Input. Bypass each AVDD with a nominal 1uF capacitor to AGND. // SupplyPin VinMax = 3.60 // SupplyPin VinMin = 3.00 // SupplyPin Function = Analog // // SupplyPin Name = AGND // SupplyPin Description = Analog Ground. Connect all AGND inputs together. // SupplyPin VinMax = 0 // SupplyPin VinMin = 0 // SupplyPin Function = Analog // // SupplyPin Name = DGND // SupplyPin Description = Digital Ground. Connect all DGND inputs together. // SupplyPin VinMax = 0 // SupplyPin VinMin = 0 // SupplyPin Function = Digital // // SupplyPin Name = DVDD // SupplyPin Description = Digital Power-Supply Input. Bypass each DVDD with a nominal 1uF capacitor to DGND. // SupplyPin VinMax = 3.60 // SupplyPin VinMin = 3.00 // SupplyPin Function = Digital // // SupplyPin Name = DVREG // SupplyPin Description = Regulated Digital Core Supply (from internal +2.5V regulator). Bypass DVREG to DGND with a 10uF capacitor. // SupplyPin VinMax = 2.50 // SupplyPin VinMin = 2.50 // SupplyPin Function = Digital // // CODE GENERATOR: class constructor definition MAX11043::MAX11043(SPI &spi, DigitalOut &cs_pin, // SPI interface // CODE GENERATOR: class constructor definition gpio InputPin pins DigitalOut &CONVRUN_pin, // Digital Configuration Input to MAX11043 device DigitalOut &SHDN_pin, // Digital Configuration Input to MAX11043 device DigitalOut &DACSTEP_pin, // Digital Configuration Input to MAX11043 device DigitalOut &UP_slash_DWNb_pin, // Digital Configuration Input to MAX11043 device // CODE GENERATOR: class constructor definition gpio OutputPin pins // MAX11043 ADC Read operations must be synchronized to EOC End Of Conversion #if MAX11043_EOC_INTERRUPT_POLLING // MAX11043 EOC End Of Conversion input should be InterruptIn(PinName:EOC_pin).fall(onEOCFallingEdge); // Workaround using DigitalIn(PinName:EOC_pin) polled to sync with EOC falling edge for ADC reads // TODO: onEOCFallingEdge: replace DigitalIn &EOC_pin with PinName EOC_pin, so that I can create an InterruptIn(PinName:EOC_pin) DigitalIn &EOC_pin, // Digital Event Output from MAX11043 device #else // MAX11043_EOC_INTERRUPT_POLLING // MAX11043 EOC End Of Conversion input is InterruptIn(PinName:EOC_pin).fall(onEOCFallingEdge); // TODO: onEOCFallingEdge: replace DigitalIn &EOC_pin with PinName EOC_pin, so that I can create an InterruptIn(PinName:EOC_pin) InterruptIn &EOC_pin, // Digital Event Output from MAX11043 device #endif // MAX11043_EOC_INTERRUPT_POLLING // CODE GENERATOR: class constructor definition ic_variant MAX11043_ic_t ic_variant) // CODE GENERATOR: class constructor initializer list : m_spi(spi), m_cs_pin(cs_pin), // SPI interface // CODE GENERATOR: class constructor initializer list gpio InputPin pins m_CONVRUN_pin(CONVRUN_pin), // Digital Configuration Input to MAX11043 device m_SHDN_pin(SHDN_pin), // Digital Configuration Input to MAX11043 device m_DACSTEP_pin(DACSTEP_pin), // Digital Configuration Input to MAX11043 device m_UP_slash_DWNb_pin(UP_slash_DWNb_pin), // Digital Configuration Input to MAX11043 device // CODE GENERATOR: class constructor initializer list gpio OutputPin pins // MAX11043 ADC Read operations must be synchronized to EOC End Of Conversion #if MAX11043_EOC_INTERRUPT_POLLING // MAX11043 EOC End Of Conversion input should be InterruptIn(PinName:EOC_pin).fall(onEOCFallingEdge); // Workaround using DigitalIn(PinName:EOC_pin) polled to sync with EOC falling edge for ADC reads m_EOC_pin(EOC_pin), // Digital Event Output from MAX11043 device #else // MAX11043_EOC_INTERRUPT_POLLING // MAX11043 EOC End Of Conversion input is InterruptIn(PinName:EOC_pin).fall(onEOCFallingEdge); m_EOC_pin(EOC_pin), // Digital Event Output from MAX11043 device #endif // MAX11043_EOC_INTERRUPT_POLLING // CODE GENERATOR: class constructor initializer list ic_variant m_ic_variant(ic_variant) { // CODE GENERATOR: class constructor definition SPI interface initialization // // SPI CS = ActiveLow // SPI FrameStart = CS m_SPI_cs_state = 1; if (m_cs_pin.is_connected()) { // avoid mbed runtime error if pin is NC not connected m_cs_pin = m_SPI_cs_state; } // SPI CPOL = 0 // SPI CPHA = 0 // SPI MOSI and MISO Data are both stable on Rising edge of SCLK // SPI SCLK Idle Low m_SPI_dataMode = 0; //SPI_MODE0; // CPOL=0,CPHA=0: Rising Edge stable; SCLK idle Low m_spi.format(8,m_SPI_dataMode); // int bits_must_be_8, int mode=0_3 CPOL=0,CPHA=0 // SPI SCLKMaxMHz = 40 // SPI SCLKMinMHz = 0 //#define SPI_SCLK_Hz 48000000 // 48MHz //#define SPI_SCLK_Hz 24000000 // 24MHz //#define SPI_SCLK_Hz 12000000 // 12MHz //#define SPI_SCLK_Hz 6000000 // 6MHz //#define SPI_SCLK_Hz 4000000 // 4MHz //#define SPI_SCLK_Hz 2000000 // 2MHz //#define SPI_SCLK_Hz 1000000 // 1MHz m_SPI_SCLK_Hz = 24000000; // platform limit 24MHz; MAX11043 limit is 40MHz m_spi.frequency(m_SPI_SCLK_Hz); // // CODE GENERATOR: class constructor definition gpio InputPin (Input to device) initialization // // CONVRUN Configuration Input to MAX11043 device m_CONVRUN_pin = 1; // output logic high -- initial value in constructor // // SHDN Configuration Input to MAX11043 device m_SHDN_pin = 1; // output logic high -- initial value in constructor // // DACSTEP Configuration Input to MAX11043 device m_DACSTEP_pin = 1; // output logic high -- initial value in constructor // // UP_slash_DWNb Configuration Input to MAX11043 device m_UP_slash_DWNb_pin = 1; // output logic high -- initial value in constructor // // CODE GENERATOR: class constructor definition gpio OutputPin (Output from MAX11043 device) initialization // // EOC Event Output from device // MAX11043 ADC Read operations must be synchronized to EOC End Of Conversion #if MAX11043_ScopeTrigger_MAX32625MBED_D5 digitalInOut5.output(); // ScopeTrigger #endif // MAX11043_ScopeTrigger_MAX32625MBED_D5 #if MAX11043_EOC_INTERRUPT_EVENTQUEUE // SPI is not interrupt-safe, so use EventQueue to defer execution to user context. #if MAX11043_EOC_INTERRUPT_POLLING myOnEOCThread.start(myOnEOCThread_POLLING_handler); #else // MAX11043_EOC_INTERRUPT_POLLING myOnEOCThread.start(myOnEOCThread_EVENTFLAG_ENABLE_SPI_handler); #endif // MAX11043_EOC_INTERRUPT_POLLING #else // MAX11043_EOC_INTERRUPT_EVENTQUEUE #endif // MAX11043_EOC_INTERRUPT_EVENTQUEUE // MAX11043 ADC Read operations must be synchronized to EOC End Of Conversion #if MAX11043_EOC_INTERRUPT_POLLING // MAX11043 EOC End Of Conversion input should be InterruptIn(PinName:EOC_pin).fall(onEOCFallingEdge); // Workaround using DigitalIn(PinName:EOC_pin) polled to sync with EOC falling edge for ADC reads #else // MAX11043_EOC_INTERRUPT_POLLING // MAX11043 EOC End Of Conversion input is InterruptIn(PinName:EOC_pin).fall(onEOCFallingEdge); // TODO: onEOCFallingEdge: interrupt handler requires global object extern MAX11043 g_MAX11043_device // InterruptIn interruptEOC(EOC_pin); // InterruptIn constructor requires PinName, not DigitalIn -- Error: No instance of constructor "mbed::InterruptIn::InterruptIn" matches the argument list in "MAX11043/MAX11043.cpp", Line: 187, Col: 31 // TODO: onEOCFallingEdge: replace DigitalIn &EOC_pin with PinName EOC_pin, so that I can create an InterruptIn(PinName:EOC_pin) extern void onEOCFallingEdge(void); // interruptEOC.fall(&onEOCFallingEdge); EOC_pin.fall(&onEOCFallingEdge); #endif // MAX11043_EOC_INTERRUPT_POLLING } // MAX11043 ADC Read operations must be synchronized to EOC End Of Conversion // SPI is not interrupt-safe, so use EventQueue to defer execution to user context. #if MAX11043_EOC_INTERRUPT_EVENTQUEUE #if MAX11043_EOC_INTERRUPT_POLLING void myOnEOCThread_POLLING_handler() { while (true) { // MAX11043 EOC End Of Conversion input should be InterruptIn(PinName:EOC_pin).fall(onEOCFallingEdge); // Workaround using DigitalIn(PinName:EOC_pin) polled to sync with EOC falling edge for ADC reads // poll m_EOC_pin if CONVRUN is high //if (m_CONVRUN_pin) //{ //#warning "myOnEOCThread_handler() Potential infinite loop if EOC pin not connected" // possible infinite loop; need a timeout or futility countdown to escape #if MAX11043_ScopeTrigger_MAX32625MBED_D5 // Diagnostic: Use MAX32625MBED pin D5 as DigitalOut EOC#-detected //~ digitalInOut5.write(0); // ScopeTrigger low -- waiting for EOC# high //~ digitalInOut5.write(1); // ScopeTrigger //~ digitalInOut5.write(0); // ScopeTrigger //~ digitalInOut5.write(1); // ScopeTrigger #endif // MAX11043_ScopeTrigger_MAX32625MBED_D5 //for (int futility_countdown = 100; // ((futility_countdown > 0) && // (m_EOC_pin != 1)); // futility_countdown--) //while (digitalInOut2.read() != 1) // digitalInOut2 m_EOC_pin //{ // // spinlock waiting for logic high pin state (start of new conversion) //} #if MAX11043_ScopeTrigger_MAX32625MBED_D5 // Diagnostic: Use MAX32625MBED pin D5 as DigitalOut EOC#-detected //~ digitalInOut5.write(0); // ScopeTrigger //~ digitalInOut5.write(1); // ScopeTrigger high -- waiting for EOC# falling edge //~ digitalInOut5.write(0); // ScopeTrigger //~ digitalInOut5.write(1); // ScopeTrigger #endif // MAX11043_ScopeTrigger_MAX32625MBED_D5 //for (int futility_countdown = 100; // ((futility_countdown > 0) && // (m_EOC_pin != 0)); // futility_countdown--) while (digitalInOut2.read() != 0) // digitalInOut2 m_EOC_pin { // spinlock waiting for logic low pin state (new data is available) } //} //else //{ // // CONVRUN pin is being driven low, so conversion result will not change, EOC# remains high // continue; //} // //extern MAX11043 g_MAX11043_device; #if MAX11043_ScopeTrigger_MAX32625MBED_D5 // Diagnostic: Use MAX32625MBED pin D5 as DigitalOut EOC#-detected //~ digitalInOut5.write(0); // ScopeTrigger low -- EOC# falling edge detected, about to start SPI //~ digitalInOut5.write(1); // ScopeTrigger //~ digitalInOut5.write(0); // ScopeTrigger //~ digitalInOut5.write(1); // ScopeTrigger #endif // MAX11043_ScopeTrigger_MAX32625MBED_D5 extern SPI spi; // declared in Test_Main_MAX11043.cpp spi.write((char*)mosiData_onEOCFallingEdge, byteCount_onEOCFallingEdge, (char*)misoData_onEOCFallingEdge, byteCount_onEOCFallingEdge); // Note: EOC# is high immediately after SPI read ADCabcd // SPI timing: CS low 13.30us after EOC# falling edge // SPI timing: SCLK first 14.60us after EOC# falling edge // SPI timing: SCLK last 17.70us after EOC# falling edge // SPI timing: CS high 17.70us after EOC# falling edge // // TODO1: update adca //g_MAX11043_device.adca = (misoData_onEOCFallingEdge[1] << 8) | misoData_onEOCFallingEdge[2]; // TODO1: update adcb //g_MAX11043_device.adcb = (misoData_onEOCFallingEdge[3] << 8) | misoData_onEOCFallingEdge[4]; // TODO1: update adcc //g_MAX11043_device.adcc = (misoData_onEOCFallingEdge[5] << 8) | misoData_onEOCFallingEdge[6]; // TODO1: update adcd //g_MAX11043_device.adcd = (misoData_onEOCFallingEdge[7] << 8) | misoData_onEOCFallingEdge[8]; #if MAX11043_ScopeTrigger_MAX32625MBED_D5 // Diagnostic: Use MAX32625MBED pin D5 as DigitalOut EOC#-detected //~ digitalInOut5.write(0); // ScopeTrigger //~ digitalInOut5.write(1); // ScopeTrigger high -- end of while loop //~ digitalInOut5.write(0); // ScopeTrigger //~ digitalInOut5.write(1); // ScopeTrigger #endif // MAX11043_ScopeTrigger_MAX32625MBED_D5 } // while (true) } // myOnEOCThread_POLLING_handler() #else // MAX11043_EOC_INTERRUPT_POLLING // Waiting for EOC# fall to signal EventQueue is too slow, ~25us to handle event but events happen every 9us. void myOnEOCThread_EVENTFLAG_ENABLE_SPI_handler() { while (true) { // MAX11043 EOC End Of Conversion input is InterruptIn(PinName:EOC_pin).fall(onEOCFallingEdge); // Interrupt Handler: EOC Event Output from device // Wait for MYONEOCTHREADEVENTFLAG_ENABLE_SPI event sent from onEOCFallingEdge interrupt //signal_wait(int32_t signals, uint32_t millisec=osWaitForever) //flags_read = myOnEOCThread_event_flags.wait_any(MYONEOCTHREADEVENTFLAG_ENABLE_SPI); // myOnEOCThread_event_flags.wait_any(MYONEOCTHREADEVENTFLAG_ENABLE_SPI, osWaitForever, false); // clear=false: don't auto clear the flag myOnEOCThread_event_flags.wait_any(MYONEOCTHREADEVENTFLAG_ENABLE_SPI, osWaitForever, true); // clear=true: auto clear the flag // //extern MAX11043 g_MAX11043_device; #if MAX11043_ScopeTrigger_MAX32625MBED_D5 // Diagnostic: Use MAX32625MBED pin D5 as DigitalOut EOC#-detected digitalInOut5.write(0); // ScopeTrigger happens at 1.8us after EOC# falling edge digitalInOut5.write(1); // ScopeTrigger digitalInOut5.write(0); // ScopeTrigger digitalInOut5.write(1); // ScopeTrigger #endif // MAX11043_ScopeTrigger_MAX32625MBED_D5 extern SPI spi; // declared in Test_Main_MAX11043.cpp spi.write((char*)mosiData_onEOCFallingEdge, byteCount_onEOCFallingEdge, (char*)misoData_onEOCFallingEdge, byteCount_onEOCFallingEdge); // SPI timing: CS low 13.30us after EOC# falling edge // SPI timing: SCLK first 14.60us after EOC# falling edge // SPI timing: SCLK last 17.70us after EOC# falling edge // SPI timing: CS high 17.70us after EOC# falling edge // // TODO1: update adca //g_MAX11043_device.adca = (misoData_onEOCFallingEdge[1] << 8) | misoData_onEOCFallingEdge[2]; // TODO1: update adcb //g_MAX11043_device.adcb = (misoData_onEOCFallingEdge[3] << 8) | misoData_onEOCFallingEdge[4]; // TODO1: update adcc //g_MAX11043_device.adcc = (misoData_onEOCFallingEdge[5] << 8) | misoData_onEOCFallingEdge[6]; // TODO1: update adcd //g_MAX11043_device.adcd = (misoData_onEOCFallingEdge[7] << 8) | misoData_onEOCFallingEdge[8]; #if MAX11043_ScopeTrigger_MAX32625MBED_D5 // Diagnostic: Use MAX32625MBED pin D5 as DigitalOut EOC#-detected digitalInOut5.write(0); // ScopeTrigger happens at 22.5us after EOC# falling edge digitalInOut5.write(1); // ScopeTrigger digitalInOut5.write(0); // ScopeTrigger digitalInOut5.write(1); // ScopeTrigger #endif // MAX11043_ScopeTrigger_MAX32625MBED_D5 } // while (true) } // myOnEOCThread_EVENTFLAG_ENABLE_SPI_handler() #endif // MAX11043_EOC_INTERRUPT_POLLING #endif // MAX11043_EOC_INTERRUPT_EVENTQUEUE // MAX11043 ADC Read operations must be synchronized to EOC End Of Conversion #if MAX11043_EOC_INTERRUPT_POLLING // MAX11043 EOC End Of Conversion input should be InterruptIn(PinName:EOC_pin).fall(onEOCFallingEdge); // Workaround using DigitalIn(PinName:EOC_pin) polled to sync with EOC falling edge for ADC reads #else // MAX11043_EOC_INTERRUPT_POLLING // MAX11043 EOC End Of Conversion input is InterruptIn(PinName:EOC_pin).fall(onEOCFallingEdge); // Interrupt Handler: EOC Event Output from device void onEOCFallingEdge(void) { // VERIFIED: if DO NOTHING inside interrupt service routine, no crash #if 1 // VERIFIED: GPIO PIN pulse in response to EOC# falling edge, no crash on HH, no missed pulses #if MAX11043_ScopeTrigger_MAX32625MBED_D5 // Diagnostic: Use MAX32625MBED pin D5 as DigitalOut EOC#-detected digitalInOut5.write(0); // ScopeTrigger 1.8us after EOC# falling edge digitalInOut5.write(1); // ScopeTrigger digitalInOut5.write(0); // ScopeTrigger digitalInOut5.write(1); // ScopeTrigger #endif // MAX11043_ScopeTrigger_MAX32625MBED_D5 #endif #if MAX11043_EOC_INTERRUPT_EVENTQUEUE // SPI is not interrupt-safe, so use EventQueue to defer execution to user context. myOnEOCThread_event_flags.set(MYONEOCTHREADEVENTFLAG_ENABLE_SPI); #else // MAX11043_EOC_INTERRUPT_EVENTQUEUE #endif // MAX11043_EOC_INTERRUPT_EVENTQUEUE #if 0 // TODO: read 4 channels in response to EOC# falling edge // WIP MAX11043 interrupt CRASH on Menu item HH CONVRUN High // // ++ MbedOS Error Info ++ // Error Status: 0x80020115 Code: 277 Module: 2 // Error Message: Mutex lock failed // Location: 0xBA33 // Error Value: 0xFFFFFFFA // Current Thread: main Id: 0x20002CD0 Entry: 0xBD17 StackSize: 0x1000 StackMem: 0x20001CD0 SP: 0x20027ED0 // For more info, visit: https://armmbed.github.io/mbedos-error/?error=0x80020115 // -- MbedOS Error Info -- extern MAX11043 g_MAX11043_device; //~ g_MAX11043_device.Read_ADCabcd(); // read register ADCabcd -> &adca, &adcb, &adcc, &adcd // g_MAX11043_device.RegRead(CMD_0001_1010_d16o8_d16o8_d16o8_d16o8_Rd06_ADCabcd, 0); // SPI 8+64 = 72-bit transfer // 1234 5678 ___[1]_16 ___[2]_24 ___[3]_32 ___[4]_40 ___[5]_48 ___[6]_56 ___[7]_64 ___[8]_72 // SPI MOSI = 1aaa_aaaa_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000 ... _0000 // SPI MISO = xxxx_xxxx_dddd_dddd_dddd_dddd_dddd_dddd_dddd_dddd_dddd_dddd_dddd_dddd_dddd_dddd_dddd_dddd ... _xxxx // global const size_t byteCount_onEOCFallingEdge = 1 + (2 * 4); // global const uint8_t mosiData_onEOCFallingEdge[9] = { // global CMD_0001_1010_d16o8_d16o8_d16o8_d16o8_Rd06_ADCabcd, // global 0, 0, 0, 0, 0, 0, 0, 0 // global }; // global uint8_t misoData_onEOCFallingEdge[9]; // SPIreadWriteWithLowCS(size_t byteCount, uint8_t mosiData[], uint8_t misoData[]); // SPIreadWriteWithLowCS(byteCount_onEOCFallingEdge, mosiData_onEOCFallingEdge, misoData_onEOCFallingEdge); // onSPIprint() is not interrupt-safe // unsigned int numBytesTransferred = m_spi.write((char*)mosiData, byteCount, (char*)misoData, byteCount); // g_MAX11043_device.m_spi is inaccessible extern SPI spi; // declared in Test_Main_MAX11043.cpp spi.write((char*)mosiData_onEOCFallingEdge, byteCount_onEOCFallingEdge, (char*)misoData_onEOCFallingEdge, byteCount_onEOCFallingEdge); // // ++ MbedOS Error Info ++ // Error Status: 0x80020115 Code: 277 Module: 2 // Error Message: Mutex lock failed // Location: 0xBABB // Error Value: 0xFFFFFFFA // Current Thread: main Id: 0x20002CD0 Entry: 0xBD9F StackSize: 0x1000 StackMem: 0x20001CD0 SP: 0x20027F10 // For more info, visit: https://armmbed.github.io/mbedos-error/?error=0x80020115 // -- MbedOS Error Info -- // //if (ptrRegData) { (*ptrRegData) = (misoData[1] << 8) | misoData[2]; } //if (commandByte == CMD_0001_1010_d16o8_d16o8_d16o8_d16o8_Rd06_ADCabcd) { // TODO1: update adca //g_MAX11043_device.adca = (misoData_onEOCFallingEdge[1] << 8) | misoData_onEOCFallingEdge[2]; // TODO1: update adcb //g_MAX11043_device.adcb = (misoData_onEOCFallingEdge[3] << 8) | misoData_onEOCFallingEdge[4]; // TODO1: update adcc //g_MAX11043_device.adcc = (misoData_onEOCFallingEdge[5] << 8) | misoData_onEOCFallingEdge[6]; // TODO1: update adcd //g_MAX11043_device.adcd = (misoData_onEOCFallingEdge[7] << 8) | misoData_onEOCFallingEdge[8]; //} #endif #if 0 // MAX11043_ScopeTrigger_MAX32625MBED_D5 // Diagnostic: Use MAX32625MBED pin D5 as DigitalOut EOC#-detected digitalInOut5.write(0); // ScopeTrigger digitalInOut5.write(1); // ScopeTrigger #endif // MAX11043_ScopeTrigger_MAX32625MBED_D5 } #endif // MAX11043_EOC_INTERRUPT_POLLING // CODE GENERATOR: class destructor definition MAX11043::~MAX11043() { // do nothing } // CODE GENERATOR: spi_frequency setter definition /// set SPI SCLK frequency void MAX11043::spi_frequency(int spi_sclk_Hz) { m_SPI_SCLK_Hz = spi_sclk_Hz; m_spi.frequency(m_SPI_SCLK_Hz); } // CODE GENERATOR: omit global g_MAX11043_device // CODE GENERATOR: extern function declarations // CODE GENERATOR: extern function requirement MAX11043::SPIoutputCS // Assert SPI Chip Select // SPI chip-select for MAX11043 // inline void MAX11043::SPIoutputCS(int isLogicHigh) { // CODE GENERATOR: extern function definition for function SPIoutputCS // CODE GENERATOR: extern function definition for standard SPI interface function SPIoutputCS(int isLogicHigh) m_SPI_cs_state = isLogicHigh; if (m_cs_pin.is_connected()) { // avoid mbed runtime error if pin is NC not connected m_cs_pin = m_SPI_cs_state; } } // CODE GENERATOR: extern function requirement MAX11043::SPIreadWriteWithLowCS // SPI read and write arbitrary number of 8-bit bytes // SPI interface to MAX11043 shift mosiData into MAX11043 DIN // while simultaneously capturing miso data from MAX11043 DOUT // int MAX11043::SPIreadWriteWithLowCS(size_t byteCount, uint8_t mosiData[], uint8_t misoData[]) { // CODE GENERATOR: extern function definition for function SPIreadWriteWithLowCS // TODO1: CODE GENERATOR: extern function definition for standard SPI interface function SPIreadWriteWithLowCS(size_t byteCount, uint8_t mosiData[], uint8_t misoData[]) //size_t byteCount = 4; //static char mosiData[4]; //static char misoData[4]; // // Arduino: begin critical section: noInterrupts() masks all interrupt sources; end critical section with interrupts() //~ noInterrupts(); // //~ digitalWrite(Scope_Trigger_Pin, LOW); // diagnostic Scope_Trigger_Pin // if (m_cs_pin.is_connected()) { // avoid mbed runtime error if pin is NC not connected m_cs_pin = 0; } unsigned int numBytesTransferred = m_spi.write((char*)mosiData, byteCount, (char*)misoData, byteCount); if (m_cs_pin.is_connected()) { // avoid mbed runtime error if pin is NC not connected m_cs_pin = m_SPI_cs_state; } // //~ digitalWrite(Scope_Trigger_Pin, HIGH); // diagnostic Scope_Trigger_Pin // // Arduino: begin critical section: noInterrupts() masks all interrupt sources; end critical section with interrupts() //~ interrupts(); // Optional Diagnostic function to print SPI transactions if (onSPIprint) { onSPIprint(byteCount, (uint8_t*)mosiData, (uint8_t*)misoData); } return numBytesTransferred; } // TODO1: CODE GENERATOR: extern function GPIOoutputSHDN alias SHDNoutputValue // CODE GENERATOR: extern function requirement MAX11043::SHDNoutputValue // Assert MAX11043 SHDN pin : High = Shut Down, Low = Normal Operation. // void MAX11043::SHDNoutputValue(int isLogicHigh) { // CODE GENERATOR: extern function definition for function SHDNoutputValue // TODO1: CODE GENERATOR: extern function definition for gpio interface function SHDNoutputValue // TODO1: CODE GENERATOR: gpio pin SHDN assuming member function m_SHDN_pin // TODO1: CODE GENERATOR: gpio direction output // m_SHDN_pin.output(); // only applicable to DigitalInOut // TODO1: CODE GENERATOR: gpio function Value m_SHDN_pin = isLogicHigh; } // TODO1: CODE GENERATOR: extern function GPIOoutputCONVRUN alias CONVRUNoutputValue // CODE GENERATOR: extern function requirement MAX11043::CONVRUNoutputValue // Assert MAX11043 CONVRUN pin : High = start continuous conversions on all 4 channels, Low = Idle. // void MAX11043::CONVRUNoutputValue(int isLogicHigh) { // CODE GENERATOR: extern function definition for function CONVRUNoutputValue // TODO1: CODE GENERATOR: extern function definition for gpio interface function CONVRUNoutputValue // TODO1: CODE GENERATOR: gpio pin CONVRUN assuming member function m_CONVRUN_pin // TODO1: CODE GENERATOR: gpio direction output // m_CONVRUN_pin.output(); // only applicable to DigitalInOut // TODO1: CODE GENERATOR: gpio function Value m_CONVRUN_pin = isLogicHigh; //-------------------------------------------------- // MAX11043 ADC Read operations must be synchronized to EOC End Of Conversion // EOC# asserts low when new data is available. // Initiate a data read prior to the next rising edge of EOC# or the result is overwritten. #if MAX11043_EOC_INTERRUPT_POLLING // MAX11043 EOC End Of Conversion input should be InterruptIn(PinName:EOC_pin).fall(onEOCFallingEdge); // Workaround using DigitalIn(PinName:EOC_pin) polled to sync with EOC falling edge for ADC reads if (m_CONVRUN_pin) { // CONVRUN was switched high, EOC# will now begin toggling } else { // CONVRUN was switched low, so wait until EOC# returns high #warning "MAX11043::Read_ADCabcd() Potential infinite loop if EOC pin not connected" // possible infinite loop; need a timeout or futility countdown to escape for (int futility_countdown = 100; ((futility_countdown > 0) && (m_EOC_pin != 1)); futility_countdown--) { // spinlock waiting for logic high pin state (start of new conversion) } } #else // MAX11043_EOC_INTERRUPT_POLLING // MAX11043 EOC End Of Conversion input is InterruptIn(PinName:EOC_pin).fall(onEOCFallingEdge); #endif // MAX11043_EOC_INTERRUPT_POLLING //-------------------------------------------------- } // CODE GENERATOR: extern function requirement MAX11043::CONVRUNoutputGetValue // Return the state being driven onto the MAX11043 CONVRUN pin. // int MAX11043::CONVRUNoutputGetValue() { // CODE GENERATOR: extern function definition for function CONVRUNoutputGetValue // TODO1: CODE GENERATOR: extern function definition for gpio interface function CONVRUNoutputGetValue // TODO1: CODE GENERATOR: gpio pin CONVRUN assuming member function m_CONVRUN_pin // TODO1: CODE GENERATOR: gpio direction output // m_CONVRUN_pin.output(); // only applicable to DigitalInOut // TODO1: CODE GENERATOR: gpio function GetValue return m_CONVRUN_pin; } // TODO1: CODE GENERATOR: extern function GPIOoutputDACSTEP alias DACSTEPoutputValue // CODE GENERATOR: extern function requirement MAX11043::DACSTEPoutputValue // Assert MAX11043 DACSTEP pin : High = Active, Low = Idle. // void MAX11043::DACSTEPoutputValue(int isLogicHigh) { // CODE GENERATOR: extern function definition for function DACSTEPoutputValue // TODO1: CODE GENERATOR: extern function definition for gpio interface function DACSTEPoutputValue // TODO1: CODE GENERATOR: gpio pin DACSTEP assuming member function m_DACSTEP_pin // TODO1: CODE GENERATOR: gpio direction output // m_DACSTEP_pin.output(); // only applicable to DigitalInOut // TODO1: CODE GENERATOR: gpio function Value m_DACSTEP_pin = isLogicHigh; } // TODO1: CODE GENERATOR: extern function GPIOoutputUP_slash_DWNb alias UP_slash_DWNboutputValue // CODE GENERATOR: extern function requirement MAX11043::UP_slash_DWNboutputValue // Assert MAX11043 UP_slash_DWNb pin : High = Up, Low = Down. // void MAX11043::UP_slash_DWNboutputValue(int isLogicHigh) { // CODE GENERATOR: extern function definition for function UP_slash_DWNboutputValue // TODO1: CODE GENERATOR: extern function definition for gpio interface function UP_slash_DWNboutputValue // TODO1: CODE GENERATOR: gpio pin UP_slash_DWNb assuming member function m_UP_slash_DWNb_pin // TODO1: CODE GENERATOR: gpio direction output // m_UP_slash_DWNb_pin.output(); // only applicable to DigitalInOut // TODO1: CODE GENERATOR: gpio function Value m_UP_slash_DWNb_pin = isLogicHigh; } // CODE GENERATOR: extern function requirement MAX11043::EOCinputWaitUntilLow // Wait for MAX11043 EOC pin low, indicating end of conversion. // Required when using any of the InternalClock modes. // void MAX11043::EOCinputWaitUntilLow() { // CODE GENERATOR: extern function definition for function EOCinputWaitUntilLow // TODO1: CODE GENERATOR: extern function definition for gpio interface function EOCinputWaitUntilLow // TODO1: CODE GENERATOR: gpio pin EOC assuming member function m_EOC_pin // TODO1: CODE GENERATOR: gpio direction input // m_EOC_pin.input(); // only applicable to DigitalInOut // TODO1: CODE GENERATOR: gpio function WaitUntilLow while (m_EOC_pin != 0) { // spinlock waiting for logic low pin state } } // CODE GENERATOR: extern function requirement MAX11043::EOCinputValue // Return the status of the MAX11043 EOC pin. // int MAX11043::EOCinputValue() { // CODE GENERATOR: extern function definition for function EOCinputValue // TODO1: CODE GENERATOR: extern function definition for gpio interface function EOCinputValue // TODO1: CODE GENERATOR: gpio pin EOC assuming member function m_EOC_pin // TODO1: CODE GENERATOR: gpio direction input // m_EOC_pin.input(); // only applicable to DigitalInOut // TODO1: CODE GENERATOR: gpio function Value return m_EOC_pin.read(); } // CODE GENERATOR: class member function definitions //---------------------------------------- // Menu item '!' // Initialize device // @return 1 on success; 0 on failure uint8_t MAX11043::Init(void) { //---------------------------------------- // reference voltage, in Volts VRef = 2.500; //---------------------------------------- // shadow of register config CMD_0010_0000_d16_Wr08_Configuration config = 0x6000; //---------------------------------------- // shadow of register status CMD_0001_1110_d8_Rd07_Status status = 0x00; //---------------------------------------- // shadow of register ADCa CMD_0000_0010_d16o8_Rd00_ADCa adca = 0x0000; //---------------------------------------- // shadow of register ADCb CMD_0000_0110_d16o8_Rd01_ADCb adcb = 0x0000; //---------------------------------------- // shadow of register ADCc CMD_0000_1010_d16o8_Rd02_ADCc adcc = 0x0000; //---------------------------------------- // shadow of register ADCd CMD_0000_1110_d16o8_Rd03_ADCd adcd = 0x0000; //---------------------------------------- // init (based on old EV kit GUI) #warning "Not Implemented Yet: MAX11043::Init init..." // bool bOpResult = false; // String FWVersionString = "00"; // bool bDemoMode = true; // int scan_resolution = 0; // int scan_channels = 0; // int scan_bits = 0; // int sampleRateFactore = 0; // double sampleRate = 0; // unsigned long banks_requested = 0; // bool bScanMode = 0; //---------------------------------------- // Device ID Validation -- not used, no device ID register #warning "Not Implemented Yet: MAX11043::Init Device ID Validation..." // const uint32_t part_id_expect = 0x000F02; // uint32_t part_id_readback; // RegRead(xxxxxxxxxxxxCMD_r001_0001_xxxx_xxxx_xxxx_xxxx_xxxx_xddd_PART_ID, &part_id_readback); // if (part_id_readback != part_id_expect) return 0; //---------------------------------------- // Active-High Shutdown Input. Drive high to shut down the MAX11043. SHDNoutputValue(0); // SHDN Inactive //---------------------------------------- // Convert Run. Drive high to start continuous conversions on all 4 channels. The device is idle when // CONVRUN is low. CONVRUNoutputValue(0); // CONVRUN Idle //---------------------------------------- // DAC Step Input. Drive high to move the DAC output in the direction of UP/DWN on the next rising // edge of the system clock. DACSTEPoutputValue(0); // DACSTEP Idle //---------------------------------------- // DAC Step Direction Select. Drive high to step up, drive low to step down when DACSTEP is toggled. UP_slash_DWNboutputValue(0); // UP/DWN# Down //---------------------------------------- // success return 1; } //---------------------------------------- // Write a MAX11043 register. // // CMDOP_1aaa_aaaa_ReadRegister bit is cleared 0 indicating a write operation. // // MAX11043 register length can be determined by function RegSize. // // For 8-bit register size: // // SPI 16-bit transfer // // SPI MOSI = 0aaa_aaaa_dddd_dddd // // SPI MISO = xxxx_xxxx_xxxx_xxxx // // For 16-bit register size: // // SPI 24-bit or 32-bit transfer // // SPI MOSI = 0aaa_aaaa_dddd_dddd_dddd_dddd // // SPI MISO = xxxx_xxxx_xxxx_xxxx_xxxx_xxxx // // For 24-bit register size: // // SPI 32-bit transfer // // SPI MOSI = 0aaa_aaaa_dddd_dddd_dddd_dddd_dddd_dddd // // SPI MISO = xxxx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx // // @return 1 on success; 0 on failure uint8_t MAX11043::RegWrite(MAX11043_CMD_enum_t commandByte, uint32_t regData) { //---------------------------------------- // switch based on register address szie RegSize(commandByte) //commandByte = (MAX11043_CMD_enum_t)((commandByte &~ CMDOP_0aaa_aa10_ReadRegister) & 0xFF); switch(RegSize(commandByte)) { case 8: // 8-bit register size { // SPI 8+8 = 16-bit transfer // 1234 5678 ___[1]_16 // SPI MOSI = 0aaa_aaaa_dddd_dddd ... _0000 // SPI MISO = xxxx_xxxx_xxxx_xxxx ... _xxxx size_t byteCount = 1 + 1; uint8_t mosiData[2]; uint8_t misoData[2]; mosiData[0] = commandByte; mosiData[1] = regData; // SPIreadWriteWithLowCS(size_t byteCount, uint8_t mosiData[], uint8_t misoData[]); SPIreadWriteWithLowCS(byteCount, mosiData, misoData); // TODO: cache CMD_0101_0100_d8_Wr15_FilterCAddress // if (commandByte == CMD_0101_0100_d8_Wr15_FilterCAddress) { // FilterCAddress = regData; // } // TODO: cache CMD_0110_0000_d8_Wr18_FlashMode // if (commandByte == CMD_0110_0000_d8_Wr18_FlashMode) { // FlashMode = regData; // } } break; case 16: // 16-bit register size #warning "Not Verified Yet: MAX11043::RegWrite 16-bit" { // SPI 8+16 = 24-bit transfer // 1234 5678 ___[1]_16 ___[2]_24 // SPI MOSI = 0aaa_aaaa_dddd_dddd_dddd_dddd ... _0000 // SPI MISO = xxxx_xxxx_xxxx_xxxx_xxxx_xxxx ... _xxxx size_t byteCount = 1 + 2; uint8_t mosiData[3]; uint8_t misoData[3]; mosiData[0] = commandByte; mosiData[1] = (uint8_t)((regData >> 8) & 0xFF); mosiData[2] = (uint8_t)((regData >> 0) & 0xFF); // SPIreadWriteWithLowCS(size_t byteCount, uint8_t mosiData[], uint8_t misoData[]); SPIreadWriteWithLowCS(byteCount, mosiData, misoData); // cache CMD_0010_0000_d16_Wr08_Configuration if (commandByte == CMD_0010_0000_d16_Wr08_Configuration) { config = regData; } // TODO: cache CMD_0010_0100_d16_Wr09_DAC // TODO: cache CMD_0010_1000_d16_Wr0A_DACStep // TODO: cache CMD_0010_1100_d16_Wr0B_DACHDACL // TODO: cache CMD_0011_0000_d16_Wr0C_ConfigA // TODO: cache CMD_0011_0100_d16_Wr0D_ConfigB // TODO: cache CMD_0011_1000_d16_Wr0E_ConfigC // TODO: cache CMD_0011_1100_d16_Wr0F_ConfigD // TODO: cache CMD_0100_0000_d16_Wr10_Reference // TODO: cache CMD_0100_0100_d16_Wr11_AGain // TODO: cache CMD_0100_1000_d16_Wr12_BGain // TODO: cache CMD_0100_1100_d16_Wr13_CGain // TODO: cache CMD_0101_0000_d16_Wr14_DGain // TODO: cache CMD_0110_0100_d16_Wr19_FlashAddr // TODO: cache CMD_0110_1000_d16_Wr1A_FlashDataIn } break; case 32: // 32-bit register size #warning "Not Verified Yet: MAX11043::RegWrite 32-bit" { // SPI 8+32 = 40-bit transfer // 1234 5678 ___[1]_16 ___[2]_24 ___[3]_32 ___[4]_40 // SPI MOSI = 1aaa_aaaa_dddd_dddd_dddd_dddd_dddd_dddd_dddd_dddd ... _0000 // SPI MISO = xxxx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx ... _xxxx // size_t byteCount = 1 + (2 * 2); uint8_t mosiData[5]; uint8_t misoData[5]; mosiData[0] = commandByte; mosiData[1] = (uint8_t)((regData >> 24) & 0xFF); mosiData[2] = (uint8_t)((regData >> 16) & 0xFF); mosiData[3] = (uint8_t)((regData >> 8) & 0xFF); mosiData[4] = (uint8_t)((regData >> 0) & 0xFF); // SPIreadWriteWithLowCS(size_t byteCount, uint8_t mosiData[], uint8_t misoData[]); SPIreadWriteWithLowCS(byteCount, mosiData, misoData); // TODO: cache CMD_0101_1000_d32_Wr16_FilterCDataOut // if (commandByte == CMD_0101_1000_d32_Wr16_FilterCDataOut) { // FilterCDataOut = regData; // } // TODO: cache CMD_0101_1100_d32_Wr17_FilterCDataIn // if (commandByte == CMD_0101_1000_d32_Wr16_FilterCDataOut) { // FilterCDataOut = regData; // } } break; } //---------------------------------------- // success return 1; } //---------------------------------------- // Read an 8-bit MAX11043 register // // CMDOP_1aaa_aaaa_ReadRegister bit is set 1 indicating a read operation. // // MAX11043 register length can be determined by function RegSize. // // For 8-bit register size: // // SPI 16-bit transfer // // SPI MOSI = 1aaa_aaaa_0000_0000 // // SPI MISO = xxxx_xxxx_dddd_dddd // // For 16-bit register size: // // SPI 24-bit or 32-bit transfer // // SPI MOSI = 1aaa_aaaa_0000_0000_0000_0000 // // SPI MISO = xxxx_xxxx_dddd_dddd_dddd_dddd // // For 24-bit register size: // // SPI 32-bit transfer // // SPI MOSI = 1aaa_aaaa_0000_0000_0000_0000_0000_0000 // // SPI MISO = xxxx_xxxx_dddd_dddd_dddd_dddd_dddd_dddd // // // @return 1 on success; 0 on failure uint8_t MAX11043::RegRead(MAX11043_CMD_enum_t commandByte, uint32_t* ptrRegData) { #define SIGN_EXTEND_INT16_VALUE(x) (((x)&(0x8000))?((x)-65536):(x)) //---------------------------------------- // switch based on register address szie RegSize(regAddress) //commandByte = (MAX11043_CMD_enum_t)((commandByte &~ CMDOP_0aaa_aa10_ReadRegister) & 0xFF); switch(RegSize(commandByte)) { case 8: // 8-bit register size { // SPI 8+8 = 16-bit transfer // 1234 5678 ___[1]_16 // SPI MOSI = 1aaa_aaaa_0000_0000 ... _0000 // SPI MISO = xxxx_xxxx_dddd_dddd ... _xxxx size_t byteCount = 1 + 1; uint8_t mosiData[2]; uint8_t misoData[2]; mosiData[0] = CMDOP_0aaa_aa10_ReadRegister | commandByte; mosiData[1] = 0; // CMDOP_1111_1111_NoOperationMOSIidleHigh; // SPIreadWriteWithLowCS(size_t byteCount, uint8_t mosiData[], uint8_t misoData[]); SPIreadWriteWithLowCS(byteCount, mosiData, misoData); if (ptrRegData) { (*ptrRegData) = misoData[1]; } if (commandByte == CMD_0001_1110_d8_Rd07_Status) { // TODO1: update status status = misoData[1]; } } break; case 16: // 16-bit register size #warning "Not Verified Yet: MAX11043::RegRead 16-bit" { // SPI 8+16 = 24-bit transfer // 1234 5678 ___[1]_16 ___[2]_24 // SPI MOSI = 1aaa_aaaa_0000_0000_0000_0000 ... _0000 // SPI MISO = xxxx_xxxx_dddd_dddd_dddd_dddd ... _xxxx size_t byteCount = 1 + 2; uint8_t mosiData[3]; uint8_t misoData[3]; mosiData[0] = CMDOP_0aaa_aa10_ReadRegister | commandByte; mosiData[1] = 0; // CMDOP_1111_1111_NoOperationMOSIidleHigh; mosiData[2] = 0; // CMDOP_1111_1111_NoOperationMOSIidleHigh; // SPIreadWriteWithLowCS(size_t byteCount, uint8_t mosiData[], uint8_t misoData[]); SPIreadWriteWithLowCS(byteCount, mosiData, misoData); if (ptrRegData) { (*ptrRegData) = (misoData[1] << 8) | misoData[2]; } if (commandByte == CMD_0010_0010_d16_Rd08_Configuration) { // TODO1: update config config = (misoData[1] << 8) | misoData[2]; } if (commandByte == CMD_0000_0010_d16o8_Rd00_ADCa) { // TODO1: update adca // adca = (misoData[1] << 8) | misoData[2]; // TODO1: update adca as 2's complement // int raw_code = (misoData[1] << 8) | misoData[2]; // if (raw_code & 0x8000) { adca = raw_code - 65536; } else { adca = raw_code; } adca = SIGN_EXTEND_INT16_VALUE((int)(misoData[1] << 8) | misoData[2]); } if (commandByte == CMD_0000_0110_d16o8_Rd01_ADCb) { // TODO1: update adcb // adcb = (misoData[1] << 8) | misoData[2]; // TODO1: update adca as 2's complement // int raw_code = (misoData[1] << 8) | misoData[2]; // if (raw_code & 0x8000) { adca = raw_code - 65536; } else { adca = raw_code; } adcb = SIGN_EXTEND_INT16_VALUE((int)(misoData[1] << 8) | misoData[2]); } if (commandByte == CMD_0000_1010_d16o8_Rd02_ADCc) { // TODO1: update adcc // adcc = (misoData[1] << 8) | misoData[2]; // TODO1: update adca as 2's complement // int raw_code = (misoData[1] << 8) | misoData[2]; // if (raw_code & 0x8000) { adca = raw_code - 65536; } else { adca = raw_code; } adcc = SIGN_EXTEND_INT16_VALUE((int)(misoData[1] << 8) | misoData[2]); } if (commandByte == CMD_0000_1110_d16o8_Rd03_ADCd) { // TODO1: update adcd // adcd = (misoData[1] << 8) | misoData[2]; // TODO1: update adca as 2's complement // int raw_code = (misoData[1] << 8) | misoData[2]; // if (raw_code & 0x8000) { adca = raw_code - 65536; } else { adca = raw_code; } adcd = SIGN_EXTEND_INT16_VALUE((int)(misoData[1] << 8) | misoData[2]); } } break; case 24: // 24-bit register size { // SPI 8+24 = 32-bit transfer // 1234 5678 ___[1]_16 ___[2]_24 ___[3]_32 // SPI MOSI = 1aaa_aaaa_0000_0000_0000_0000_0000_0000 ... _0000 // SPI MISO = xxxx_xxxx_dddd_dddd_dddd_dddd_dddd_dddd ... _xxxx size_t byteCount = 1 + 3; uint8_t mosiData[4]; uint8_t misoData[4]; mosiData[0] = CMDOP_0aaa_aa10_ReadRegister | commandByte; mosiData[1] = 0; // CMDOP_1111_1111_NoOperationMOSIidleHigh; mosiData[2] = 0; // CMDOP_1111_1111_NoOperationMOSIidleHigh; mosiData[3] = 0; // CMDOP_1111_1111_NoOperationMOSIidleHigh; // SPIreadWriteWithLowCS(size_t byteCount, uint8_t mosiData[], uint8_t misoData[]); SPIreadWriteWithLowCS(byteCount, mosiData, misoData); if (ptrRegData) { (*ptrRegData) = (misoData[1] << 16) | (misoData[2] << 8) | misoData[3]; } if (commandByte == CMD_0000_0010_d16o8_Rd00_ADCa) { // TODO1: update adca adca = (misoData[1] << 16) | (misoData[2] << 8) | misoData[3]; } if (commandByte == CMD_0000_0110_d16o8_Rd01_ADCb) { // TODO1: update adcb adcb = (misoData[1] << 16) | (misoData[2] << 8) | misoData[3]; } if (commandByte == CMD_0000_1010_d16o8_Rd02_ADCc) { // TODO1: update adcc adcc = (misoData[1] << 16) | (misoData[2] << 8) | misoData[3]; } if (commandByte == CMD_0000_1110_d16o8_Rd03_ADCd) { // TODO1: update adcd adcd = (misoData[1] << 16) | (misoData[2] << 8) | misoData[3]; } } break; case 32: // 32-bit register size CMD_0001_0010_d16o8_d16o8_Rd04_ADCab, CMD_0001_0110_d16o8_d16o8_Rd05_ADCcd // #warning "Not Implemented Yet: MAX11043::RegRead 32-bit CMD_0001_0010_d16o8_d16o8_Rd04_ADCab" // TODO: support long SPI read CMD_0001_0010_d16o8_d16o8_Rd04_ADCab // %SW 0x12 (0 0) (0 0) -- for 16-bit read A,B // update adca, adcb // // TODO: support long SPI read CMD_0001_0110_d16o8_d16o8_Rd05_ADCcd // %SW 0x16 (0 0) (0 0) -- for 16-bit read C,D // update adcc, adcd // { // SPI 8+32 = 40-bit transfer // 1234 5678 ___[1]_16 ___[2]_24 ___[3]_32 ___[4]_40 // SPI MOSI = 1aaa_aaaa_0000_0000_0000_0000_0000_0000_0000_0000 ... _0000 // SPI MISO = xxxx_xxxx_dddd_dddd_dddd_dddd_dddd_dddd_dddd_dddd ... _xxxx size_t byteCount = 1 + (2 * 2); uint8_t mosiData[5]; uint8_t misoData[5]; mosiData[0] = CMDOP_0aaa_aa10_ReadRegister | commandByte; mosiData[1] = 0; // CMDOP_1111_1111_NoOperationMOSIidleHigh; mosiData[2] = 0; // CMDOP_1111_1111_NoOperationMOSIidleHigh; mosiData[3] = 0; // CMDOP_1111_1111_NoOperationMOSIidleHigh; mosiData[4] = 0; // CMDOP_1111_1111_NoOperationMOSIidleHigh; // SPIreadWriteWithLowCS(size_t byteCount, uint8_t mosiData[], uint8_t misoData[]); SPIreadWriteWithLowCS(byteCount, mosiData, misoData); if (ptrRegData) { (*ptrRegData) = (misoData[1] << 8) | misoData[2]; } if (commandByte == CMD_0001_0010_d16o8_d16o8_Rd04_ADCab) { // TODO1: update adca // adca = (misoData[1] << 8) | misoData[2]; // TODO1: update adca as 2's complement // int raw_code = (misoData[1] << 8) | misoData[2]; // if (raw_code & 0x8000) { adca = raw_code - 65536; } else { adca = raw_code; } adca = SIGN_EXTEND_INT16_VALUE((int)(misoData[1] << 8) | misoData[2]); // TODO1: update adcb // adcb = (misoData[3] << 8) | misoData[4]; // TODO1: update adca as 2's complement // int raw_code = (misoData[1] << 8) | misoData[2]; // if (raw_code & 0x8000) { adca = raw_code - 65536; } else { adca = raw_code; } adcb = SIGN_EXTEND_INT16_VALUE((int)(misoData[3] << 8) | misoData[4]); } if (commandByte == CMD_0001_0110_d16o8_d16o8_Rd05_ADCcd) { // TODO1: update adcc adcc = (misoData[1] << 8) | misoData[2]; // TODO1: update adca as 2's complement // int raw_code = (misoData[1] << 8) | misoData[2]; // if (raw_code & 0x8000) { adca = raw_code - 65536; } else { adca = raw_code; } adcc = SIGN_EXTEND_INT16_VALUE((int)(misoData[1] << 8) | misoData[2]); // TODO1: update adcd // adcd = (misoData[3] << 8) | misoData[4]; // TODO1: update adca as 2's complement // int raw_code = (misoData[1] << 8) | misoData[2]; // if (raw_code & 0x8000) { adca = raw_code - 65536; } else { adca = raw_code; } adcd = SIGN_EXTEND_INT16_VALUE((int)(misoData[3] << 8) | misoData[4]); } } break; case 48: // 48-bit register size CMD_0001_0010_d16o8_d16o8_Rd04_ADCab, CMD_0001_0110_d16o8_d16o8_Rd05_ADCcd // #warning "Not Verified Yet: MAX11043::RegRead 48-bit CMD_0001_0010_d16o8_d16o8_Rd04_ADCab" // TODO: support long SPI read CMD_0001_0010_d16o8_d16o8_Rd04_ADCab // %SW 0x12 (0 0 0) (0 0 0) -- for 24-bit read A,B // update adca, adcb // // TODO: support long SPI read CMD_0001_0110_d16o8_d16o8_Rd05_ADCcd // %SW 0x16 (0 0 0) (0 0 0) -- for 24-bit read C,D // update adcc, adcd // { // SPI 8+48 = 56-bit transfer // 1234 5678 ___[1]_16 ___[2]_24 ___[3]_32 ___[4]_40 ___[5]_48 ___[6]_56 // SPI MOSI = 1aaa_aaaa_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000 ... _0000 // SPI MISO = xxxx_xxxx_dddd_dddd_dddd_dddd_dddd_dddd_dddd_dddd_dddd_dddd_dddd_dddd ... _xxxx size_t byteCount = 1 + (3 * 2); uint8_t mosiData[7]; uint8_t misoData[7]; mosiData[0] = CMDOP_0aaa_aa10_ReadRegister | commandByte; mosiData[1] = 0; // CMDOP_1111_1111_NoOperationMOSIidleHigh; mosiData[2] = 0; // CMDOP_1111_1111_NoOperationMOSIidleHigh; mosiData[3] = 0; // CMDOP_1111_1111_NoOperationMOSIidleHigh; mosiData[4] = 0; // CMDOP_1111_1111_NoOperationMOSIidleHigh; mosiData[5] = 0; // CMDOP_1111_1111_NoOperationMOSIidleHigh; mosiData[6] = 0; // CMDOP_1111_1111_NoOperationMOSIidleHigh; // SPIreadWriteWithLowCS(size_t byteCount, uint8_t mosiData[], uint8_t misoData[]); SPIreadWriteWithLowCS(byteCount, mosiData, misoData); if (ptrRegData) { (*ptrRegData) = (misoData[1] << 16) | (misoData[2] << 8) | misoData[3]; } if (commandByte == CMD_0001_0010_d16o8_d16o8_Rd04_ADCab) { // TODO1: update adca adca = (misoData[1] << 16) | (misoData[2] << 8) | misoData[3]; // TODO1: update adcb adcb = (misoData[4] << 16) | (misoData[5] << 8) | misoData[6]; } if (commandByte == CMD_0001_0110_d16o8_d16o8_Rd05_ADCcd) { // TODO1: update adcc adcc = (misoData[1] << 16) | (misoData[2] << 8) | misoData[3]; // TODO1: update adcd adcd = (misoData[4] << 16) | (misoData[5] << 8) | misoData[6]; } } break; case 64: // 64-bit register size CMD_0001_1010_d16o8_d16o8_d16o8_d16o8_Rd06_ADCabcd // #warning "Not Verified Yet: MAX11043::RegRead 64-bit CMD_0001_1010_d16o8_d16o8_d16o8_d16o8_Rd06_ADCabcd" // TODO: support long SPI read CMD_0001_1010_d16o8_d16o8_d16o8_d16o8_Rd06_ADCabcd // %SW 0x1A (0 0) (0 0) (0 0) (0 0) -- for 16-bit read A,B,C,D // update adca, adcb, adcc, adcd // { // SPI 8+64 = 72-bit transfer // 1234 5678 ___[1]_16 ___[2]_24 ___[3]_32 ___[4]_40 ___[5]_48 ___[6]_56 ___[7]_64 ___[8]_72 // SPI MOSI = 1aaa_aaaa_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000 ... _0000 // SPI MISO = xxxx_xxxx_dddd_dddd_dddd_dddd_dddd_dddd_dddd_dddd_dddd_dddd_dddd_dddd_dddd_dddd_dddd_dddd ... _xxxx size_t byteCount = 1 + (2 * 4); uint8_t mosiData[9]; uint8_t misoData[9]; mosiData[0] = CMDOP_0aaa_aa10_ReadRegister | commandByte; mosiData[1] = 0; // CMDOP_1111_1111_NoOperationMOSIidleHigh; mosiData[2] = 0; // CMDOP_1111_1111_NoOperationMOSIidleHigh; mosiData[3] = 0; // CMDOP_1111_1111_NoOperationMOSIidleHigh; mosiData[4] = 0; // CMDOP_1111_1111_NoOperationMOSIidleHigh; mosiData[5] = 0; // CMDOP_1111_1111_NoOperationMOSIidleHigh; mosiData[6] = 0; // CMDOP_1111_1111_NoOperationMOSIidleHigh; mosiData[7] = 0; // CMDOP_1111_1111_NoOperationMOSIidleHigh; mosiData[8] = 0; // CMDOP_1111_1111_NoOperationMOSIidleHigh; // SPIreadWriteWithLowCS(size_t byteCount, uint8_t mosiData[], uint8_t misoData[]); SPIreadWriteWithLowCS(byteCount, mosiData, misoData); if (ptrRegData) { (*ptrRegData) = (misoData[1] << 8) | misoData[2]; } if (commandByte == CMD_0001_1010_d16o8_d16o8_d16o8_d16o8_Rd06_ADCabcd) { // TODO1: update adca // adca = (misoData[1] << 8) | misoData[2]; // TODO1: update adca as 2's complement // int raw_code = (misoData[1] << 8) | misoData[2]; // if (raw_code & 0x8000) { adca = raw_code - 65536; } else { adca = raw_code; } adca = SIGN_EXTEND_INT16_VALUE((int)(misoData[1] << 8) | misoData[2]); // // TODO1: update adcb // adcb = (misoData[3] << 8) | misoData[4]; // TODO1: update adcb as 2's complement // raw_code = (misoData[3] << 8) | misoData[4]; // if (raw_code & 0x8000) { adcb = raw_code - 65536; } else { adcb = raw_code; } adcb = SIGN_EXTEND_INT16_VALUE((int)(misoData[3] << 8) | misoData[4]); // // TODO1: update adcc // adcc = (misoData[5] << 8) | misoData[6]; // TODO1: update adcc as 2's complement // raw_code = (misoData[5] << 8) | misoData[6]; // if (raw_code & 0x8000) { adcc = raw_code - 65536; } else { adcc = raw_code; } adcc = SIGN_EXTEND_INT16_VALUE((int)(misoData[5] << 8) | misoData[6]); // // TODO1: update adcd // adcd = (misoData[7] << 8) | misoData[8]; // TODO1: update adcd as 2's complement // raw_code = (misoData[7] << 8) | misoData[8]; // if (raw_code & 0x8000) { adcd = raw_code - 65536; } else { adcd = raw_code; } adcd = SIGN_EXTEND_INT16_VALUE((int)(misoData[7] << 8) | misoData[8]); // } } break; case 96: // 96-bit register size CMD_0001_1010_d16o8_d16o8_d16o8_d16o8_Rd06_ADCabcd // #warning "Not Verified Yet: MAX11043::RegRead 96-bit CMD_0001_1010_d16o8_d16o8_d16o8_d16o8_Rd06_ADCabcd" // TODO: support long SPI read CMD_0001_1010_d16o8_d16o8_d16o8_d16o8_Rd06_ADCabcd // %SW 0x1A (0 0 0) (0 0 0) (0 0 0) (0 0 0) -- for 24-bit read A,B,C,D // update adca, adcb, adcc, adcd // { // SPI 8+96 = 104-bit transfer // 1234 5678 ___[1]_16 ___[2]_24 ___[3]_32 ___[4]_40 ___[5]_48 ___[6]_56 ___[7]_64 ___[8]_72 ___[9]_80 __[10]_88 __[11]_96 __[12]104 // SPI MOSI = 1aaa_aaaa_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000 ... _0000 // SPI MISO = xxxx_xxxx_dddd_dddd_dddd_dddd_dddd_dddd_dddd_dddd_dddd_dddd_dddd_dddd_dddd_dddd_dddd_dddd_dddd_dddd_dddd_dddd_dddd_dddd_dddd_dddd ... _xxxx size_t byteCount = 1 + (3 * 4); uint8_t mosiData[13]; uint8_t misoData[13]; mosiData[0] = CMDOP_0aaa_aa10_ReadRegister | commandByte; mosiData[1] = 0; // CMDOP_1111_1111_NoOperationMOSIidleHigh; mosiData[2] = 0; // CMDOP_1111_1111_NoOperationMOSIidleHigh; mosiData[3] = 0; // CMDOP_1111_1111_NoOperationMOSIidleHigh; mosiData[4] = 0; // CMDOP_1111_1111_NoOperationMOSIidleHigh; mosiData[5] = 0; // CMDOP_1111_1111_NoOperationMOSIidleHigh; mosiData[6] = 0; // CMDOP_1111_1111_NoOperationMOSIidleHigh; mosiData[7] = 0; // CMDOP_1111_1111_NoOperationMOSIidleHigh; mosiData[8] = 0; // CMDOP_1111_1111_NoOperationMOSIidleHigh; mosiData[9] = 0; // CMDOP_1111_1111_NoOperationMOSIidleHigh; mosiData[10] = 0; // CMDOP_1111_1111_NoOperationMOSIidleHigh; mosiData[11] = 0; // CMDOP_1111_1111_NoOperationMOSIidleHigh; mosiData[12] = 0; // CMDOP_1111_1111_NoOperationMOSIidleHigh; // SPIreadWriteWithLowCS(size_t byteCount, uint8_t mosiData[], uint8_t misoData[]); SPIreadWriteWithLowCS(byteCount, mosiData, misoData); if (ptrRegData) { (*ptrRegData) = (misoData[1] << 16) | (misoData[2] << 8) | misoData[3]; } if (commandByte == CMD_0001_1010_d16o8_d16o8_d16o8_d16o8_Rd06_ADCabcd) { // TODO1: update adca adca = (misoData[1] << 16) | (misoData[2] << 8) | misoData[3]; // TODO1: update adcb adcb = (misoData[4] << 16) | (misoData[5] << 8) | misoData[6]; // TODO1: update adcc adcc = (misoData[7] << 16) | (misoData[8] << 8) | misoData[9]; // TODO1: update adcd adcd = (misoData[10] << 16) | (misoData[11] << 8) | misoData[12]; } } break; } //---------------------------------------- // success return 1; } //---------------------------------------- // Return the size of a MAX11043 register // // @return 8 for 8-bit, 16 for 16-bit, 24 for 24-bit, else 0 for undefined register size uint8_t MAX11043::RegSize(MAX11043_CMD_enum_t commandByte) { //---------------------------------------- // switch based on register address value regAddress // commandByte = (MAX11043_CMD_enum_t)((commandByte &~ CMDOP_0aaa_aa10_ReadRegister) & 0xFF); switch(commandByte) { default: // case CMDOP_0aaa_aa00_WriteRegister: // case CMDOP_0aaa_aa10_ReadRegister: // case CMDOP_1111_1111_NoOperationMOSIidleHigh: return 0; // undefined register size case CMD_0001_1110_d8_Rd07_Status: case CMD_0101_0100_d8_Wr15_FilterCAddress: case CMD_0101_0110_d8_Rd15_FilterCAddress: case CMD_0110_0000_d8_Wr18_FlashMode: case CMD_0110_0010_d8_Rd18_FlashMode: return 8; // 8-bit register size case CMD_0010_0000_d16_Wr08_Configuration: case CMD_0010_0010_d16_Rd08_Configuration: case CMD_0010_0100_d16_Wr09_DAC: case CMD_0010_0110_d16_Rd09_DAC: case CMD_0010_1000_d16_Wr0A_DACStep: case CMD_0010_1010_d16_Rd0A_DACStep: case CMD_0010_1100_d16_Wr0B_DACHDACL: case CMD_0010_1110_d16_Rd0B_DACHDACL: case CMD_0011_0000_d16_Wr0C_ConfigA: case CMD_0011_0010_d16_Rd0C_ConfigA: case CMD_0011_0100_d16_Wr0D_ConfigB: case CMD_0011_0110_d16_Rd0D_ConfigB: case CMD_0011_1000_d16_Wr0E_ConfigC: case CMD_0011_1010_d16_Rd0E_ConfigC: case CMD_0011_1100_d16_Wr0F_ConfigD: case CMD_0011_1110_d16_Rd0F_ConfigD: case CMD_0100_0000_d16_Wr10_Reference: case CMD_0100_0010_d16_Rd10_Reference: case CMD_0100_0100_d16_Wr11_AGain: case CMD_0100_0110_d16_Rd11_AGain: case CMD_0100_1000_d16_Wr12_BGain: case CMD_0100_1010_d16_Rd12_BGain: case CMD_0100_1100_d16_Wr13_CGain: case CMD_0100_1110_d16_Rd13_CGain: case CMD_0101_0000_d16_Wr14_DGain: case CMD_0101_0010_d16_Rd14_DGain: case CMD_0110_0100_d16_Wr19_FlashAddr: case CMD_0110_0110_d16_Rd19_FlashAddr: case CMD_0110_1000_d16_Wr1A_FlashDataIn: case CMD_0110_1010_d16_Rd1A_FlashDataIn: case CMD_0110_1110_d16_Rd1B_FlashDataOut: return 16; // 16-bit register size case CMD_0000_0010_d16o8_Rd00_ADCa: case CMD_0000_0110_d16o8_Rd01_ADCb: case CMD_0000_1010_d16o8_Rd02_ADCc: case CMD_0000_1110_d16o8_Rd03_ADCd: if (config & CONFIG_xxxx_xxxx_xx1x_xxxx_24BIT) { // %SW 0x02 (0 0 0) -- for 24-bit read return 24; // 24-bit register size } // %SW 0x02 (0 0) -- for 16-bit read // return 16; // 16-bit register size case CMD_0001_0010_d16o8_d16o8_Rd04_ADCab: case CMD_0001_0110_d16o8_d16o8_Rd05_ADCcd: // // TODO: support long SPI read if (config & CONFIG_xxxx_xxxx_xx1x_xxxx_24BIT) { // %SW 0x12 (0 0 0) (0 0 0) -- for 24-bit read A,B // %SW 0x16 (0 0 0) (0 0 0) -- for 24-bit read C,D return 48; // 48-bit register size: 2*(24) } // %SW 0x12 (0 0) (0 0) -- for 16-bit read A,B // %SW 0x16 (0 0) (0 0) -- for 16-bit read C,D // return 32; // 32-bit register size: 2*(16) case CMD_0001_1010_d16o8_d16o8_d16o8_d16o8_Rd06_ADCabcd: // // TODO: support long SPI read if (config & CONFIG_xxxx_xxxx_xx1x_xxxx_24BIT) { // %SW 0x1A (0 0 0) (0 0 0) (0 0 0) (0 0 0) -- for 24-bit read A,B,C,D return 96; // 96-bit register size: 4*(24) } // %SW 0x1A (0 0) (0 0) (0 0) (0 0) -- for 16-bit read A,B,C,D // return 64; // 64-bit register size: 4*(16) case CMD_0101_1000_d32_Wr16_FilterCDataOut: case CMD_0101_1010_d32_Rd16_FilterCDataOut: case CMD_0101_1100_d32_Wr17_FilterCDataIn: case CMD_0101_1110_d32_Rd17_FilterCDataIn: return 32; // 32-bit register size } } //---------------------------------------- // Decode operation from commandByte // // @return operation such as idle, read register, write register, etc. MAX11043::MAX11043_CMDOP_enum_t MAX11043::DecodeCommand(MAX11043_CMD_enum_t commandByte) { //---------------------------------------- // decode operation from command byte switch (commandByte & 0x83) { case CMDOP_0aaa_aa10_ReadRegister: return CMDOP_0aaa_aa10_ReadRegister; case CMDOP_0aaa_aa00_WriteRegister: return CMDOP_0aaa_aa00_WriteRegister; default: return CMDOP_1111_1111_NoOperationMOSIidleHigh; } } //---------------------------------------- // Return the address field of a MAX11043 register // // @return register address field as given in datasheet uint8_t MAX11043::RegAddrOfCommand(MAX11043_CMD_enum_t commandByte) { //---------------------------------------- // extract register address value from command byte return (uint8_t)((commandByte &~ 0x83) >> 2); // CMDOP_0aaa_aa10_ReadRegister } //---------------------------------------- // Test whether a command byte is a register read command // // @return true if command byte is a register read command uint8_t MAX11043::IsRegReadCommand(MAX11043_CMD_enum_t commandByte) { //---------------------------------------- // Test whether a command byte is a register read command return (commandByte &~ 0x02) ? 1 : 0; // CMDOP_0aaa_aa10_ReadRegister } //---------------------------------------- // Return the name of a MAX11043 register // // @return null-terminated constant C string containing register name or empty string const char* MAX11043::RegName(MAX11043_CMD_enum_t commandByte) { //---------------------------------------- // switch based on register address value regAddress // commandByte = (MAX11043_CMD_enum_t)((commandByte &~ CMDOP_0aaa_aa10_ReadRegister) & 0xFF); switch(commandByte) { default: return ""; // undefined register // case CMDOP_0aaa_aa00_WriteRegister: return "_______"; // case CMDOP_0aaa_aa10_ReadRegister: return "_______"; // case CMDOP_1111_1111_NoOperationMOSIidleHigh: return "_______"; case CMD_0000_0010_d16o8_Rd00_ADCa: return "ADCa"; case CMD_0000_0110_d16o8_Rd01_ADCb: return "ADCb"; case CMD_0000_1010_d16o8_Rd02_ADCc: return "ADCc"; case CMD_0000_1110_d16o8_Rd03_ADCd: return "ADCd"; case CMD_0001_0010_d16o8_d16o8_Rd04_ADCab: return "ADCab"; case CMD_0001_0110_d16o8_d16o8_Rd05_ADCcd: return "ADCcd"; case CMD_0001_1010_d16o8_d16o8_d16o8_d16o8_Rd06_ADCabcd: return "ADCabcd"; case CMD_0001_1110_d8_Rd07_Status: return "Status"; case CMD_0010_0000_d16_Wr08_Configuration: return "Configuration"; case CMD_0010_0010_d16_Rd08_Configuration: return "Configuration"; case CMD_0010_0100_d16_Wr09_DAC: return "DAC"; case CMD_0010_0110_d16_Rd09_DAC: return "DAC"; case CMD_0010_1000_d16_Wr0A_DACStep: return "DACStep"; case CMD_0010_1010_d16_Rd0A_DACStep: return "DACStep"; case CMD_0010_1100_d16_Wr0B_DACHDACL: return "DACHDACL"; case CMD_0010_1110_d16_Rd0B_DACHDACL: return "DACHDACL"; case CMD_0011_0000_d16_Wr0C_ConfigA: return "ConfigA"; case CMD_0011_0010_d16_Rd0C_ConfigA: return "ConfigA"; case CMD_0011_0100_d16_Wr0D_ConfigB: return "ConfigB"; case CMD_0011_0110_d16_Rd0D_ConfigB: return "ConfigB"; case CMD_0011_1000_d16_Wr0E_ConfigC: return "ConfigC"; case CMD_0011_1010_d16_Rd0E_ConfigC: return "ConfigC"; case CMD_0011_1100_d16_Wr0F_ConfigD: return "ConfigD"; case CMD_0011_1110_d16_Rd0F_ConfigD: return "ConfigD"; case CMD_0100_0000_d16_Wr10_Reference: return "Reference"; case CMD_0100_0010_d16_Rd10_Reference: return "Reference"; case CMD_0100_0100_d16_Wr11_AGain: return "AGain"; case CMD_0100_0110_d16_Rd11_AGain: return "AGain"; case CMD_0100_1000_d16_Wr12_BGain: return "BGain"; case CMD_0100_1010_d16_Rd12_BGain: return "BGain"; case CMD_0100_1100_d16_Wr13_CGain: return "CGain"; case CMD_0100_1110_d16_Rd13_CGain: return "CGain"; case CMD_0101_0000_d16_Wr14_DGain: return "DGain"; case CMD_0101_0010_d16_Rd14_DGain: return "DGain"; case CMD_0101_0100_d8_Wr15_FilterCAddress: return "FilterCAddress"; case CMD_0101_0110_d8_Rd15_FilterCAddress: return "FilterCAddress"; case CMD_0101_1000_d32_Wr16_FilterCDataOut: return "FilterCDataOut"; case CMD_0101_1010_d32_Rd16_FilterCDataOut: return "FilterCDataOut"; case CMD_0101_1100_d32_Wr17_FilterCDataIn: return "FilterCDataIn"; case CMD_0101_1110_d32_Rd17_FilterCDataIn: return "FilterCDataIn"; case CMD_0110_0000_d8_Wr18_FlashMode: return "FlashMode"; case CMD_0110_0010_d8_Rd18_FlashMode: return "FlashMode"; case CMD_0110_0100_d16_Wr19_FlashAddr: return "FlashAddr"; case CMD_0110_0110_d16_Rd19_FlashAddr: return "FlashAddr"; case CMD_0110_1000_d16_Wr1A_FlashDataIn: return "FlashDataIn"; case CMD_0110_1010_d16_Rd1A_FlashDataIn: return "FlashDataIn"; case CMD_0110_1110_d16_Rd1B_FlashDataOut: return "FlashDataOut"; } } //---------------------------------------- // Menu item '$' -> adca, adcb, adcc, adcd // Read ADCabcd // // @return 1 on success; 0 on failure uint8_t MAX11043::Read_ADCabcd(void) { //---------------------------------------- // warning -- WIP work in progress #warning "Not Tested Yet: MAX11043::Read_ADCabcd..." //-------------------------------------------------- // MAX11043 ADC Read operations must be synchronized to EOC End Of Conversion //---------------------------------------- // warning -- WIP work in progress #warning "need CONVRUNoutputGetValue() -- is CONVRUN being driven high?" //---------------------------------------- // Synchronize with EOC End Of Conversion // MAX11043 ADC Read operations must be synchronized to EOC End Of Conversion // EOC# asserts low when new data is available. // Initiate a data read prior to the next rising edge of EOC# or the result is overwritten. #if MAX11043_EOC_INTERRUPT_POLLING // MAX11043 EOC End Of Conversion input should be InterruptIn(PinName:EOC_pin).fall(onEOCFallingEdge); // Workaround using DigitalIn(PinName:EOC_pin) polled to sync with EOC falling edge for ADC reads // 2020-02-20 MAX11043_EOC_INTERRUPT_POLLING works on MAX32625MBED at 9us conversion rate, with 1us timing margin // TODO: poll m_EOC_pin if CONVRUN is high if (CONVRUNoutputGetValue()) // is CONVRUN being driven high? { // CONVRUN pin is being driven high, so EOC# will be changing. // Try to read as close as possible to EOC# falling edge, // because if EOC# falling edge happens during SPI data readout, // the data will be corrupted. #warning "MAX11043::Read_ADCabcd() Potential infinite loop if EOC pin not connected" // possible infinite loop; need a timeout or futility countdown to escape for (int futility_countdown = 100; ((futility_countdown > 0) && (EOCinputValue() != 1)); futility_countdown--) { // spinlock waiting for logic high pin state (start of new conversion) } for (int futility_countdown = 100; ((futility_countdown > 0) && (EOCinputValue() != 0)); futility_countdown--) { // spinlock waiting for logic low pin state (new data is available) } } else { // CONVRUN pin is being driven low, so conversion result will not change, EOC# remains high } #else // MAX11043_EOC_INTERRUPT_POLLING // MAX11043 EOC End Of Conversion input is InterruptIn(PinName:EOC_pin).fall(onEOCFallingEdge); #endif // MAX11043_EOC_INTERRUPT_POLLING //-------------------------------------------------- //---------------------------------------- // read register ADCabcd -> &adca, &adcb, &adcc, &adcd RegRead(CMD_0001_1010_d16o8_d16o8_d16o8_d16o8_Rd06_ADCabcd, 0); // updates &adca, &adcb, &adcc, &adcd //---------------------------------------- // success return 1; } //---------------------------------------- // Menu item 'GA' // Write AGain register // // @param[in] gain 2's complement, 0x800=0.25V/V, 0x1000=0.5V/V, 0x2000=1VV/V, 0x4000=2V/V, default=0x2000 // // @return 1 on success; 0 on failure uint8_t MAX11043::Write_AGain(uint32_t gain) { //---------------------------------------- // warning -- WIP work in progress #warning "Not Tested Yet: MAX11043::Write_AGain..." //---------------------------------------- // write register RegWrite(CMD_0100_0100_d16_Wr11_AGain, gain); //---------------------------------------- // success return 1; } //---------------------------------------- // Menu item 'XD' // Example configuration. // Slowest conversion rate 1:6 = 9us, // Bypass PGA and filters, Gain=1V/V, // AOUT = 2.0V // void MAX11043::Configure_Demo(void) { //---------------------------------------- // warning -- WIP work in progress #warning "Not Tested Yet: MAX11043::Configure_Demo..." //---------------------------------------- // *Config=0x6000 (POR default, slowest conversion rate 1:6 = 9us) RegWrite(CMD_0010_0000_d16_Wr08_Configuration, 0x6000); //---------------------------------------- // *ConfigA=0x0018 (Bypass PGA and filters, Gain=1V/V) RegWrite(CMD_0011_0000_d16_Wr0C_ConfigA, 0x0018); //---------------------------------------- // *AGain=0x1000 (0.5) (default is 0x2000=1.0) RegWrite(CMD_0100_0100_d16_Wr11_AGain, 0x1000); //---------------------------------------- // *ConfigB=0x0018 (Bypass PGA and filters, Gain=1V/V) RegWrite(CMD_0011_0100_d16_Wr0D_ConfigB, 0x0018); //---------------------------------------- // *BGain=0x1000 (0.5) (default is 0x2000=1.0) RegWrite(CMD_0100_1000_d16_Wr12_BGain, 0x1000); //---------------------------------------- // *ConfigC=0x0018 (Bypass PGA and filters, Gain=1V/V) RegWrite(CMD_0011_1000_d16_Wr0E_ConfigC, 0x0018); //---------------------------------------- // *CGain=0x1000 (0.5) (default is 0x2000=1.0) RegWrite(CMD_0100_1100_d16_Wr13_CGain, 0x1000); //---------------------------------------- // *ConfigD=0x0018 (Bypass PGA and filters, Gain=1V/V) RegWrite(CMD_0011_1100_d16_Wr0F_ConfigD, 0x0018); //---------------------------------------- // *DGain=0x1000 (0.5) (default is 0x2000=1.0) RegWrite(CMD_0101_0000_d16_Wr14_DGain, 0x1000); //---------------------------------------- // *DacHDacL=0xFF00 (DAC code 0xFFF fullscale 2.5V, DAC code 0x000 lowest 0V) RegWrite(CMD_0010_1100_d16_Wr0B_DACHDACL, 0xFF00); //---------------------------------------- // *DacStep=0x0001 (DAC increment value triggered by DACSTEP pin) RegWrite(CMD_0010_1000_d16_Wr0A_DACStep, 0x0001); //---------------------------------------- // *Dac=0x0ccc (AOUT=2V) RegWrite(CMD_0010_0100_d16_Wr09_DAC, 0x0ccc); } //---------------------------------------- // Menu item 'XX' // // @return 1 on success; 0 on failure uint8_t MAX11043::Configure_XXXXX(uint8_t linef, uint8_t rate) { //---------------------------------------- // warning -- WIP work in progress #warning "Not Tested Yet: MAX11043::Configure_XXXXX..." //---------------------------------------- // read register RegRead(CMD_0000_0010_d16o8_Rd00_ADCa, 0); // updates &adca //---------------------------------------- // success return 1; } //---------------------------------------- // Menu item 'XY' // // @return 1 on success; 0 on failure uint8_t MAX11043::Configure_XXXXY(uint8_t linef, uint8_t rate) { //---------------------------------------- // warning -- WIP work in progress #warning "Not Tested Yet: MAX11043::Configure_XXXXY..." //---------------------------------------- // read register RegRead(CMD_0001_1110_d8_Rd07_Status, 0); // udpates &status //---------------------------------------- // success return 1; } // End of file