This is code is part of a Technion course project in advanced IoT, implementing a device to receive and present sensors data from a Formula racing car built by students at Technion - Israel Institute of Technology.
Fork of DISCO-L072CZ-LRWAN1_LoRa_PingPong by
This is code is part of a Technion course project in advanced IoT, implementing a device to receive sensors data from another L072CZ-LRWAN1 installed on a Formula racing car (built by students at Technion - Israel Institute of Technology), and sends it to a GUI presenting the data (GUI project: github.com/ward-mattar/TechnionFormulaGUI).
How to install
- Create an account on Mbed: https://os.mbed.com/account/signup/
- Import project into Compiler
- In the Program Workspace select "Formula_Nucleo_Receiver"
- Select a Platform like so:
- Click button at top-left
- Add Board
- Search "NUCLEO F103RB" and then "Add to your Mbed Compiler"
- Finally click "Compile", if the build was successful, the binary would download automatically
- To install it on device simply plug it in to a PC, open device drive and drag then drop binary file in it
SX1276GenericLib/sx1276/sx1276-mbed-hal.cpp
- Committer:
- wardm
- Date:
- 2018-05-19
- Revision:
- 12:046346a16ff4
File content as of revision 12:046346a16ff4:
/* / _____) _ | | ( (____ _____ ____ _| |_ _____ ____| |__ \____ \| ___ | (_ _) ___ |/ ___) _ \ _____) ) ____| | | || |_| ____( (___| | | | (______/|_____)_|_|_| \__)_____)\____)_| |_| (C) 2014 Semtech Description: - License: Revised BSD License, see LICENSE.TXT file include in the project Maintainers: Miguel Luis, Gregory Cristian and Nicolas Huguenin */ /* * additional development to make it more generic across multiple OS versions * (c) 2017 Helmut Tschemernjak * 30826 Garbsen (Hannover) Germany */ #ifdef ARDUINO #include "arduino-mbed.h" #endif #include "sx1276-mbed-hal.h" SX1276Generic::SX1276Generic( RadioEvents_t *events, BoardType_t board, PinName mosi, PinName miso, PinName sclk, PinName nss, PinName reset, PinName dio0, PinName dio1, PinName dio2, PinName dio3, PinName dio4, PinName dio5, PinName antSwitch, PinName antSwitchTX, PinName antSwitchTXBoost, PinName tcxo) : SX1276( events) { Sleep_ms( 10 ); this->RadioEvents = events; boardConnected = board; _antSwitch = NULL; _antSwitchTX = NULL; _antSwitchTXBoost = NULL; _tcxo = NULL; if (tcxo != NC) _tcxo = new DigitalOut(tcxo); switch(boardConnected) { case SX1276MB1MAS: case SX1276MB1LAS: _antSwitch = new DigitalOut(antSwitch); break; case RFM95_SX1276: break; case MURATA_SX1276: _antSwitch = new DigitalOut(antSwitch); _antSwitchTX = new DigitalOut(antSwitchTX); _antSwitchTXBoost = new DigitalOut(antSwitchTXBoost); break; default: break; } _spi = new XSPI(mosi, miso, sclk ); _nss = new DigitalOut(nss); _reset = new DigitalInOut(reset); _dio0 = NULL; _dio1 = NULL; _dio2 = NULL; _dio3 = NULL; _dio4 = NULL; _dio5 = NULL; if (dio0 != NC) _dio0 = new InterruptIn(dio0); if (dio1 != NC) _dio1 = new InterruptIn(dio1); if (dio2 != NC) _dio2 = new InterruptIn(dio2); if (dio3 != NC) _dio3 = new InterruptIn(dio3); if (dio4 != NC) _dio4 = new InterruptIn(dio4); if (dio5 != NC) _dio5 = new DigitalIn(dio5); Reset( ); IoInit( ); RxChainCalibration( ); SetOpMode( RF_OPMODE_SLEEP ); IoIrqInit( dioIrq ); RadioRegistersInit( ); SetModem( MODEM_FSK ); } SX1276Generic::~SX1276Generic() { if (_antSwitch) delete _antSwitch; if (_antSwitchTX) delete _antSwitchTX; if (_antSwitchTXBoost) delete _antSwitchTXBoost; if (_tcxo) { *_tcxo = 0; delete (_tcxo); } delete _reset; delete _spi; delete _nss; if (_dio0) delete _dio0; if (_dio1) delete _dio1; if (_dio2) delete _dio2; if (_dio3) delete _dio3; if (_dio4) delete _dio4; if (_dio5) delete _dio5; } //------------------------------------------------------------------------- // Board relative functions //------------------------------------------------------------------------- uint8_t SX1276Generic::DetectBoardType( void ) { return boardConnected; } void SX1276Generic::IoInit( void ) { if (_tcxo) *_tcxo = 1; AntSwInit( ); SpiInit( ); } void SX1276Generic::SpiInit( void ) { *_nss = 1; _spi->format( 8,0 ); uint32_t frequencyToSet = 8000000; #ifdef TARGET_KL25Z //busclock frequency is halved -> double the spi frequency to compensate _spi->frequency( frequencyToSet * 2 ); #else _spi->frequency( frequencyToSet ); #endif wait_ms(100); } void SX1276Generic::IoIrqInit( DioIrqHandler *irqHandlers ) { if (_dio0) _dio0->rise(callback(this, static_cast< Trigger > ( irqHandlers[0] ))); if (_dio1) _dio1->rise(callback(this, static_cast< Trigger > ( irqHandlers[1] ))); if (_dio2) _dio2->rise(callback(this, static_cast< Trigger > ( irqHandlers[2] ))); if (_dio3) _dio3->rise(callback(this, static_cast< Trigger > ( irqHandlers[3] ))); if (_dio4) _dio4->rise(callback(this, static_cast< Trigger > ( irqHandlers[4] ))); } void SX1276Generic::IoDeInit( void ) { //nothing } void SX1276Generic::SetRfTxPower( int8_t power ) { uint8_t paConfig = 0; uint8_t paDac = 0; paConfig = Read( REG_PACONFIG ); paDac = Read( REG_PADAC ); paConfig = ( paConfig & RF_PACONFIG_PASELECT_MASK ) | GetPaSelect( this->settings.Channel ); paConfig = ( paConfig & RF_PACONFIG_MAX_POWER_MASK ) | 0x70; if( ( paConfig & RF_PACONFIG_PASELECT_PABOOST ) == RF_PACONFIG_PASELECT_PABOOST ) { if( power > 17 ) { paDac = ( paDac & RF_PADAC_20DBM_MASK ) | RF_PADAC_20DBM_ON; } else { paDac = ( paDac & RF_PADAC_20DBM_MASK ) | RF_PADAC_20DBM_OFF; } if( ( paDac & RF_PADAC_20DBM_ON ) == RF_PADAC_20DBM_ON ) { if( power < 5 ) { power = 5; } if( power > 20 ) { power = 20; } paConfig = ( paConfig & RF_PACONFIG_OUTPUTPOWER_MASK ) | ( uint8_t )( ( uint16_t )( power - 5 ) & 0x0F ); } else { if( power < 2 ) { power = 2; } if( power > 17 ) { power = 17; } paConfig = ( paConfig & RF_PACONFIG_OUTPUTPOWER_MASK ) | ( uint8_t )( ( uint16_t )( power - 2 ) & 0x0F ); } } else { if( power < -1 ) { power = -1; } if( power > 14 ) { power = 14; } paConfig = ( paConfig & RF_PACONFIG_OUTPUTPOWER_MASK ) | ( uint8_t )( ( uint16_t )( power + 1 ) & 0x0F ); } Write( REG_PACONFIG, paConfig ); Write( REG_PADAC, paDac ); } uint8_t SX1276Generic::GetPaSelect( uint32_t channel ) { if( channel > RF_MID_BAND_THRESH ) { if (boardConnected == SX1276MB1LAS || boardConnected == RFM95_SX1276 || boardConnected == MURATA_SX1276) { return RF_PACONFIG_PASELECT_PABOOST; } else { return RF_PACONFIG_PASELECT_RFO; } } else { return RF_PACONFIG_PASELECT_RFO; } } void SX1276Generic::SetAntSwLowPower( bool status ) { if( isRadioActive != status ) { isRadioActive = status; if( status == false ) { AntSwInit( ); } else { AntSwDeInit( ); } } } void SX1276Generic::AntSwInit( void ) { if (_antSwitch) *_antSwitch = 0; if (boardConnected == MURATA_SX1276) { *_antSwitchTX = 0; *_antSwitchTXBoost = 0; } } void SX1276Generic::AntSwDeInit( void ) { if (_antSwitch) *_antSwitch = 0; if (boardConnected == MURATA_SX1276) { *_antSwitchTX = 0; *_antSwitchTXBoost = 0; } } void SX1276Generic::SetAntSw( uint8_t opMode ) { switch( opMode ) { case RFLR_OPMODE_TRANSMITTER: if (boardConnected == MURATA_SX1276) { *_antSwitch = 0;// Murata-RX if (Read( REG_PACONFIG) & RF_PACONFIG_PASELECT_PABOOST) *_antSwitchTXBoost = 1; else *_antSwitchTX = 1; // alternate: antSwitchTXBoost = 1 } else { if (_antSwitch) *_antSwitch = 1; } break; case RFLR_OPMODE_RECEIVER: case RFLR_OPMODE_RECEIVER_SINGLE: case RFLR_OPMODE_CAD: if (boardConnected == MURATA_SX1276) { *_antSwitch = 1; // Murata-RX *_antSwitchTX = 0; *_antSwitchTXBoost = 0; } else { if (_antSwitch) _antSwitch = 0; } break; case RFLR_OPMODE_SLEEP: case RFLR_OPMODE_STANDBY: default: if (boardConnected == MURATA_SX1276) { *_antSwitch = 0; //Murata-RX *_antSwitchTX = 0; *_antSwitchTXBoost = 0; } else { if (_antSwitch) *_antSwitch = 0; } break; } } void SX1276Generic::SetTimeout(TimeoutTimer_t timer, timeoutFuncPtr func, int timeout_ms) { switch(timer) { case RXTimeoutTimer: if (func) rxTimeoutTimer.attach_us(callback(this, func), timeout_ms); else rxTimeoutTimer.detach(); break; case TXTimeoutTimer: if (func) txTimeoutTimer.attach_us(callback(this, func), timeout_ms); else txTimeoutTimer.detach(); break; case RXTimeoutSyncWordTimer: if (func) rxTimeoutSyncWord.attach_us(callback(this, func), timeout_ms); else rxTimeoutSyncWord.detach(); break; } } void SX1276Generic::Sleep_ms(int ms) { wait_ms(ms); } bool SX1276Generic::CheckRfFrequency( uint32_t frequency ) { if (frequency > 1200000) return false; // Implement check. Currently all frequencies are supported return true; } void SX1276Generic::Reset( void ) { _reset->output(); *_reset = 0; wait_ms( 1 ); *_reset = 1; _reset->input(); // I don't know my input again, maybe to save power (Helmut T) wait_ms( 6 ); } void SX1276Generic::Write( uint8_t addr, uint8_t data ) { Write( addr, &data, 1 ); } uint8_t SX1276Generic::Read( uint8_t addr ) { uint8_t data; Read( addr, &data, 1 ); return data; } void SX1276Generic::Write( uint8_t addr, void *buffer, uint8_t size ) { uint8_t i; uint8_t *p = (uint8_t *)buffer; *_nss = 0; // what about SPI hold/release timing on fast MCUs? Helmut _spi->write( addr | 0x80 ); for( i = 0; i < size; i++ ) { _spi->write(*p++); } *_nss = 1; } void SX1276Generic::Read( uint8_t addr, void *buffer, uint8_t size ) { uint8_t i; uint8_t *p = (uint8_t *)buffer; *_nss = 0; // what about SPI hold/release timing on fast MCUs? Helmut _spi->write( addr & 0x7F ); for( i = 0; i < size; i++ ) { *p++ = _spi->write( 0 ); } *_nss = 1; } void SX1276Generic::WriteFifo( void *buffer, uint8_t size ) { Write( 0, buffer, size ); } void SX1276Generic::ReadFifo( void *buffer, uint8_t size ) { Read( 0, buffer, size ); }