Test program running on MAX32625MBED. Control through USB Serial commands using a terminal emulator such as teraterm or putty.
Dependencies: MaximTinyTester CmdLine MAX541 USBDevice
MAX11043/MAX11043.cpp
- Committer:
- whismanoid
- Date:
- 2020-02-11
- Revision:
- 53:3d5a3d241a5e
- Parent:
- 52:607010f0c54e
- Child:
- 57:1c9da8e90737
File content as of revision 53:3d5a3d241a5e:
// /******************************************************************************* // * Copyright (C) 2020 Maxim Integrated Products, Inc., All Rights Reserved. // * // * Permission is hereby granted, free of charge, to any person obtaining a // * copy of this software and associated documentation files (the "Software"), // * to deal in the Software without restriction, including without limitation // * the rights to use, copy, modify, merge, publish, distribute, sublicense, // * and/or sell copies of the Software, and to permit persons to whom the // * Software is furnished to do so, subject to the following conditions: // * // * The above copyright notice and this permission notice shall be included // * in all copies or substantial portions of the Software. // * // * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. // * IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES // * OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, // * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR // * OTHER DEALINGS IN THE SOFTWARE. // * // * Except as contained in this notice, the name of Maxim Integrated // * Products, Inc. shall not be used except as stated in the Maxim Integrated // * Products, Inc. Branding Policy. // * // * The mere transfer of this software does not imply any licenses // * of trade secrets, proprietary technology, copyrights, patents, // * trademarks, maskwork rights, or any other form of intellectual // * property whatsoever. Maxim Integrated Products, Inc. retains all // * ownership rights. // ******************************************************************************* // */ // ********************************************************************* // @file MAX11043.cpp // ********************************************************************* // Device Driver file // DO NOT EDIT; except areas designated "CUSTOMIZE". Automatically generated file. // generated by XMLSystemOfDevicesToMBED.py // System Name = ExampleSystem // System Description = Device driver example #include "MAX11043.h" // Device Name = MAX11043 // Device Description = 200ksps, Low-Power, Serial SPI 24-Bit, 4-Channel, Differential/Single-Ended Input, Simultaneous-Sampling SD ADC // Device DeviceBriefDescription = 24-bit 200ksps Delta-Sigma ADC // Device Manufacturer = Maxim Integrated // Device PartNumber = MAX11043ATL+ // Device RegValue_Width = DataWidth16bit_HL // // ADC MaxOutputDataRate = 200ksps // ADC NumChannels = 4 // ADC ResolutionBits = 24 // // SPI CS = ActiveLow // SPI FrameStart = CS // SPI CPOL = 0 // SPI CPHA = 0 // SPI MOSI and MISO Data are both stable on Rising edge of SCLK // SPI SCLK Idle Low // SPI SCLKMaxMHz = 40 // SPI SCLKMinMHz = 0 // // InputPin Name = CONVRUN // InputPin Description = CONVRUN (digital input). Convert Run. Drive high to start continuous conversions on all 4 channels. The device is idle when // CONVRUN is low. // InputPin Function = Configuration // // InputPin Name = SHDN // InputPin Description = Shutdown (digital input). Active-High Shutdown Input. Drive high to shut down the MAX11043. // InputPin Function = Configuration // // InputPin Name = DACSTEP // InputPin Description = DACSTEP (digital input). DAC Step Input. Drive high to move the DAC output in the direction of UP/DWN on the next rising // edge of the system clock. // InputPin Function = Configuration // // InputPin Name = UP/DWN# // InputPin Description = UP/DWN# (digital input). DAC Step Direction Select. Drive high to step up, drive low to step down when DACSTEP is toggled. // InputPin Function = Configuration // // OutputPin Name = EOC // OutputPin Description = End of Conversion Output. Active-Low End-of-Conversion Indicator. EOC asserts low to indicate that new data is ready. // OutputPin Function = Event // // CODE GENERATOR: class constructor definition MAX11043::MAX11043(SPI &spi, DigitalOut &cs_pin, // SPI interface // CODE GENERATOR: class constructor definition gpio InputPin pins DigitalOut &CONVRUN_pin, // Digital Configuration Input to MAX11043 device DigitalOut &SHDN_pin, // Digital Configuration Input to MAX11043 device DigitalOut &DACSTEP_pin, // Digital Configuration Input to MAX11043 device DigitalOut &UP_slash_DWNb_pin, // Digital Configuration Input to MAX11043 device // CODE GENERATOR: class constructor definition gpio OutputPin pins DigitalIn &EOC_pin, // Digital Event Output from MAX11043 device // CODE GENERATOR: class constructor definition ic_variant MAX11043_ic_t ic_variant) // CODE GENERATOR: class constructor initializer list : m_spi(spi), m_cs_pin(cs_pin), // SPI interface // CODE GENERATOR: class constructor initializer list gpio InputPin pins m_CONVRUN_pin(CONVRUN_pin), // Digital Configuration Input to MAX11043 device m_SHDN_pin(SHDN_pin), // Digital Configuration Input to MAX11043 device m_DACSTEP_pin(DACSTEP_pin), // Digital Configuration Input to MAX11043 device m_UP_slash_DWNb_pin(UP_slash_DWNb_pin), // Digital Configuration Input to MAX11043 device // CODE GENERATOR: class constructor initializer list gpio OutputPin pins m_EOC_pin(EOC_pin), // Digital Event Output from MAX11043 device // CODE GENERATOR: class constructor initializer list ic_variant m_ic_variant(ic_variant) { // CODE GENERATOR: class constructor definition SPI interface initialization // // SPI CS = ActiveLow // SPI FrameStart = CS m_SPI_cs_state = 1; m_cs_pin = m_SPI_cs_state; // SPI CPOL = 0 // SPI CPHA = 0 // SPI MOSI and MISO Data are both stable on Rising edge of SCLK // SPI SCLK Idle Low m_SPI_dataMode = 0; //SPI_MODE0; // CPOL=0,CPHA=0: Rising Edge stable; SCLK idle Low m_spi.format(8,m_SPI_dataMode); // int bits_must_be_8, int mode=0_3 CPOL=0,CPHA=0 // SPI SCLKMaxMHz = 40 // SPI SCLKMinMHz = 0 //#define SPI_SCLK_Hz 48000000 // 48MHz //#define SPI_SCLK_Hz 24000000 // 24MHz //#define SPI_SCLK_Hz 12000000 // 12MHz //#define SPI_SCLK_Hz 6000000 // 6MHz //#define SPI_SCLK_Hz 4000000 // 4MHz //#define SPI_SCLK_Hz 2000000 // 2MHz //#define SPI_SCLK_Hz 1000000 // 1MHz m_SPI_SCLK_Hz = 12000000; // 12MHz; MAX11043 limit is 40MHz m_spi.frequency(m_SPI_SCLK_Hz); // // CODE GENERATOR: class constructor definition gpio InputPin (Input to device) initialization // // CONVRUN Configuration Input to MAX11043 device m_CONVRUN_pin = 1; // output logic high -- initial value in constructor // // SHDN Configuration Input to MAX11043 device m_SHDN_pin = 1; // output logic high -- initial value in constructor // // DACSTEP Configuration Input to MAX11043 device m_DACSTEP_pin = 1; // output logic high -- initial value in constructor // // UP_slash_DWNb Configuration Input to MAX11043 device m_UP_slash_DWNb_pin = 1; // output logic high -- initial value in constructor // // CODE GENERATOR: class constructor definition gpio OutputPin (Output from MAX11043 device) initialization // // EOC Event Output from device } // CODE GENERATOR: class destructor definition MAX11043::~MAX11043() { // do nothing } // CODE GENERATOR: spi_frequency setter definition /// set SPI SCLK frequency void MAX11043::spi_frequency(int spi_sclk_Hz) { m_SPI_SCLK_Hz = spi_sclk_Hz; m_spi.frequency(m_SPI_SCLK_Hz); } // CODE GENERATOR: omit global g_MAX11043_device // CODE GENERATOR: extern function declarations // CODE GENERATOR: extern function requirement MAX11043::SPIoutputCS // Assert SPI Chip Select // SPI chip-select for MAX11043 // void MAX11043::SPIoutputCS(int isLogicHigh) { // CODE GENERATOR: extern function definition for function SPIoutputCS // CODE GENERATOR: extern function definition for standard SPI interface function SPIoutputCS(int isLogicHigh) m_SPI_cs_state = isLogicHigh; m_cs_pin = m_SPI_cs_state; } // CODE GENERATOR: extern function requirement MAX11043::SPIwrite16bits // SPI write 16 bits // SPI interface to MAX11043 shift 16 bits mosiData into MAX11043 DIN // void MAX11043::SPIwrite16bits(int16_t mosiData16) { // CODE GENERATOR: extern function definition for function SPIwrite16bits // TODO1: CODE GENERATOR: extern function definition for standard SPI interface function SPIwrite16bits(int16_t mosiData16) size_t byteCount = 2; static char mosiData[2]; static char misoData[2]; mosiData[0] = (char)((mosiData16 >> 8) & 0xFF); // MSByte mosiData[1] = (char)((mosiData16 >> 0) & 0xFF); // LSByte // // Arduino: begin critical section: noInterrupts() masks all interrupt sources; end critical section with interrupts() //~ noInterrupts(); // //~ digitalWrite(Scope_Trigger_Pin, LOW); // diagnostic Scope_Trigger_Pin // unsigned int numBytesTransferred = m_spi.write(mosiData, byteCount, misoData, byteCount); //~ m_spi.transfer(mosiData8_FF0000); //~ m_spi.transfer(mosiData16_00FF00); //~ m_spi.transfer(mosiData16_0000FF); // //~ digitalWrite(Scope_Trigger_Pin, HIGH); // diagnostic Scope_Trigger_Pin // // Arduino: begin critical section: noInterrupts() masks all interrupt sources; end critical section with interrupts() //~ interrupts(); // Optional Diagnostic function to print SPI transactions if (onSPIprint) { onSPIprint(byteCount, (uint8_t*)mosiData, (uint8_t*)misoData); } // // VERIFY: SPIwrite24bits print diagnostic information //cmdLine.serial().printf(" MOSI->")); //cmdLine.serial().printf(" 0x")); //Serial.print( (mosiData8_FF0000 & 0xFF), HEX); //cmdLine.serial().printf(" 0x")); //Serial.print( (mosiData16_00FF00 & 0xFF), HEX); //cmdLine.serial().printf(" 0x")); //Serial.print( (mosiData16_0000FF & 0xFF), HEX); // hex dump mosiData[0..byteCount-1] #if 0 // HAS_MICROUSBSERIAL cmdLine_microUSBserial.serial().printf("\r\nSPI"); if (byteCount > 7) { cmdLine_microUSBserial.serial().printf(" byteCount:%d", byteCount); } cmdLine_microUSBserial.serial().printf(" MOSI->"); for (unsigned int byteIndex = 0; byteIndex < byteCount; byteIndex++) { cmdLine_microUSBserial.serial().printf(" 0x%2.2X", mosiData[byteIndex]); } // hex dump misoData[0..byteCount-1] cmdLine_microUSBserial.serial().printf(" MISO<-"); for (unsigned int byteIndex = 0; byteIndex < numBytesTransferred; byteIndex++) { cmdLine_microUSBserial.serial().printf(" 0x%2.2X", misoData[byteIndex]); } cmdLine_microUSBserial.serial().printf(" "); #endif #if 0 // HAS_DAPLINK_SERIAL cmdLine_DAPLINKserial.serial().printf("\r\nSPI"); if (byteCount > 7) { cmdLine_DAPLINKserial.serial().printf(" byteCount:%d", byteCount); } cmdLine_DAPLINKserial.serial().printf(" MOSI->"); for (unsigned int byteIndex = 0; byteIndex < byteCount; byteIndex++) { cmdLine_DAPLINKserial.serial().printf(" 0x%2.2X", mosiData[byteIndex]); } // hex dump misoData[0..byteCount-1] cmdLine_DAPLINKserial.serial().printf(" MISO<-"); for (unsigned int byteIndex = 0; byteIndex < numBytesTransferred; byteIndex++) { cmdLine_DAPLINKserial.serial().printf(" 0x%2.2X", misoData[byteIndex]); } cmdLine_DAPLINKserial.serial().printf(" "); #endif // VERIFY: DIAGNOSTIC: print MAX5715 device register write // TODO: MAX5715_print_register_verbose(mosiData8_FF0000, mosiData16_00FFFF); // TODO: print_verbose_SPI_diagnostic(mosiData16_FF00, mosiData16_00FF, misoData16_FF00, misoData16_00FF); // // int misoData16 = (misoData16_FF00 << 8) | misoData16_00FF; // return misoData16; } // CODE GENERATOR: extern function requirement MAX11043::SPIreadWrite16bits // SPI read and write 16 bits // SPI interface to MAX11043 shift 16 bits mosiData16 into MAX11043 DIN // while simultaneously capturing 16 bits miso data from MAX11043 DOUT // int16_t MAX11043::SPIreadWrite16bits(int16_t mosiData16) { // CODE GENERATOR: extern function definition for function SPIreadWrite16bits // TODO1: CODE GENERATOR: extern function definition for standard SPI interface function SPIreadWrite16bits(int16_t mosiData16) size_t byteCount = 2; static char mosiData[2]; static char misoData[2]; mosiData[0] = (char)((mosiData16 >> 8) & 0xFF); // MSByte mosiData[1] = (char)((mosiData16 >> 0) & 0xFF); // LSByte // // Arduino: begin critical section: noInterrupts() masks all interrupt sources; end critical section with interrupts() //~ noInterrupts(); // //~ digitalWrite(Scope_Trigger_Pin, LOW); // diagnostic Scope_Trigger_Pin // unsigned int numBytesTransferred = m_spi.write(mosiData, byteCount, misoData, byteCount); //~ m_spi.transfer(mosiData8_FF0000); //~ m_spi.transfer(mosiData16_00FF00); //~ m_spi.transfer(mosiData16_0000FF); // //~ digitalWrite(Scope_Trigger_Pin, HIGH); // diagnostic Scope_Trigger_Pin // // Arduino: begin critical section: noInterrupts() masks all interrupt sources; end critical section with interrupts() //~ interrupts(); // Optional Diagnostic function to print SPI transactions if (onSPIprint) { onSPIprint(byteCount, (uint8_t*)mosiData, (uint8_t*)misoData); } // // VERIFY: SPIwrite24bits print diagnostic information //cmdLine.serial().printf(" MOSI->")); //cmdLine.serial().printf(" 0x")); //Serial.print( (mosiData8_FF0000 & 0xFF), HEX); //cmdLine.serial().printf(" 0x")); //Serial.print( (mosiData16_00FF00 & 0xFF), HEX); //cmdLine.serial().printf(" 0x")); //Serial.print( (mosiData16_0000FF & 0xFF), HEX); // hex dump mosiData[0..byteCount-1] #if 0 // HAS_MICROUSBSERIAL cmdLine_microUSBserial.serial().printf("\r\nSPI"); if (byteCount > 7) { cmdLine_microUSBserial.serial().printf(" byteCount:%d", byteCount); } cmdLine_microUSBserial.serial().printf(" MOSI->"); for (unsigned int byteIndex = 0; byteIndex < byteCount; byteIndex++) { cmdLine_microUSBserial.serial().printf(" 0x%2.2X", mosiData[byteIndex]); } // hex dump misoData[0..byteCount-1] cmdLine_microUSBserial.serial().printf(" MISO<-"); for (unsigned int byteIndex = 0; byteIndex < numBytesTransferred; byteIndex++) { cmdLine_microUSBserial.serial().printf(" 0x%2.2X", misoData[byteIndex]); } cmdLine_microUSBserial.serial().printf(" "); #endif #if 0 // HAS_DAPLINK_SERIAL cmdLine_DAPLINKserial.serial().printf("\r\nSPI"); if (byteCount > 7) { cmdLine_DAPLINKserial.serial().printf(" byteCount:%d", byteCount); } cmdLine_DAPLINKserial.serial().printf(" MOSI->"); for (unsigned int byteIndex = 0; byteIndex < byteCount; byteIndex++) { cmdLine_DAPLINKserial.serial().printf(" 0x%2.2X", mosiData[byteIndex]); } // hex dump misoData[0..byteCount-1] cmdLine_DAPLINKserial.serial().printf(" MISO<-"); for (unsigned int byteIndex = 0; byteIndex < numBytesTransferred; byteIndex++) { cmdLine_DAPLINKserial.serial().printf(" 0x%2.2X", misoData[byteIndex]); } cmdLine_DAPLINKserial.serial().printf(" "); #endif // VERIFY: DIAGNOSTIC: print MAX5715 device register write // TODO: MAX5715_print_register_verbose(mosiData8_FF0000, mosiData16_00FFFF); // TODO: print_verbose_SPI_diagnostic(mosiData16_FF00, mosiData16_00FF, misoData16_FF00, misoData16_00FF); // //int misoData16 = (misoData16_FF00 << 8) | misoData16_00FF; int misoData16 = (misoData[0] << 8) | misoData[1]; return misoData16; } // CODE GENERATOR: extern function requirement MAX11043::SPIreadWrite32bits // SPI read and write 32 bits // SPI interface to MAX11043 shift 32 bits mosiData into MAX11043 DIN // while simultaneously capturing 32 bits miso data from MAX11043 DOUT // int32_t MAX11043::SPIreadWrite32bits(int32_t mosiData32) { // CODE GENERATOR: extern function definition for function SPIreadWrite32bits // TODO1: CODE GENERATOR: extern function definition for standard SPI interface function SPIreadWrite32bits(int32_t mosiData32) size_t byteCount = 4; static char mosiData[4]; static char misoData[4]; mosiData[0] = (char)((mosiData32 >> 24) & 0xFF); // MSByte mosiData[1] = (char)((mosiData32 >> 16) & 0xFF); mosiData[2] = (char)((mosiData32 >> 8) & 0xFF); mosiData[3] = (char)((mosiData32 >> 0) & 0xFF); // LSByte // // Arduino: begin critical section: noInterrupts() masks all interrupt sources; end critical section with interrupts() //~ noInterrupts(); // //~ digitalWrite(Scope_Trigger_Pin, LOW); // diagnostic Scope_Trigger_Pin // unsigned int numBytesTransferred = m_spi.write(mosiData, byteCount, misoData, byteCount); //~ m_spi.transfer(mosiData8_FF0000); //~ m_spi.transfer(mosiData16_00FF00); //~ m_spi.transfer(mosiData16_0000FF); // //~ digitalWrite(Scope_Trigger_Pin, HIGH); // diagnostic Scope_Trigger_Pin // // Arduino: begin critical section: noInterrupts() masks all interrupt sources; end critical section with interrupts() //~ interrupts(); // Optional Diagnostic function to print SPI transactions if (onSPIprint) { onSPIprint(byteCount, (uint8_t*)mosiData, (uint8_t*)misoData); } // // VERIFY: SPIwrite24bits print diagnostic information //cmdLine.serial().printf(" MOSI->")); //cmdLine.serial().printf(" 0x")); //Serial.print( (mosiData8_FF0000 & 0xFF), HEX); //cmdLine.serial().printf(" 0x")); //Serial.print( (mosiData16_00FF00 & 0xFF), HEX); //cmdLine.serial().printf(" 0x")); //Serial.print( (mosiData16_0000FF & 0xFF), HEX); // hex dump mosiData[0..byteCount-1] #if 0 // HAS_MICROUSBSERIAL cmdLine_microUSBserial.serial().printf("\r\nSPI"); if (byteCount > 7) { cmdLine_microUSBserial.serial().printf(" byteCount:%d", byteCount); } cmdLine_microUSBserial.serial().printf(" MOSI->"); for (unsigned int byteIndex = 0; byteIndex < byteCount; byteIndex++) { cmdLine_microUSBserial.serial().printf(" 0x%2.2X", mosiData[byteIndex]); } // hex dump misoData[0..byteCount-1] cmdLine_microUSBserial.serial().printf(" MISO<-"); for (unsigned int byteIndex = 0; byteIndex < numBytesTransferred; byteIndex++) { cmdLine_microUSBserial.serial().printf(" 0x%2.2X", misoData[byteIndex]); } cmdLine_microUSBserial.serial().printf(" "); #endif #if 0 // HAS_DAPLINK_SERIAL cmdLine_DAPLINKserial.serial().printf("\r\nSPI"); if (byteCount > 7) { cmdLine_DAPLINKserial.serial().printf(" byteCount:%d", byteCount); } cmdLine_DAPLINKserial.serial().printf(" MOSI->"); for (unsigned int byteIndex = 0; byteIndex < byteCount; byteIndex++) { cmdLine_DAPLINKserial.serial().printf(" 0x%2.2X", mosiData[byteIndex]); } // hex dump misoData[0..byteCount-1] cmdLine_DAPLINKserial.serial().printf(" MISO<-"); for (unsigned int byteIndex = 0; byteIndex < numBytesTransferred; byteIndex++) { cmdLine_DAPLINKserial.serial().printf(" 0x%2.2X", misoData[byteIndex]); } cmdLine_DAPLINKserial.serial().printf(" "); #endif // VERIFY: DIAGNOSTIC: print MAX5715 device register write // TODO: MAX5715_print_register_verbose(mosiData8_FF0000, mosiData16_00FFFF); // TODO: print_verbose_SPI_diagnostic(mosiData16_FF00, mosiData16_00FF, misoData16_FF00, misoData16_00FF); // //int misoData32 = (misoData32_FF000000 << 24) | (misoData32_FF0000 << 16) | (misoData32_0000FF00 << 8) | misoData32_000000FF; int misoData32 = (misoData[0] << 24) | (misoData[1] << 16) | (misoData[2] << 8) | misoData[3]; return misoData32; } // TODO1: CODE GENERATOR: extern function GPIOoutputSHDN alias SHDNoutputValue // CODE GENERATOR: extern function requirement MAX11043::SHDNoutputValue // Assert MAX11043 SHDN pin : High = _____, Low = _____. // void MAX11043::SHDNoutputValue(int isLogicHigh) { // CODE GENERATOR: extern function definition for function SHDNoutputValue // TODO1: CODE GENERATOR: extern function definition for gpio interface function SHDNoutputValue // TODO1: CODE GENERATOR: gpio pin SHDN assuming member function m_SHDN_pin // TODO1: CODE GENERATOR: gpio direction output // m_SHDN_pin.output(); // only applicable to DigitalInOut // TODO1: CODE GENERATOR: gpio function Value m_SHDN_pin = isLogicHigh; } // TODO1: CODE GENERATOR: extern function GPIOoutputCONVRUN alias CONVRUNoutputValue // CODE GENERATOR: extern function requirement MAX11043::CONVRUNoutputValue // Assert MAX11043 CONVRUN pin : High = _____, Low = _____. // void MAX11043::CONVRUNoutputValue(int isLogicHigh) { // CODE GENERATOR: extern function definition for function CONVRUNoutputValue // TODO1: CODE GENERATOR: extern function definition for gpio interface function CONVRUNoutputValue // TODO1: CODE GENERATOR: gpio pin CONVRUN assuming member function m_CONVRUN_pin // TODO1: CODE GENERATOR: gpio direction output // m_CONVRUN_pin.output(); // only applicable to DigitalInOut // TODO1: CODE GENERATOR: gpio function Value m_CONVRUN_pin = isLogicHigh; } // TODO1: CODE GENERATOR: extern function GPIOoutputDACSTEP alias DACSTEPoutputValue // CODE GENERATOR: extern function requirement MAX11043::DACSTEPoutputValue // Assert MAX11043 DACSTEP pin : High = _____, Low = _____. // void MAX11043::DACSTEPoutputValue(int isLogicHigh) { // CODE GENERATOR: extern function definition for function DACSTEPoutputValue // TODO1: CODE GENERATOR: extern function definition for gpio interface function DACSTEPoutputValue // TODO1: CODE GENERATOR: gpio pin DACSTEP assuming member function m_DACSTEP_pin // TODO1: CODE GENERATOR: gpio direction output // m_DACSTEP_pin.output(); // only applicable to DigitalInOut // TODO1: CODE GENERATOR: gpio function Value m_DACSTEP_pin = isLogicHigh; } // TODO1: CODE GENERATOR: extern function GPIOoutputUP_slash_DWNb alias UP_slash_DWNboutputValue // CODE GENERATOR: extern function requirement MAX11043::UP_slash_DWNboutputValue // Assert MAX11043 UP_slash_DWNb pin : High = _____, Low = _____. // void MAX11043::UP_slash_DWNboutputValue(int isLogicHigh) { // CODE GENERATOR: extern function definition for function UP_slash_DWNboutputValue // TODO1: CODE GENERATOR: extern function definition for gpio interface function UP_slash_DWNboutputValue // TODO1: CODE GENERATOR: gpio pin UP_slash_DWNb assuming member function m_UP_slash_DWNb_pin // TODO1: CODE GENERATOR: gpio direction output // m_UP_slash_DWNb_pin.output(); // only applicable to DigitalInOut // TODO1: CODE GENERATOR: gpio function Value m_UP_slash_DWNb_pin = isLogicHigh; } // CODE GENERATOR: extern function requirement MAX11043::EOCinputWaitUntilLow // Wait for MAX11043 EOC pin low, indicating end of conversion. // Required when using any of the InternalClock modes. // void MAX11043::EOCinputWaitUntilLow() { // CODE GENERATOR: extern function definition for function EOCinputWaitUntilLow // TODO1: CODE GENERATOR: extern function definition for gpio interface function EOCinputWaitUntilLow // TODO1: CODE GENERATOR: gpio pin EOC assuming member function m_EOC_pin // TODO1: CODE GENERATOR: gpio direction input // m_EOC_pin.input(); // only applicable to DigitalInOut // TODO1: CODE GENERATOR: gpio function WaitUntilLow while (m_EOC_pin != 0) { // spinlock waiting for logic low pin state } } // CODE GENERATOR: extern function requirement MAX11043::EOCinputValue // Return the status of the MAX11043 EOC pin. // int MAX11043::EOCinputValue() { // CODE GENERATOR: extern function definition for function EOCinputValue // TODO1: CODE GENERATOR: extern function definition for gpio interface function EOCinputValue // TODO1: CODE GENERATOR: gpio pin EOC assuming member function m_EOC_pin // TODO1: CODE GENERATOR: gpio direction input // m_EOC_pin.input(); // only applicable to DigitalInOut // TODO1: CODE GENERATOR: gpio function Value return m_EOC_pin.read(); } // CODE GENERATOR: class member function definitions //---------------------------------------- // Menu item '!' // Initialize device // @return 1 on success; 0 on failure uint8_t MAX11043::Init(void) { //---------------------------------------- // TODO1: AC79 MAX11043 AIN0-AIN1 reference voltage, in Volts VRef_xxxxxx = 2.500; //---------------------------------------- // shadow of register ctrl CMD_r000_1001_dddd_dddd_CTRL ctrl = 0x01; //---------------------------------------- // set by Configure_PGA gain index register pga CMD_r000_1110_xxdd_xddd_PGA pgaGain = 1; //---------------------------------------- // init (based on old EV kit GUI) #warning "Not Implemented Yet: MAX11043::Init init..." // bool bOpResult = false; // String FWVersionString = "00"; // bool bDemoMode = true; // int scan_resolution = 0; // int scan_channels = 0; // int scan_bits = 0; // int sampleRateFactore = 0; // double sampleRate = 0; // unsigned long banks_requested = 0; // bool bScanMode = 0; //---------------------------------------- // Device ID Validation #warning "Not Implemented Yet: MAX11043::Init Device ID Validation..." // const uint32_t part_id_expect = 0x000F02; // uint32_t part_id_readback; // RegRead(xxxxxxxxxxxxCMD_r001_0001_xxxx_xxxx_xxxx_xxxx_xxxx_xddd_PART_ID, &part_id_readback); // if (part_id_readback != part_id_expect) return 0; //---------------------------------------- // write8 0x00 PD = 0x03 (Reset Registers; enter Standby mode) // RegWrite(xxxxxxxxxxxCMD_r000_0000_xxxx_xxdd_PD, PD_11_Reset); //---------------------------------------- // write8 0x00 PD = 0x00 (NOP) // RegWrite(xxxxxxxxxxxxCMD_r000_0000_xxxx_xxdd_PD, PD_00_Normal); //---------------------------------------- // success return 1; } //---------------------------------------- // Write a MAX11043 register. // // CMD_1aaa_aaaa_REGISTER_READ bit is cleared 0 indicating a write operation. // // MAX11043 register length can be determined by function RegSize. // // For 8-bit register size: // // SPI 16-bit transfer // // SPI MOSI = 0aaa_aaaa_dddd_dddd // // SPI MISO = xxxx_xxxx_xxxx_xxxx // // For 16-bit register size: // // SPI 24-bit or 32-bit transfer // // SPI MOSI = 0aaa_aaaa_dddd_dddd_dddd_dddd // // SPI MISO = xxxx_xxxx_xxxx_xxxx_xxxx_xxxx // // For 24-bit register size: // // SPI 32-bit transfer // // SPI MOSI = 0aaa_aaaa_dddd_dddd_dddd_dddd_dddd_dddd // // SPI MISO = xxxx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx // // @return 1 on success; 0 on failure uint8_t MAX11043::RegWrite(MAX11043_CMD_enum_t commandByte, uint32_t regData) { //---------------------------------------- // switch based on register address szie RegSize(commandByte) //commandByte = (MAX11043_CMD_enum_t)((commandByte &~ CMD_0aaa_aa10_RdAddr_ReadAnyRegister) & 0xFF); switch(RegSize(commandByte)) { case 8: // 8-bit register size { // SPI 16-bit transfer // SPI MOSI = 0aaa_aaaa_dddd_dddd // SPI MISO = xxxx_xxxx_xxxx_xxxx int16_t mosiData16 = ((int16_t)commandByte << 8) | ((int16_t)regData & 0xFF); SPIoutputCS(0); SPIwrite16bits(mosiData16); SPIoutputCS(1); } break; case 16: // 16-bit register size #warning "Not Verified Yet: MAX11043::RegWrite 16-bit SPIreadWrite32bits" { // SPI 24-bit or 32-bit transfer // SPI MOSI = 0aaa_aaaa_dddd_dddd_dddd_dddd // SPI MISO = xxxx_xxxx_xxxx_xxxx_xxxx_xxxx // SPI MOSI = 0aaa_aaaa_dddd_dddd_dddd_dddd_0000_0000 // SPI MISO = xxxx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx int32_t mosiData32 = ((int32_t)commandByte << 24) | (((int32_t)regData & 0xFFFF) << 8); SPIoutputCS(0); SPIreadWrite32bits(mosiData32); SPIoutputCS(1); } break; case 24: // 24-bit register size { // SPI 32-bit transfer // SPI MOSI = 0aaa_aaaa_dddd_dddd_dddd_dddd_dddd_dddd // SPI MISO = xxxx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx int32_t mosiData32 = ((int32_t)commandByte << 24) | ((int32_t)regData & 0x00FFFFFF); SPIoutputCS(0); SPIreadWrite32bits(mosiData32); SPIoutputCS(1); } break; } //---------------------------------------- // success return 1; } //---------------------------------------- // Read an 8-bit MAX11043 register // // CMD_1aaa_aaaa_REGISTER_READ bit is set 1 indicating a read operation. // // MAX11043 register length can be determined by function RegSize. // // For 8-bit register size: // // SPI 16-bit transfer // // SPI MOSI = 1aaa_aaaa_0000_0000 // // SPI MISO = xxxx_xxxx_dddd_dddd // // For 16-bit register size: // // SPI 24-bit or 32-bit transfer // // SPI MOSI = 1aaa_aaaa_0000_0000_0000_0000 // // SPI MISO = xxxx_xxxx_dddd_dddd_dddd_dddd // // For 24-bit register size: // // SPI 32-bit transfer // // SPI MOSI = 1aaa_aaaa_0000_0000_0000_0000_0000_0000 // // SPI MISO = xxxx_xxxx_dddd_dddd_dddd_dddd_dddd_dddd // // // @return 1 on success; 0 on failure uint8_t MAX11043::RegRead(MAX11043_CMD_enum_t commandByte, uint32_t* ptrRegData) { //---------------------------------------- // switch based on register address szie RegSize(regAddress) //commandByte = (MAX11043_CMD_enum_t)((commandByte &~ CMD_0aaa_aa10_RdAddr_ReadAnyRegister) & 0xFF); switch(RegSize(commandByte)) { case 8: // 8-bit register size { // SPI 16-bit transfer // SPI MOSI = 1aaa_aaaa_0000_0000 // SPI MISO = xxxx_xxxx_dddd_dddd int16_t mosiData16 = ((CMD_0aaa_aa10_RdAddr_ReadAnyRegister | (int16_t)commandByte) << 8) | ((int16_t)0); SPIoutputCS(0); int16_t misoData16 = SPIreadWrite16bits(mosiData16); SPIoutputCS(1); (*ptrRegData) = (misoData16 & 0x00FF); } break; case 16: // 16-bit register size #warning "Not Verified Yet: MAX11043::RegRead 16-bit SPIreadWrite32bits" { // SPI 24-bit or 32-bit transfer // SPI MOSI = 1aaa_aaaa_0000_0000_0000_0000 // SPI MISO = xxxx_xxxx_dddd_dddd_dddd_dddd // SPI MOSI = 1aaa_aaaa_0000_0000_0000_0000_0000_0000 // SPI MISO = xxxx_xxxx_dddd_dddd_dddd_dddd_xxxx_xxxx int32_t mosiData32 = ((CMD_0aaa_aa10_RdAddr_ReadAnyRegister | (int32_t)commandByte) << 24); SPIoutputCS(0); int32_t misoData32 = SPIreadWrite32bits(mosiData32); SPIoutputCS(1); (*ptrRegData) = ((misoData32 >> 8) & 0x00FFFF); } break; case 24: // 24-bit register size { // SPI 32-bit transfer // SPI MOSI = 1aaa_aaaa_0000_0000_0000_0000_0000_0000 // SPI MISO = xxxx_xxxx_dddd_dddd_dddd_dddd_dddd_dddd int32_t mosiData32 = ((CMD_0aaa_aa10_RdAddr_ReadAnyRegister | (int32_t)commandByte) << 24); SPIoutputCS(0); int32_t misoData32 = SPIreadWrite32bits(mosiData32); SPIoutputCS(1); (*ptrRegData) = (misoData32 & 0x00FFFFFF); } break; } //---------------------------------------- // success return 1; } //---------------------------------------- // Return the size of a MAX11043 register // // @return 8 for 8-bit, 16 for 16-bit, 24 for 24-bit, else 0 for undefined register size uint8_t MAX11043::RegSize(MAX11043_CMD_enum_t commandByte) { //---------------------------------------- // switch based on register address value regAddress // commandByte = (MAX11043_CMD_enum_t)((commandByte &~ CMD_0aaa_aa10_RdAddr_ReadAnyRegister) & 0xFF); switch(commandByte) { default: case CMD_0aaa_aa00_WrAddr_WriteAnyRegister: case CMD_0aaa_aa10_RdAddr_ReadAnyRegister: case CMD_1111_1111_NoOperationMOSIidleHigh: return 0; // undefined register size case CMD_0001_1110_d8_Rd07_Status: case CMD_0101_0100_d8_Wr15_FilterCAddress: case CMD_0101_0110_d8_Rd15_FilterCAddress: case CMD_0110_0000_d8_Wr18_FlashMode: case CMD_0110_0010_d8_Rd18_FlashMode: return 8; // 8-bit register size case CMD_0010_0000_d16_Wr08_Configuration: case CMD_0010_0010_d16_Rd08_Configuration: case CMD_0010_0100_d16_Wr09_DAC: case CMD_0010_0110_d16_Rd09_DAC: case CMD_0010_1000_d16_Wr0A_DACStep: case CMD_0010_1010_d16_Rd0A_DACStep: case CMD_0010_1100_d16_Wr0B_DACHDACL: case CMD_0010_1110_d16_Rd0B_DACHDACL: case CMD_0011_0000_d16_Wr0C_ConfigA: case CMD_0011_0010_d16_Rd0C_ConfigA: case CMD_0011_0100_d16_Wr0D_ConfigB: case CMD_0011_0110_d16_Rd0D_ConfigB: case CMD_0011_1000_d16_Wr0E_ConfigC: case CMD_0011_1010_d16_Rd0E_ConfigC: case CMD_0011_1100_d16_Wr0F_ConfigD: case CMD_0011_1110_d16_Rd0F_ConfigD: case CMD_0100_0000_d16_Wr10_Reference: case CMD_0100_0010_d16_Rd10_Reference: case CMD_0100_0100_d16_Wr11_AGain: case CMD_0100_0110_d16_Rd11_AGain: case CMD_0100_1000_d16_Wr12_BGain: case CMD_0100_1010_d16_Rd12_BGain: case CMD_0100_1100_d16_Wr13_CGain: case CMD_0100_1110_d16_Rd13_CGain: case CMD_0101_0000_d16_Wr14_DGain: case CMD_0101_0010_d16_Rd14_DGain: case CMD_0110_0100_d16_Wr19_FlashAddr: case CMD_0110_0110_d16_Rd19_FlashAddr: case CMD_0110_1000_d16_Wr1A_FlashDataIn: case CMD_0110_1010_d16_Rd1A_FlashDataIn: case CMD_0110_1110_d16_Rd1B_FlashDataOut: return 16; // 16-bit register size case CMD_0000_0010_d24_Rd00_ADCa: case CMD_0000_0110_d24_Rd01_ADCb: case CMD_0000_1010_d24_Rd02_ADCc: case CMD_0000_1110_d24_Rd03_ADCd: return 24; // 24-bit register size case CMD_0001_0010_d24_d24_Rd04_ADCab: case CMD_0001_0110_d24_d24_Rd05_ADCcd: return 48; // 24-bit register size case CMD_0001_1010_d24_d24_d24_d24_Rd06_ADCabcd: return 96; // 24-bit register size case CMD_0101_1000_d32_Wr16_FilterCDataOut: case CMD_0101_1010_d32_Rd16_FilterCDataOut: case CMD_0101_1100_d32_Wr17_FilterCDataIn: case CMD_0101_1110_d32_Rd17_FilterCDataIn: return 32; // 32-bit register size } } //---------------------------------------- // Return the address field of a MAX11043 register // // @return register address field as given in datasheet uint8_t MAX11043::RegAddrOfCommand(MAX11043_CMD_enum_t commandByte) { //---------------------------------------- // extract register address value from command byte return (uint8_t)((commandByte &~ 0x83) >> 2); // CMD_0aaa_aa10_RdAddr_ReadAnyRegister } //---------------------------------------- // Test whether a command byte is a register read command // // @return true if command byte is a register read command uint8_t MAX11043::IsRegReadCommand(MAX11043_CMD_enum_t commandByte) { //---------------------------------------- // Test whether a command byte is a register read command return (commandByte &~ 0x02) ? 1 : 0; // CMD_0aaa_aa10_RdAddr_ReadAnyRegister } //---------------------------------------- // Return the name of a MAX11043 register // // @return null-terminated constant C string containing register name or empty string const char* MAX11043::RegName(MAX11043_CMD_enum_t commandByte) { //---------------------------------------- // switch based on register address value regAddress // commandByte = (MAX11043_CMD_enum_t)((commandByte &~ CMD_0aaa_aa10_RdAddr_ReadAnyRegister) & 0xFF); switch(commandByte) { default: return ""; // undefined register // case CMD_0aaa_aa00_WrAddr_WriteAnyRegister: return "_______"; // case CMD_0aaa_aa10_RdAddr_ReadAnyRegister: return "_______"; // case CMD_1111_1111_NoOperationMOSIidleHigh: return "_______"; case CMD_0000_0010_d24_Rd00_ADCa: return "ADCa"; case CMD_0000_0110_d24_Rd01_ADCb: return "ADCb"; case CMD_0000_1010_d24_Rd02_ADCc: return "ADCc"; case CMD_0000_1110_d24_Rd03_ADCd: return "ADCd"; case CMD_0001_0010_d24_d24_Rd04_ADCab: return "ADCab"; case CMD_0001_0110_d24_d24_Rd05_ADCcd: return "ADCcd"; case CMD_0001_1010_d24_d24_d24_d24_Rd06_ADCabcd: return "ADCabcd"; case CMD_0001_1110_d8_Rd07_Status: return "Status"; case CMD_0010_0000_d16_Wr08_Configuration: return "Configuration"; case CMD_0010_0010_d16_Rd08_Configuration: return "Configuration"; case CMD_0010_0100_d16_Wr09_DAC: return "DAC"; case CMD_0010_0110_d16_Rd09_DAC: return "DAC"; case CMD_0010_1000_d16_Wr0A_DACStep: return "DACStep"; case CMD_0010_1010_d16_Rd0A_DACStep: return "DACStep"; case CMD_0010_1100_d16_Wr0B_DACHDACL: return "DACHDACL"; case CMD_0010_1110_d16_Rd0B_DACHDACL: return "DACHDACL"; case CMD_0011_0000_d16_Wr0C_ConfigA: return "ConfigA"; case CMD_0011_0010_d16_Rd0C_ConfigA: return "ConfigA"; case CMD_0011_0100_d16_Wr0D_ConfigB: return "ConfigB"; case CMD_0011_0110_d16_Rd0D_ConfigB: return "ConfigB"; case CMD_0011_1000_d16_Wr0E_ConfigC: return "ConfigC"; case CMD_0011_1010_d16_Rd0E_ConfigC: return "ConfigC"; case CMD_0011_1100_d16_Wr0F_ConfigD: return "ConfigD"; case CMD_0011_1110_d16_Rd0F_ConfigD: return "ConfigD"; case CMD_0100_0000_d16_Wr10_Reference: return "Reference"; case CMD_0100_0010_d16_Rd10_Reference: return "Reference"; case CMD_0100_0100_d16_Wr11_AGain: return "AGain"; case CMD_0100_0110_d16_Rd11_AGain: return "AGain"; case CMD_0100_1000_d16_Wr12_BGain: return "BGain"; case CMD_0100_1010_d16_Rd12_BGain: return "BGain"; case CMD_0100_1100_d16_Wr13_CGain: return "CGain"; case CMD_0100_1110_d16_Rd13_CGain: return "CGain"; case CMD_0101_0000_d16_Wr14_DGain: return "DGain"; case CMD_0101_0010_d16_Rd14_DGain: return "DGain"; case CMD_0101_0100_d8_Wr15_FilterCAddress: return "FilterCAddress"; case CMD_0101_0110_d8_Rd15_FilterCAddress: return "FilterCAddress"; case CMD_0101_1000_d32_Wr16_FilterCDataOut: return "FilterCDataOut"; case CMD_0101_1010_d32_Rd16_FilterCDataOut: return "FilterCDataOut"; case CMD_0101_1100_d32_Wr17_FilterCDataIn: return "FilterCDataIn"; case CMD_0101_1110_d32_Rd17_FilterCDataIn: return "FilterCDataIn"; case CMD_0110_0000_d8_Wr18_FlashMode: return "FlashMode"; case CMD_0110_0010_d8_Rd18_FlashMode: return "FlashMode"; case CMD_0110_0100_d16_Wr19_FlashAddr: return "FlashAddr"; case CMD_0110_0110_d16_Rd19_FlashAddr: return "FlashAddr"; case CMD_0110_1000_d16_Wr1A_FlashDataIn: return "FlashDataIn"; case CMD_0110_1010_d16_Rd1A_FlashDataIn: return "FlashDataIn"; case CMD_0110_1110_d16_Rd1B_FlashDataOut: return "FlashDataOut"; } } // End of file