Repository for verBOT robot project, hopefully featuring two branches: Dev/Test and Prod.
Dependencies: PM2_Libary Eigen
Diff: main.cpp
- Revision:
- 40:7e6b7aec3947
- Parent:
- 39:c6475c899b61
- Child:
- 41:8a63b01edd7e
--- a/main.cpp Mon May 16 11:05:58 2022 +0200 +++ b/main.cpp Tue May 17 12:35:58 2022 +0000 @@ -17,67 +17,49 @@ int main() { // while loop gets executed every main_task_period_ms milliseconds - const int main_task_period_ms = 50; // define main task period time in ms e.g. 50 ms -> main task runns 20 times per second + const int main_task_period_ms = 100; // define main task period time in ms e.g. 50 ms -> main task runns 20 times per second Timer main_task_timer; // create Timer object which we use to run the main task every main task period time in ms + // a coutner + uint32_t main_task_cntr = 0; + // led on nucleo board DigitalOut user_led(LED1); // create DigitalOut object to command user led - // additional Led - DigitalOut extra_led(PB_9); // create DigitalOut object to command extra led (do add an aditional resistor, e.g. 220...500 Ohm) - - // mechanical button - DigitalIn mechanical_button(PC_5); // create DigitalIn object to evaluate extra mechanical button, you need to specify the mode for proper usage, see below - // Sharp GP2Y0A41SK0F, 4-40 cm IR Sensor float ir_distance_mV = 0.0f; // define variable to store measurement AnalogIn ir_analog_in(PC_2); // create AnalogIn object to read in infrared distance sensor, 0...3.3V are mapped to 0...1 + // create SensorBar object for sparkfun line follower array, only use this if it is connected (blocking your code if not) + float sensor_bar_avgAngleRad = 0.0f; + I2C i2c(PB_9, PB_8); + //SensorBar sensor_bar(i2c, 0.1175f); // second input argument is distance from bar to wheel axis + // 78:1, 100:1, ... Metal Gearmotor 20Dx44L mm 12V CB DigitalOut enable_motors(PB_15); // create DigitalOut object to enable dc motors - const float pwm_period_s = 0.00005f; // define pwm period time in seconds and create FastPWM objects to command dc motor M1 - FastPWM pwm_M1(PB_13); // motor M1 is used open loop - FastPWM pwm_M2(PA_9); // motor M2 is closed-loop speed controlled (angle velocity) - FastPWM pwm_M3(PA_10); // motor M3 is closed-loop position controlled (angle controlled) + FastPWM pwm_M1(PB_13); // motor M1 is closed-loop speed controlled (angle velocity) + FastPWM pwm_M2(PA_9); // motor M2 is closed-loop position controlled (angle controlled) EncoderCounter encoder_M1(PA_6, PC_7); // create encoder objects to read in the encoder counter values EncoderCounter encoder_M2(PB_6, PB_7); - EncoderCounter encoder_M3(PA_0, PA_1); // create SpeedController and PositionController objects, default parametrization is for 78.125:1 gear box const float max_voltage = 12.0f; // define maximum voltage of battery packs, adjust this to 6.0f V if you only use one batterypack const float counts_per_turn = 20.0f * 78.125f; // define counts per turn at gearbox end: counts/turn * gearratio const float kn = 180.0f / 12.0f; // define motor constant in rpm per V - const float k_gear = 100.0f / 78.125f; // define additional ratio in case you are using a dc motor with a different gear box, e.g. 100:1 - const float kp = 0.1f; // define custom kp, this is the default speed controller gain for gear box 78.125:1 - - // SpeedController speedController_M2(counts_per_turn, kn, max_voltage, pwm_M2, encoder_M2); // default 78.125:1 gear box with default contoller parameters - SpeedController speedController_M2(counts_per_turn * k_gear, kn / k_gear, max_voltage, pwm_M2, encoder_M2); // parameters adjusted to 100:1 gear + //const float k_gear = 100.0f / 78.125f; // define additional ratio in case you are using a dc motor with a different gear box, e.g. 100:1 + //const float kp = 0.1f; // define custom kp, this is the default speed controller gain for gear box 78.125:1 - float max_speed_rps = 0.5f; // define maximum speed that the position controller is changig the speed, has to be smaller or equal to kn * max_voltage - // PositionController positionController_M3(counts_per_turn, kn, max_voltage, pwm_M3, encoder_M3); // default 78.125:1 gear with default contoller parameters - PositionController positionController_M3(counts_per_turn * k_gear, kn / k_gear, max_voltage, pwm_M3, encoder_M3); // parameters adjusted to 100:1 gear, we need a different speed controller gain here - positionController_M3.setSpeedCntrlGain(kp * k_gear); - positionController_M3.setMaxVelocityRPS(max_speed_rps); + SpeedController speedController_M1(counts_per_turn, kn, max_voltage, pwm_M1, encoder_M1); // default 78.125:1 gear box with default contoller parameters + //SpeedController speedController_M1(counts_per_turn * k_gear, kn / k_gear, max_voltage, pwm_M1, encoder_M1); // parameters adjusted to 100:1 gear - // Futaba Servo S3001 20mm 3kg Analog - Servo servo_S1(PB_2); // create servo objects - Servo servo_S2(PC_8); - float servo_S1_angle = 0; // servo S1 normalized angle - float servo_S2_angle = 0; // servo S2 normalized angle - const int servo_period_mus = 20000; // define servo period time in mus - - int servo_counter = 0; // define servo counter, this is an additional variable to make the servos move - const int loops_per_seconds = static_cast<int>(ceilf(1.0f/(0.001f*(float)main_task_period_ms))); // define loops per second - - // Groove Ultrasonic Ranger V2.0 - float us_distance_cm = 0.0f; // define variable to store measurement - RangeFinder us_range_finder(PB_12, 5782.0f, 0.02f, 17500); // create range finder object (ultra sonic distance sensor), 20 Hz parametrization - // RangeFinder us_range_finder(PB_12, 5782.0f, 0.02f, 7000); // create range finder object (ultra sonic distance sensor), 50 Hz parametrization - - // LSM9DS1 IMU, carefull: not all PES boards have an imu (chip shortage) - // LSM9DS1 imu(PC_9, PA_8); // create LSM9DS1 comunication object, if you want to be able to use the imu you need to #include "LSM9DS1_i2c.h" + PositionController positionController_M2(counts_per_turn, kn, max_voltage, pwm_M2, encoder_M2); // default 78.125:1 gear with default contoller parameters + //PositionController positionController_M2(counts_per_turn * k_gear, kn / k_gear, max_voltage, pwm_M2, encoder_M2); // parameters adjusted to 100:1 gear, we need a different speed controller gain here + //positionController_M2.setSpeedCntrlGain(kp * k_gear); + // define maximum speed that the position controller is changig the speed, has to be smaller or equal to kn * max_voltage + float max_speed_rps = 0.5f; + positionController_M2.setMaxVelocityRPS(max_speed_rps); // attach button fall and rise functions to user button object user_button.fall(&user_button_pressed_fcn); @@ -86,98 +68,45 @@ // start timer main_task_timer.start(); - // set pullup mode: add resistor between pin and 3.3 V, so that there is a defined potential - mechanical_button.mode(PullUp); - // enable hardwaredriver dc motors: 0 -> disabled, 1 -> enabled enable_motors = 1; - // motor M1 is used open-loop, we need to initialize the pwm and set pwm output to zero at the beginning, range: 0...1 -> u_min...u_max: 0.5 -> 0 V - pwm_M1.period(pwm_period_s); - pwm_M1.write(0.5f); - - // set the soft pwm period for the servo objects - servo_S1.SetPeriod(servo_period_mus); - servo_S2.SetPeriod(servo_period_mus); - while (true) { // this loop will run forever main_task_timer.reset(); + + // read analog input + ir_distance_mV = 1.0e3f * ir_analog_in.read() * 3.3f; + + // read SensorBar, only use this if it is connected (blocking your code if not) + //if (sensor_bar.isAnyLedActive()) { + // sensor_bar_avgAngleRad = sensor_bar.getAvgAngleRad(); + //} if (do_execute_main_task) { - // read analog input - ir_distance_mV = 1.0e3f * ir_analog_in.read() * 3.3f; - - // command dc motors if mechanical button is pressed - if (mechanical_button.read()) { - pwm_M1.write(0.75f); // write output voltage to motor M1 - speedController_M2.setDesiredSpeedRPS(0.5f); // set a desired speed for speed controlled dc motors M2 - positionController_M3.setDesiredRotation(1.5f); // set a desired rotation for position controlled dc motors M3 - } else { - pwm_M1.write(0.5f); - speedController_M2.setDesiredSpeedRPS(0.0f); - positionController_M3.setDesiredRotation(0.0f); - } - - // check if servos are enabled - if (!servo_S1.isEnabled()) servo_S1.Enable(); - if (!servo_S2.isEnabled()) servo_S2.Enable(); - // command servo position, this needs to be calibrated - servo_S1.SetPosition(servo_S1_angle); - if (servo_S1_angle < 1.0f & servo_counter%loops_per_seconds == 0 & servo_counter != 0) { - servo_S1_angle += 0.01f; - } - servo_S2.SetPosition(servo_S2_angle); - if (servo_S2_angle < 1.0f & servo_counter%loops_per_seconds == 0 & servo_counter != 0) { - servo_S2_angle += 0.01f; - } - servo_counter++; - - // read ultra sonic distance sensor - us_distance_cm = us_range_finder.read_cm(); - - // visual feedback that the main task is executed - extra_led = 1; + speedController_M1.setDesiredSpeedRPS(0.5f); + positionController_M2.setDesiredRotation(1.5f); } else { - ir_distance_mV = 0.0f; - - pwm_M1.write(0.5f); - speedController_M2.setDesiredSpeedRPS(0.0f); - positionController_M3.setDesiredRotation(0.0f); - - servo_S1_angle = 0; - servo_S2_angle = 0; - // servo_S1.SetPosition(servo_S1_angle); - // servo_S2.SetPosition(servo_S2_angle); - if (servo_S1.isEnabled()) servo_S1.Disable(); - if (servo_S2.isEnabled()) servo_S2.Disable(); - - us_distance_cm = 0.0f; - - extra_led = 0; + speedController_M1.setDesiredSpeedRPS(0.0f); + positionController_M2.setDesiredRotation(0.0f); + } - user_led = !user_led; - + // user_led is switching its state every 100 runs + if ( (main_task_cntr%(1000 / main_task_cntr) == 0) && (main_task_cntr!=0) ) { + user_led = !user_led; + } + main_task_cntr++; + // do only output via serial what's really necessary (this makes your code slow) - printf("IR sensor (mV): %3.3f, Encoder M1: %3d, Speed M2 (rps) %3.3f, Position M3 (rot): %3.3f, Servo S1 angle (normalized): %3.3f, Servo S2 angle (normalized): %3.3f, US sensor (cm): %3.3f\r\n", + printf("IR sensor (mV): %3.3f, SensorBar angle (rad): %3.3f, Speed M1 (rps) %3.3f, Position M2 (rot): %3.3f\r\n", ir_distance_mV, - encoder_M1.read(), - speedController_M2.getSpeedRPS(), - positionController_M3.getRotation(), - servo_S1_angle, - servo_S2_angle, - us_distance_cm); - - // read out the imu, the actual frames of the sensor reading needs to be figured out - // imu.updateGyro(); - // imu.updateAcc(); - // imu.updateMag(); - // printf("%.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f\r\n", imu.readGyroX(), imu.readGyroY(), imu.readGyroZ(), - // imu.readAccX(), imu.readAccY(), imu.readAccZ(), imu.readMagX(), imu.readMagY(), imu.readMagZ()); + sensor_bar_avgAngleRad, + speedController_M1.getSpeedRPS(), + positionController_M2.getRotation()); // read timer and make the main thread sleep for the remaining time span (non blocking) int main_task_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(main_task_timer.elapsed_time()).count();