This is code is part of a Technion course project in advanced IoT, implementing a device to receive and present sensors data from a Formula racing car built by students at Technion - Israel Institute of Technology.
Fork of DISCO-L072CZ-LRWAN1_LoRa_PingPong by
This is code is part of a Technion course project in advanced IoT, implementing a device to receive sensors data from another L072CZ-LRWAN1 installed on a Formula racing car (built by students at Technion - Israel Institute of Technology), and sends it to a GUI presenting the data (GUI project: github.com/ward-mattar/TechnionFormulaGUI).
How to install
- Create an account on Mbed: https://os.mbed.com/account/signup/
- Import project into Compiler
- In the Program Workspace select "Formula_Nucleo_Receiver"
- Select a Platform like so:
- Click button at top-left
- Add Board
- Search "NUCLEO F103RB" and then "Add to your Mbed Compiler"
- Finally click "Compile", if the build was successful, the binary would download automatically
- To install it on device simply plug it in to a PC, open device drive and drag then drop binary file in it
main.cpp
- Committer:
- wardm
- Date:
- 2018-05-19
- Revision:
- 12:046346a16ff4
- Parent:
- 10:f84959c2e044
File content as of revision 12:046346a16ff4:
/* * Copyright (c) 2017 Helmut Tschemernjak * 30826 Garbsen (Hannover) Germany * Licensed under the Apache License, Version 2.0); */ #include "main.h" DigitalOut myled(LED1); BufferedSerial *ser; int main() { SystemClock_Config(); ser = new BufferedSerial(USBTX, USBRX); ser->baud(115200*2); ser->format(8); myled = 1; Receiver(); } void SystemClock_Config(void) { #ifdef B_L072Z_LRWAN1_LORA /* * The L072Z_LRWAN1_LORA clock setup is somewhat differnt from the Nucleo board. * It has no LSE. */ RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; RCC_OscInitTypeDef RCC_OscInitStruct = {0}; /* Enable HSE Oscillator and Activate PLL with HSE as source */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSEState = RCC_HSE_OFF; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI; RCC_OscInitStruct.PLL.PLLMUL = RCC_PLLMUL_6; RCC_OscInitStruct.PLL.PLLDIV = RCC_PLLDIV_3; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { // Error_Handler(); } /* Set Voltage scale1 as MCU will run at 32MHz */ __HAL_RCC_PWR_CLK_ENABLE(); __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); /* Poll VOSF bit of in PWR_CSR. Wait until it is reset to 0 */ while (__HAL_PWR_GET_FLAG(PWR_FLAG_VOS) != RESET) {}; /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers */ RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2); RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK) { // Error_Handler(); } #endif } void dump(const char *title, const void *data, int len, bool dwords) { dprintf("dump(\"%s\", 0x%x, %d bytes)", title, data, len); int i, j, cnt; unsigned char *u; const int width = 16; const int seppos = 7; cnt = 0; u = (unsigned char *)data; while (len > 0) { ser->printf("%08x: ", (unsigned int)data + cnt); if (dwords) { unsigned int *ip = ( unsigned int *)u; ser->printf(" 0x%08x\r\n", *ip); u+= 4; len -= 4; cnt += 4; continue; } cnt += width; j = len < width ? len : width; for (i = 0; i < j; i++) { ser->printf("%2.2x ", *(u + i)); if (i == seppos) ser->putc(' '); } ser->putc(' '); if (j < width) { i = width - j; if (i > seppos + 1) ser->putc(' '); while (i--) { printf("%s", " "); } } for (i = 0; i < j; i++) { int c = *(u + i); if (c >= ' ' && c <= '~') ser->putc(c); else ser->putc('.'); if (i == seppos) ser->putc(' '); } len -= width; u += width; ser->printf("\r\n"); } ser->printf("--\r\n"); }