This is code is part of a Technion course project in advanced IoT, implementing a device to read and transmit sensors data from a Formula racing car built by students at Technion - Israel Institute of Technology.
Fork of DISCO-L072CZ-LRWAN1_LoRa_PingPong by
This is code is part of a Technion course project in advanced IoT, implementing a device to read and transmit sensors data from a Formula racing car built by students at Technion - Israel Institute of Technology.
How to install
- Create an account on Mbed: https://os.mbed.com/account/signup/
- Import project into Compiler
- In the Program Workspace select "Formula_Nucleo_Reader"
- Select a Platform like so:
- Click button at top-left
- Add Board
- Search "B-L072Z-LRWAN1" and then "Add to your Mbed Compiler"
- Finally click "Compile", if the build was successful, the binary would download automatically
- To install it on device simply plug it in to a PC, open device drive and drag then drop binary file in it
SX1276GenericLib/Arduino-mbed-APIs/arduino-d21.cpp
- Committer:
- wardm
- Date:
- 2018-05-19
- Revision:
- 12:02d779e8c4f6
File content as of revision 12:02d779e8c4f6:
/* * The file is Licensed under the Apache License, Version 2.0 * (c) 2017 Helmut Tschemernjak * 30826 Garbsen (Hannover) Germany */ #ifdef ARDUINO using namespace std; #include "arduino-mbed.h" #include "arduino-util.h" #if defined(__SAMD21G18A__) || defined(__SAMD21J18A__) /* * __SAMD21J18A__ is the SamD21 Explained Board * __SAMD21G18A__ is Genuino Zero-Board (compatible with the LoRa board) */ int CPUID(uint8_t *buf, int maxSize, uint32_t xorval) { int f1 = 0x55d5f559; // D21 128-bit UUID, first 32 bit. int f2 = 0x55d5f515; // D21 128-bit UUID, next 96 bit. if (maxSize >= 16 ) { int cnt = 0; int fa = f1 ^ xorval; uint32_t *first = (uint32_t *)fa; uint8_t *dst = (uint8_t *)first; for (int i = 0; i < (int)sizeof(uint32_t); i++) *buf++ = *dst++; cnt += 4; int fb = f2 ^ xorval; uint32_t *next = (uint32_t *)fb; dst = (uint8_t *)next; for (int i = 0; i < (int)sizeof(uint32_t)*3; i++) *buf++ = *dst++; cnt += 12; return cnt; } return 0; } /* * see tcc.h is automatically included from: * Arduino15/packages/arduino/tools/CMSIS-Atmel/1.1.0/CMSIS/ * Device/ATMEL/samd21/include/component/tcc.h * See also tcc.c (ASF/mbed, e.g. Tcc_get_count_value) */ static void initTimer(Tcc *t); static uint32_t getTimerCount(Tcc *t); /* * The Atmel D21 has three TCC timer, other models have more. */ const struct TCC_config { Tcc *tcc_ptr; IRQn_Type tcc_irq; uint8_t nbits; } TCC_data[] { { TCC0, TCC0_IRQn, 24 }, { TCC1, TCC1_IRQn, 24 }, { TCC2, TCC2_IRQn, 16 }, { NULL, (IRQn_Type)NULL, 0 } }; /* * We preferably use the TCC timers because it supports 24-bit counters * versus TC Timer which supports only 8 or 16 bit counters only. * TCC0/1/2 timer work on the D21 using Arduino Zero. */ #define USE_TCC_TIMEOUT 0 // 0=TCC0, 1=TTC1, 2=TTC2 (see TCC_data) #define USE_TCC_TICKER 1 /* * every 21333 ns equals one tick (1/(48000000/1024)) // prescaler 1024, 48 MHz * every 61035 ns equals one tick (1/(32768/2)) // prescaler 2, 32 kHz * COUNT*DIVIDER*SECS until interrupt * CPU 48 MHz = (65536*1024)/1.398636s * RTC 32 kHz = (65536*2)/4.0s */ #define NS_PER_CLOCK_CPU 21333 // ns secs per clock #define NS_PER_CLOCK_RTC 61035 // ns secs per clock #define NS_PER_CLOCK NS_PER_CLOCK_RTC /* ----------------- TICKER TIMER CODE ----------------------*/ /* * The global ns_counter contains the time in ns from the last time * the counter has been wrapped. It cannot be used directly because the * current counter has to be added fore using it. Use instead * ns_getTicker(), us_ ns_getTicker(), ms_getTicker() */ uint64_t ticker_ns; static bool initTickerDone = false; uint64_t ns_getTicker(void) { Tcc *t = TCC_data[USE_TCC_TICKER].tcc_ptr; if (!initTickerDone) { initTimer(t); initTickerDone = true; // set counter top to max 16 bit for testing // t->PER.bit.PER = 0xffff; // while (t->SYNCBUSY.bit.PER == 1); // wait for sync t->CTRLA.reg |= TCC_CTRLA_ENABLE ; // Enable TC while (t->SYNCBUSY.bit.ENABLE == 1); // wait for sync } /* * if we are called from the interrupt level, the counter contains * somehow wrong data, therfore we needs to read it twice. * Another option was to add a little wait (loop 500x) * in the TCC_TIMEOUT interrupt handler. */ if (SCB->ICSR & SCB_ICSR_VECTACTIVE_Msk) // check if we are in the interrupt getTimerCount(t); uint64_t counter_us = (uint64_t)NS_PER_CLOCK * (uint64_t)getTimerCount(t); uint64_t ns = ticker_ns + counter_us; return ns; } #if USE_TCC_TICKER == 0 void TCC0_Handler() #elif USE_TCC_TICKER == 1 void TCC1_Handler() #elif USE_TCC_TICKER == 2 void TCC2_Handler() #endif { Tcc *t = TCC_data[USE_TCC_TICKER].tcc_ptr; /* * Overflow means the timer top exeeded */ if (t->INTFLAG.bit.OVF == 1) { // A overflow caused the interrupt t->INTFLAG.bit.OVF = 1; // writing a one clears the flag ovf flag // ser->println("T_OVF"); /* * reading the count once is needed, otherwise * it will not wrap correct. */ getTimerCount(t); int bits = TCC_data[USE_TCC_TICKER].nbits; int maxCounts = (uint32_t)(1<<bits); ticker_ns += (uint64_t)NS_PER_CLOCK * (uint64_t)maxCounts; } if (t->INTFLAG.bit.MC0 == 1) { // A compare to cc0 caused the interrupt t->INTFLAG.bit.MC0 = 1; // writing a one clears the MCO (match capture) flag // ser->println("T_MC0"); } } /* ----------------- SUPPORT CODE FOR TCC TIMERS----------------------*/ static bool initTimerDone = false; static void initTimer(Tcc *t) { /* * enable clock for TCC, see gclk.h * GCLK_CLKCTRL_GEN_GCLK0 for 48 Mhz CPU * GCLK_CLKCTRL_GEN_GCLK1 for 32k extern crystal XOSC32K (ifdef CRYSTALLESS) * GCLK_CLKCTRL_GEN_GCLK1 for 32k internal OSC32K * see Arduino: arduino/hardware/samd/1.6.15/cores/arduino/startup.c * Use TCC_CTRLA_PRESCALER_DIV1024 for for 48 Mhz clock * Use TCC_CTRLA_PRESCALER_DIV2 for 32k clock */ if (t == TCC0 || t == TCC1) { REG_GCLK_CLKCTRL = (uint16_t) (GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK1 | GCLK_CLKCTRL_ID_TCC0_TCC1); } else if (t == TCC2) { REG_GCLK_CLKCTRL = (uint16_t) (GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK1 | GCLK_CLKCTRL_ID_TCC2_TC3_Val); } while (GCLK->STATUS.bit.SYNCBUSY == 1); // wait for sync t->CTRLA.reg &= ~TCC_CTRLA_ENABLE; // Disable TCC while (t->SYNCBUSY.bit.ENABLE == 1); // wait for sync t->CTRLA.reg |= (TCC_CTRLA_PRESCALER_DIV2 | TCC_CTRLA_RUNSTDBY); // Set perscaler t->WAVE.reg |= TCC_WAVE_WAVEGEN_NFRQ; // Set wave form configuration while (t->SYNCBUSY.bit.WAVE == 1); // wait for sync t->PER.bit.PER = 0xffffff; // set counter top to max 24 bit while (t->SYNCBUSY.bit.PER == 1); // wait for sync // the compare counter TC->CC[0].reg will be set in the startTimer // after the timeout calculation is known. // Interrupts t->INTENSET.reg = 0; // disable all interrupts t->INTENSET.bit.OVF = 1; // enable overfollow t->INTENSET.bit.MC0 = 1; // enable compare match to CC0 const struct TCC_config *cp = &TCC_data[0]; while (cp->tcc_ptr) { if (cp->tcc_ptr == t) { NVIC_EnableIRQ(cp->tcc_irq); // Enable InterruptVector break; } cp++; } } #if 0 // Atmel ASF Code static uint32_t getTimerCount(Tcc *t) { uint32_t last_cmd; /* Wait last command done */ do { while (t->SYNCBUSY.bit.CTRLB); /* Wait for sync */ last_cmd = t->CTRLBSET.reg & TCC_CTRLBSET_CMD_Msk; if (TCC_CTRLBSET_CMD_NONE == last_cmd) { /* Issue read command and break */ t->CTRLBSET.bit.CMD = TCC_CTRLBSET_CMD_READSYNC_Val; break; } else if (TCC_CTRLBSET_CMD_READSYNC == last_cmd) { /* Command have been issued */ break; } } while (1); while (t->SYNCBUSY.bit.COUNT); /* Wait for sync */ return t->COUNT.reg; } #endif static uint32_t getTimerCount(Tcc *t) { noInterrupts(); while (t->SYNCBUSY.bit.CTRLB); /* Wait for sync */ t->CTRLBSET.bit.CMD = TCC_CTRLBSET_CMD_READSYNC_Val; /* Issue read command and break */ while (t->SYNCBUSY.bit.COUNT); /* Wait for sync */ uint32_t count = t->COUNT.reg; interrupts(); return count; } Tcc *getTimeout_tcc(void) { return TCC_data[USE_TCC_TIMEOUT].tcc_ptr; } void stopTimer(Tcc *t) { t->CTRLA.reg &= ~TCC_CTRLA_ENABLE; // Disable TC while (t->SYNCBUSY.bit.ENABLE == 1); // wait for sync } /* ----------------- TIMEOUT TIMER CODE ----------------------*/ void startTimer(Tcc *t, uint64_t delay_ns) { if (!initTimerDone) { initTimer(t); // initial setup with stopped timer initTimerDone = true; } stopTimer(t); // avoid timer interrupts while calculating /* * every 21333 ns equals one tick (1/(48000000/1024)) * COUNT*DIVIDER*SECS until interrupt * 48 Mhz = (65536*1024)/1.398636s */ uint64_t nclocks = (uint64_t)delay_ns; nclocks /= (uint64_t)NS_PER_CLOCK; int nCounts = nclocks; int bits = TCC_data[USE_TCC_TIMEOUT].nbits; int maxCounts = (uint32_t)(1<<bits)-1; if (nCounts > maxCounts) // if count exceeds timer capacity nCounts = maxCounts; // set the largest posible count. if (nCounts <= 0) nCounts = 1; t->CC[0].bit.CC = nCounts; while (t->SYNCBUSY.bit.CC0 == 1); // wait for sync t->CTRLA.reg |= TCC_CTRLA_ENABLE ; // Enable TC while (t->SYNCBUSY.bit.ENABLE == 1); // wait for sync #if 0 ser->print(ms_getTicker(), DEC); ser->print(" startTimer: nCounts="); ser->println(nCounts, DEC); #endif } #if USE_TCC_TIMEOUT == 0 void TCC0_Handler() #elif USE_TCC_TIMEOUT == 1 void TCC1_Handler() #elif USE_TCC_TIMEOUT == 2 void TCC2_Handler() #endif { Tcc *t = TCC_data[USE_TCC_TIMEOUT].tcc_ptr; uint64_t nsecs = ns_getTicker(); /* * Overflow means the max timer exeeded, we need restart the timer * Interrupts and */ if (t->INTFLAG.bit.OVF == 1) { // A overflow caused the interrupt t->INTFLAG.bit.OVF = 1; // writing a one clears the flag ovf flag } if (t->INTFLAG.bit.MC0 == 1) { // A compare to cc0 caused the interrupt //ser->print("MC0\r\n"); t->INTFLAG.bit.MC0 = 1; // writing a one clears the MCO (match capture) flag } t->CTRLA.reg &= ~TCC_CTRLA_ENABLE; // Disable TC while (t->SYNCBUSY.bit.ENABLE == 1); // wait for sync for (int i = 0; i < MAX_TIMEOUTS-1; i++) { struct TimeoutVector *tvp = &TimeOuts[i]; if (tvp->timer && nsecs >= tvp->timer->_timeout) { Timeout *saveTimer = tvp->timer; tvp->timer = NULL; Timeout::_irq_handler(saveTimer); } } /* * we need to restart the timer for remaining interrupts * Another reason is that we stopped this counter, in case there are * remaining counts, we need to re-schedule the counter. */ Timeout::restart(); } /* ----------------- D21 sleep() and deepsleep() code ----------------------*/ void sleep(void) { /* * If we use the native USB port our Serial is SerialUSB * and if the SerialUSB and connected we should * not enter into sleep mode because this kills the Arduino USB emulation */ SysTick->CTRL &= ~SysTick_CTRL_ENABLE_Msk; // disbale SysTick uint32_t saved_ms = ms_getTicker(); if (SerialUSB_active) { __DSB(); // ensures the completion of memory accesses __WFI(); // wait for interrupt } else { #if 0 // (SAMD20 || SAMD21) /* Errata: Make sure that the Flash does not power all the way down * when in sleep mode. */ NVMCTRL->CTRLB.bit.SLEEPPRM = NVMCTRL_CTRLB_SLEEPPRM_DISABLED_Val; #endif SCB->SCR &= ~SCB_SCR_SLEEPDEEP_Msk; // clear deep sleep PM->SLEEP.reg = 2; // SYSTEM_SLEEPMODE_IDLE_2 IDLE 2 sleep mode. __DSB(); // ensures the completion of memory accesses __WFI(); // wait for interrupt } int count = ms_getTicker() - saved_ms; if (count > 0) { // update the Arduino Systicks for (int i = 0; i < count; i++) { SysTick_Handler(); } } SysTick->CTRL |= SysTick_CTRL_ENABLE_Msk; // enable SysTick } /* * TODO * Check if we need to disable the USB GCLK->CLKCTRL.reg (see USBCore.cpp) * Check what else we need to disable? */ void deepsleep(void) { #if 0 // (SAMD20 || SAMD21) /* Errata: Make sure that the Flash does not power all the way down * when in sleep mode. */ NVMCTRL->CTRLB.bit.SLEEPPRM = NVMCTRL_CTRLB_SLEEPPRM_DISABLED_Val; #endif SCB->SCR |= SCB_SCR_SLEEPDEEP_Msk; // standby mode //EIC->WAKEUP.bit.WAKEUPEN3 = 1; // enable wakeup on Pin 12/PA19/EXTINT[3] see variants.h __DSB(); // ensures the completion of memory accesses __WFI(); // wait for interrupt } #endif // D21 TCC Timer, sleep, etc- #endif // ARDUINO